2025 Rosenblatt Prize, Chemist Henry White

2025 Rosenblatt Prize, ChemisT Henry White


May 2, 2025
Above: Henry White

Henry S. White, a world-renowned leader in the field of electrochemistry and distinguished professor chemistry, has been named the 2025 recipient of the University of Utah’s Rosenblatt Prize for Excellence.

A former dean of the College of Science and chairman of the Department of Chemistry, White has demonstrated a deep commitment to student success and is credited with transforming general chemistry education at the U, all the while shepherding the college’s physical expansion and producing world-class basic research that has led to innovations in drug delivery, biosensing and nanotechnology.

“Professor White has demonstrated a deep commitment to student success and is credited with transforming general chemistry education at the U, all the while shepherding the college’s physical expansion and producing basic research that has led to innovations in drug delivery, biosensing and nanotechnology,” said Taylor Randall, University of Utah president. “His leadership as dean and chair have been transformative for the College of Science and Department Chemistry, advancing their world-class research reputations, expanding their educational mission and reimagining philanthropic giving.”

The Rosenblatt Prize is the University of Utah’s highest faculty accolade and is presented annually to a faculty member who transcends ordinary teaching, research and administrative contributions. A group of distinguished faculty members on the Rosenblatt Prize Committee recommends esteemed colleagues for consideration and the university’s president makes the final selection.

About Henry White

Henry White

A leading figure in electrochemistry, White is best known for exploring how electrical processes behave at incredibly small (nanoscale) dimensions, according to distinguished professor of chemistry Cynthia Burrows. His work has shed light on how electric fields at surfaces affect the behavior of molecules attached to those surfaces, discoveries that are important for many devices from sensors to batteries.

“Henry excels in every category of our profession, as an educator and a scholar, and as a leader and colleague,” wrote Burrows, herself the 2019 Rosenblatt laureate, in her letter of nomination. “In his 32 years at the U, he has grown a vibrant research program in experimental and theoretical electrochemistry that has impacted diverse areas in biological, physical, and materials chemistry.”

White helped develop a fundamental theory of how molecules move and interact with electric fields near tiny electrodes, known as ultramicroelectrodes. These insights have practical uses in chemical detection and nanotechnology. One of the most exciting innovations from his lab is a patented method to analyze single DNA molecules using protein-based channels placed in glass nanopore membranes, essentially building a microscopic tool for studying genetic material at the molecular level.

“His group has made major contributions to many other areas of electrochemistry that include the application of magnetic fields in electrochemistry, unraveling the mechanism of electro-osmotic transport of drugs through human skin, breakdown of nanometer thick oxide films in corrosive environments, and the characterization of gas ‘nanobubbles,’” Burrows wrote.

White completed his doctorate in 1983 at the University of Texas and worked for nearly a decade at the University of Minnesota as a professor of chemical engineering and materials science. He joined the U’s chemistry faculty in 1993, serving as department chair from 2007 to 2013 and as dean of the College of Science from 2014 to 2019.

“The five years of Henry’s leadership as dean were a transformative period for the College,” wrote Peter Trapa, vice provost and senior dean of the Colleges and Schools of Liberal Arts and Sciences, in a letter of support for White’s nomination. “During this time, the College advanced its world-class research reputation; significantly expanded its educational mission; completely reimagined its fundraising efforts; and positioned itself to grow and sustain these advances for many years to come.”

White is credited with launching the college’s Science Research Initiative, which provides research opportunities to undergraduates and has since grown to 500 students. As department chair, White implemented major changes in the general chemistry program, requiring that only the top educators teach first-year undergraduate courses.

White himself taught general chemistry many times over the course of his U tenure. More than 40 graduate students have been mentored by White, who also supervised more than 60 research projects by undergraduates in chemistry, materials science, and chemical engineering.

His research, which touches every corner of electrochemistry, has been funded by both industry and a wide range of federal agencies, including Office of Naval Research, the Defense Advanced Research Project Agency, the National Institutes of Health and the National Science Foundation.

Electrochemists study the chemical transformations that occur when electrons are added to molecules in solution, producing results that are advancing energy production and storage. During White’s tenure, the field has gone from relative obscurity to prominence, especially for emerging energy technologies, according to George Whitesides, a university research professor of chemistry at Harvard.

“Even though there is enormous interest in the subject now, very few people really understand it, or the elementary processes it involves. Henry is one of the few who does. He has the true expert’s intuition about the processes that can occur, and the ones that don’t,” Whitesides wrote. “His skill in the science is enormously useful in guiding others who are primarily developing technology or extending applications, and he has assumed the role of arbiter of the “final word” in electrochemical arguments.”

Every major prize available to electrochemists has landed on White, most recently the 2015 Allen J. Bard Award of the Electrochemical Society, for which he was the inaugural recipient. In 2019, the U named him the John A. Widstoe Presidential Endowed Chair of Chemistry, but he later declined to renew the appointment so that it could be offered to a young rising star in the Department of Chemistry.

White helped raise millions in private donations to fund new endowed chairs and construct the Thatcher Building for Biological and Biophysical Chemistry and the Crocker Science Center, both completed under his watch. His initiatives helped diversify the chemistry faculty.

“The accomplishments described above are lasting contributions that will impact the College for generations and are testament to Henry’s exceptional ability as an administrator,” Trapa wrote. “In fact, it is fair to say that he probably did more to advance the dual missions of research and education than anyone who came before him in the history of the College.”

by Brian Maffly
this story originally appeared in @ The U.

Broader antibiotic use could change the course of cholera outbreaks

Broader antibiotic use could change the course of cholera outbreaks


May 2, 2025

Cholera kills thousands of people and infects hundreds of thousands every year—and cases have spiked in recent years, leaving governments with an urgent need to find better ways to control outbreaks.

Current public health guidelines discourage treating cholera, a severe diarrheal disease caused by waterborne bacteria, with antibiotics in all but the most severe cases, to reduce the risk that the disease will evolve resistance to the best treatments we have.

But recent disease modeling research from University of Utah Health and the Department of Mathematics challenges that paradigm, suggesting that for some cholera outbreaks, prescribing antibiotics more aggressively could slow or stop the spread of the disease and even reduce the likelihood of antibiotic resistance.

The results are based on mathematical modeling and will require further research to confirm. But they represent a first step toward understanding how antibiotics could change cholera spread. Co-authors include Cormac LaPrete, Jody Reimer and Frederick Adler from the math department's mathematical biology group.

“This might be an underused opportunity for cholera control, where expanding antibiotic treatment could have population-level benefits and help control outbreaks,” said Lindsay Keegan, research associate professor in epidemiology at U of U Health and senior author on the study published Wednesday.

Putting the brakes on outbreaks

Key to the researchers’ discovery is the fact that antibiotics make people less infectious. Medication is generally reserved for people who are most severely infected because moderate cases quickly recover with rest and rehydration. But while antibiotics may not help most individuals feel better faster, they reduce the amount of time someone is infectious by a factor of 10.

“If you recover naturally from cholera, you will feel better in a day or two, but you’re still shedding cholera for up to two weeks,” explained co-author Sharia Ahmed, assistant professor of epidemiology at Emory University’s Rollins School of Public Health, who worked on the study as a postdoctoral researcher in Keegan’s lab. “But if you take an antibiotic, you still feel better in about a day, and you stop releasing cholera into your environment.”

This means that treating moderate cases with antibiotics could slow outbreaks or, in some cases, stop them in their tracks. Even though a higher percentage of people with cholera would be using antibiotics, fewer people would get the disease, so that less antibiotics are used overall.

Cumulatively, lower antibiotic use lowers the risk that cholera evolves antibiotic resistance—which is “a big concern in the field,” Keegan said. “Cholera is exceptionally good at evading antibiotics and developing resistance. It’s not just a theoretical problem.”

The researchers mathematically modeled the spread of cholera under a variety of conditions to see which cases could benefit from antibiotic use. The key variable is how likely someone is to spread the disease to other people, which in turn depends on factors like population density and sanitation infrastructure.

In cases where cholera spreads more rapidly—like in regions with higher population density or without reliable access to clean drinking water—treating moderate cases of cholera with antibiotics wouldn’t slow the spread enough to balance out the risks of antibiotic resistance.

But if spread is relatively slow, the researchers found, using antibiotics for moderate cases could limit spread enough that, in the long run, fewer people catch the disease and fewer people are treated with antibiotics. In some cases, they predict, antibiotic use could stop outbreaks entirely.

Cholera cases are on the rise

Figuring out better plans for managing cholera is especially urgent because outbreaks are on the rise. Cases and deaths have spiked by about a third in the past year, likely related to mass displacement and natural disasters. As the climate shifts and extreme weather events become more frequent, disruptions to infrastructure could lead to cholera outbreaks in countries that haven’t previously experienced the disease.

The researchers emphasize that further work is needed before their work could motivate changes to how governments treat cholera. Scientists need to see whether the results hold up in more complex simulations that incorporate factors like cholera vaccines, and they need to figure out rules of thumb to quickly estimate whether or not the disease will spread slowly enough for aggressive antibiotic use to be a good call.

“The takeaway is not, ‘OK, let’s start giving people antibiotics,’” Keegan said. “This is a first step at understanding antibiotic use as a possibility for outbreak control.”

“If the results continue to be this compelling,” Ahmed added, “and we can replicate them in different settings, I think then we start talking about changing our policy for antibiotic treatment for cholera. This is a really good example of using data to continually improve our policy and our treatment choices for even well-established diseases.”


These results were published April 30 in Bulletin of Mathematical Biology as “A theoretical framework to quantify the tradeoff between individual and population benefits of expanded antibiotic use.” Co-authors include Cormac LaPrete, Jody Reimer and Frederick Adler of the U’s Department of Mathematics and School of Biological Sciences, and Damon Toth and Valerie Vaughn of the Department of Internal Medicine. The research was funded by the Centers for Disease Control and Prevention (grant numbers 1U01CK000675 and 1NU38FT000009-01-00) and the Agency for Healthcare Research and Quality (grant number 5K08HS026530-06).

by Sophia Friesen
Science communications manager, University of Utah Health, where this story originally appeared.

>> HOME <<