You are here:

College Stories: Shelley Minteer, Chemistry

Professor Shelly Minteer, Chemistry Department, University of Utah

Shelley Minteer - Elected Fellow of the American Association for the Advancement of Science (AAAS)

University of Utah professors Shelley Minteer and Glenn Prestwich are among the 416 newly-elected Fellows of the American Association for the Advancement of Science (AAAS). Election as a Fellow is an honor bestowed upon AAAS members by their peers.

AAAS members have been awarded this honor  because of their scientifically or socially distinguished efforts to advance science or its applications. Minteer and Prestwich join 126 other Fellows either currently or formerly affiliated with the U, including Nobel laureate Mario Capecchi and Senior Vice President for Academic Affairs Dan Reed. The U’s first Fellow was geologist and former university president James Talmage, elected in 1906.

New Fellows will be presented with a gold and blue (representing science and engineering, respectively) rosette pin on Saturday, February 16, 2019 during the 2019 AAAS Annual Meeting in Washington, D.C. Fellows will also be announced in the AAAS News & Notes section of the journal Science on November 29, 2018.

Minteer was elected for “fundamental and applied contributions to electrochemistry, including electrocatalytic cascades and natural and artificial metabolons for biofuel cells.”

Minteer’s career has focused on using nature as an inspiration and solution to chemistry problems. Her work has resulted in 17 issued patents and over 300 peer-reviewed publications in using biology as inspiration for biosensing, energy storage, energy conversion, and electrosynthesis.

“As we start to think about renewable energy sources, whether that’s solar or wind, we need to think about how we store that energy for when the sun doesn’t shine and the wind doesn’t blow,” she says. Her research group focuses on nature-inspired catalytic cascades of reactions that store energy in chemical bonds.

“If you look at biological systems, biology does energy conversion extremely efficiently, so we are using that energy conversion machinery to improve the efficiency of electrochemical energy conversion devices” she says.

Minteer feels honored by her election as a AAAS fellow, the latest in a long line of chemists from the U.

The tradition of AAAS Fellows began in 1874. Currently, members can be considered for the rank of Fellow if nominated by the steering groups of the Association’s 24 sections, or by any three Fellows who are current AAAS members (so long as two of the three sponsors are not affiliated with the nominee’s institution), or by the AAAS chief executive officer. Fellows must have been continuous members of AAAS for four years by the end of the calendar year in which they are elected. AAAS Fellow’s lifetime honor comes with an expectation that recipients maintain the highest standards of professional ethics and scientific integrity.

Each steering group reviews the nominations of individuals within its respective section and a final list is forwarded to the AAAS Council, which votes on the aggregate list.


UNews - 2018

Electric Achievement in Electrochemistry

Shelly Minteer accepts ACS award On August 21, 2018 Shelley Minteer was awarded the 2018 ACS Division of Analytical Chemistry Award in Electrochemistry, which was given at the ACS meeting in Boston. She is one of six awardees for the division, and is the third professor from the University of Utah Department of Chemistry to receive this award.

"Dr. Shelley Minteer is a USTAR Professor in both the Departments of Chemistry and Materials Science and Engineering at the University of Utah. She received her PhD in Analytical Chemistry at the University of Iowa in 2000 under the direction of Professor Johna Leddy. After receiving her PhD, she spent 11 years as a faculty member in the Department of Chemistry at Saint Louis University before moving to the University of Utah in 2011. She was also a Technical Editor for the Journal of the Electrochemical Society from 2013-2016 and is now an Associate Editor for the Journal of the American Chemical Society. She has published greater than 300 publications and greater than 400 presentations at national and international conferences and universities. She has won several awards including the Luigi Galvani Prize of the Bioelectrochemical Society, the Missouri Inventor of the Year, International Society of Electrochemistry Tajima Prize, Fellow of the Electrochemical Society, and the Society of Electroanalytical Chemists’ Young Investigator Award. Her research research interests are focused on electrocatalysis and bioanalytical electrochemistry. She has expertise in biosensors, biofuel cells, and bioelectronics."

Electrocatalytic cascades for energy conversion and electrosynthesis

Many organic, metallic, and biological electrocatalysts catalyze 2 or 4 electron oxidation or reduction reactions, but when using electrocatalysis for complex fuel oxidation in fuel cells or electrochemical synthesis of complex products, a cascade of catalytic moieties may be necessary. This talk will discuss the complexities of utilizing electrocatalytic cascades of bioelectrocatalysts and organic electrocatalysts, as well as hybrid catalytic cascades. The talk will discuss the importance of channeling intermediates between individual catalytic active sites and materials strategies for improving the faradaic and product efficiencies of catalytic cascades. Finally, this talk will provide a variety of examples of the use of catalytic cascades including oxidation of complex fuels (i.e. JP-8 jet fuel) and complex biofuels (i.e. glycerol, glucose, and pyruvate) in fuel cells and the electrosynthesis of complex products (i.e. ammonia from nitrogen gas and hydrocarbons from carbon dioxide).


Minteer Research Group
Chemistry News - 2018

Jet-Fueled Electricity at Room Temperature

University of Utah scientists developed the first room-temperature fuel cell that uses enzymes to help jet fuel produce electricity without needing to ignite the fuel. These new fuel cells can be used to power portable electronics, off-grid power and sensors.

A study of the new cells appears online today in the American Chemical Society journal ACS Catalysis.

Fuel cells convert energy into electricity through a chemical reaction between a fuel and an oxygen-rich source such as air. If a continuous flow of fuel is provided, a fuel cell can generate electricity cleanly and cheaply. While batteries are used commonly to power electric cars and generators, fuel cells also now serve as power generators in some buildings, or to power fuel-cell vehicles such as prototype hydrogen-powered cars.

“The major advance in this research is the ability to use Jet Propellant-8 directly in a fuel cell without having to remove sulfur impurities or operate at very high temperature,” says the study’s senior author, Shelley Minteer, a University of Utah professor of chemistry and of materials science and engineering. “This work shows that JP-8 and probably others can be used as fuels for low-temperature fuel cells with the right catalysts.” Catalysts are chemicals that speed reactions between other chemicals.

In the new study, the University of Utah team investigated Jet Propellant-8 or JP-8, a kerosene-based jet fuel that is used by the U.S. military in extreme conditions such as scorching deserts or subzero temperatures.

Converting this jet fuel into electricity is difficult using standard techniques because jet fuel contains sulfur, which can impair metal catalysts used to oxidize fuel in traditional fuel cells. The conversion process is also inefficient, with only 30 percent of the fuel converted to electricity under the best conditions.

To overcome these constraints, the Utah researchers used JP-8 in an enzymatic fuel cell, which uses JP-8 for fuel and enzymes as catalysts. Enzymes are proteins that can act as catalysts by speeding up chemical reactions. These fuel cells can operate at room temperature and can tolerate sulfur.

An enzyme “cascade” of two enzymes – alkane monooxygenase and alcohol oxidase – was used to catalyze JP-8. Hexane and octane, which are chemically similar to JP-8, also were tested as fuels. The researchers found that adding sulfur to their enzymatic fuel cell did not reduce power production.

“Enzymatic fuel cells are a newer type of fuel cell, so they are not currently on the market,” says Minteer, also a professor with USTAR, the Utah Science Technology and Research economic development initiative. “However, researchers haven’t been able to use JP-8 before, because they haven’t had the enzymes to be able to oxidize JP-8.”

Solid-oxide fuel cells at temperatures above 950 degrees Fahrenheit have made use of JP-8, but this is the first demonstration at room temperature, Minteer says. Now that the team has shown the enzyme catalysts works, they will focus on designing the fuel cell and improving its efficiency, she adds.

Minteer conducted the study with University of Utah postdoctoral researchers Michelle Rasmussen and Mary Arugula, and with Yevgenia Ulyanova, Erica Pinchon, Ulf Lindstrom and Sameer Singhal of CFD Research Corp. in Huntsville, Alabama.

This research was funded by Northrop Grumman Corp. and the National Science Foundation through the University of Utah’s Materials Research Science and Engineering Center.

Listen to Shelley's full KUER radio interview.


Chemistry News -  2015

Last Updated: 12/5/18