You are here:

Chemistry Top Stories

  • Cynthia Burrows2018 Willard Gibbs Medal

    Cindy Burrows has been selected as the recipient of the 2018 Willard Gibbs Medal of the Chicago Section of the American Chemical Society. This is one of the most prestigious honors in chemistry, its purpose "To publicly recognize eminent chemists who, through years of application and devotion, have brought to the world developments that enable everyone to live more comfortably and to understand this world better." Medalists are selected by a national jury of eminent chemists from different disciplines, the nominee being a chemist who, because of the preeminence of his/her work in and contribution to pure or applied chemistry, is deemed worthy of special recognition. This award has been given since 1911, and only one previous Utah chemist (Henry Eyring, 1968) has received it. Please join us in congratulating Dr. Burrows on this impressive recognition!

  • Shelley MinteerFaculty Spotlight: Shelley Minteer

    Shelley Minteer, a USTAR Professor in the Departments of Chemistry and Materials Science and Engineering, is flipping the switch on ammonia production. She recently published a new process to make ammonia – a valuable chemical and widely used fertilizer – in the journal Angewandte Chemie International Edition.

  • Michael MorseBond Dissociation Energies for Transition Metal Silicides Accurately Determined

    Transition metal silicides, a distinct class of semiconducting materials that contain silicon, demonstrate superior oxidation resistance, high temperature stability and low corrosion rates, which make them promising for a variety of future developments in electronic devices. Despite their relevance to modern technology, however, fundamental aspects of the chemical bonding between their transition metal atoms and silicon remain poorly understood. One of the most important, but poorly known, properties is the strength of these chemical bonds -- the thermochemical bond dissociation energy.

  • Vahe BandarianFaculty Spotlight: Vahe Bandarian

    Chemistry Professor Vahe Bandarian is exploring the biosynthetic pathways that are involved in the production of modified nucleic acids, such as those found in RNA. In fact, RNA is among the most highly modified biological molecules, with more than 100 modifications observed to date. While most modifications entail simple transformations, some are so-called hyper-modified bases where multiple steps are involved. Recent studies point to links between RNA modifications and cellular processes, some of which underlie diseases.

  • Matthew S. Sigman, Distinguished Professor Faculty Spotlight: Matthew S. Sigman

    Matthew S. Sigman, Distinguished Professor and Peter J. and Christine S. Stang Presidential Endowed Chair of Chemistry, is helping the U.S. Department of Energy (DOE) develop highly efficient next-generation battery technologies for energy storage. Sigman and U of U colleague Shelley Minteer, along with University of Michigan chemists, are participating in the Department of Energy’s Joint Center for Energy Storage Research, to develop a better type of battery architecture for grid energy storage called redox flow batteries.

  • Wind Turbine FarmStabilizing Energy Storage

    Because the sun doesn’t always shine, solar utilities need a way to store extra charge for a rainy day. The same goes for wind power facilities, since the wind doesn’t always blow. To take full advantage of renewable energy, electrical grids need large batteries that can store the power coming from wind and solar installations until it is needed. Some of the current technologies that are potentially very appealing for the electrical grid are inefficient and short-lived. University of Utah and University of Michigan chemists, participating in the U.S. Department of Energy’s Joint Center for Energy Storage Research, predict a better future for a type of battery for grid storage called redox flow batteries. Using a predictive model of molecules and their properties, the team has developed a charge-storing molecule around 1,000 times more stable than current compounds. Their results are reported today in the Journal of the American Chemical Society.

  • Ross Milton works in the glove box used to keep nitrogenase in an oxygen-free environment.Flipping the Switch on Ammonia Production

    Nearly a century ago, German chemist Fritz Haber won the Nobel Prize in Chemistry for a process to generate ammonia from hydrogen and nitrogen gases. The process, still in use today, ushered in a revolution in agriculture, but now consumes around one percent of the world’s energy to achieve the high pressures and temperatures that drive the chemical reactions to produce ammonia. Today, University of Utah chemists publish a different method, using enzymes derived from nature, that generates ammonia at room temperature. As a bonus, the reaction generates a small electrical current. The method is published in Angewandte Chemie International Edition.

  • Matthew SigmanMatt Sigman Receives ACS Award

    Matthew Sigman, Distinguished Professor & Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry with the University of Utah has been awarded the ACS Award for Creative Work in Synthetic Organic Chemistry, "For his creative, seminal work in synthetic organic chemistry, especially his innovative contributions to the Wacker oxidation and Heck reaction."

  • Bethany Buck-KoehntopFaculty Spotlight: Bethany Buck-Koehntop

    More than one million people in the United States develop cancer each year. However, two in every three people diagnosed with cancer today will survive at least five years, thanks to basic scientific research and the tireless work of the American Cancer Society. Bethany Buck-Koehntop, assistant professor of chemistry at the U, is part of this effort. She is using a multidisciplinary approach of structural biology, biochemistry, molecular biology and cellular biology to investigate the role of certain proteins in DNA expression and regulation within the cell.

Last Updated: 12/21/16