CO2 Atmospheric changes

Carbon dioxide has not been as high as today's concentrations in 14 million years thanks to fossil fuel emissions now warming the planet.

 

Gabriel Bowen

Today atmospheric carbon dioxide is at its highest level in at least several million years thanks to widespread combustion of fossil fuels by humans over the past couple centuries.

But where does 419 parts per million (ppm) — the current concentration of the greenhouse gas in the atmosphere—fit in Earth’s history?

That’s a question an international community of scientists, featuring key contributions by University of Utah geologists, is sorting out by examining a plethora of markers in the geologic record that offer clues about the contents of ancient atmospheres. Their initial study was published this week in the journal Science, reconstructing CO2 concentrations going back through the Cenozoic, the era that began with the demise dinosaurs and rise of mammals 66 million years ago.

Glaciers contain air bubbles, providing scientists direct evidence of CO2 levels going back 800,000 years, according to U geology professor Gabe Bowen, one of the study’s corresponding authors. But this record does not extend very deep into the geological past.

“Once you lose the ice cores, you lose direct evidence. You no longer have samples of atmospheric gas that you can analyze,” Bowen said. “So you have to rely on indirect evidence, what we call proxies. And those proxies are tough to work with because they are indirect.”

Read the full article by Brian Maffly in @TheU.
Read more about Gabe Bowen, recipient of the College of Science's Excellence in Research award,  and his work with isotopes here.

Read related article "'Call to Action': CO2 Now at Levels Not Seen in 14 Million Years" in Common Dreams.