Mathematical Biology Adds Up

The intersection between biology and math may seem like a large divide, but in reality, these disciplines gives rise to fascinating research approaches.

Jody Reimer, an assistant professor at the U, has double appointments in biology and math. “Biology is very messy,” Reimer states. “There’s this feeling of wanting to find universal principles or general theories. There’s nothing that refines your thinking better than having to write something down as an equation.”

Reimer is from a small town in Manitoba and completed her undergraduate degree at the University of Manitoba. From there, she completed her master’s degree at the University of Oxford. “It’s like the Disneyland of academics,” she jokes, referring to the prestigious university, the oldest in the English-speaking world. “It feels like you’re in a movie about being an academic.” She then moved back to Canada and completed her PhD at the University of Alberta before coming to the U as a postdoctoral researcher to work with Fred Adler and Ken Golden. In 2022 she became an assistant professor in math and biology. 

“My work is very interdisciplinary,” Reimer says. “I typically collaborate with biologists, but it was harder to meet folks in biology while working strictly in the math department.” Her joint appointment in biology and math facilitates collaborations with faculty and researchers in both. Within the intersection of math and biology, Reimer works with ecological research projects, specifically with sea ice.

Sea ice is considered the “soil of the ocean,” as Reimer puts it. The algae within sea ice are “more similar to a terrestrial system of plants growing than they are to a marine system. So marine organisms are growing on a terrestrial-like substrate.” Reimer explains that as an environment, sea ice is very dynamic. If the air temperature changes by ten degrees, the physical characteristics of the ice changes as it melts or freezes in response to the change in temperature. That also changes the fluid permeability of the ice, thus changing the microbial habitat in dramatic ways.

“What the environment looks like determines what can grow there,” Reimer states. “The little algal cells in the ice are also ecosystem engineers. They secrete these exopolymer substances to protect themselves, and that ‘goo’ changes the physics of the ice.”

Since change in temperature affects environments like sea ice in such significant ways, it’s an important area of research in regards to climate change. Research into how remote areas, such as Antarctica and the Arctic, are impacted by climate change as the planet warms by a few degrees is important, especially for polar regions. Reimer is using mechanistic models, which are well-suited to understanding climate change and environmental change as they allow us to explore the implications of previously unobserved environmental conditions.

The policy implications of research like this includes knowing what is vulnerable to climate change and needs protecting. “It’s hard to push for protections for areas if you don't know what you're protecting,” Reimer says. “Which areas are ecologically important and which areas are ecologically vulnerable?”

A woman tags a sedated polar bear.

Photo Credit: Evan Richardson

Reimer had her work on ringed seals in Alaska used in a court case when Alaska attempted to appeal the placement of ringed seals on the Endangered Species List. “It’s kind of unprecedented,” she says, in regards to why ringed seals were placed on the list. “I think polar bears are the first species that were listed, not because they're currently in danger, but because climate change forecasts suggest future population declines.” Reimer continues, saying their listing “was partially based on mathematical modeling work actually showing our best understanding of how polar bear populations respond to Arctic warming. This is how climate change is going to influence them. And it was enough to get them listed.” Ringed seals are listed for the same reason, and Reimer was encouraged to see her own modeling work contribute to that decision.   

Today, Reimer has found a home in Salt Lake City as she gets settled into her new lab in the south biology building. The challenge of being posted in two different departments as a tenure-line faculty member, even in the same college, is having double the administrative load, including showing up at two different faculty meetings and being on committees. With research that relates to both biology and math, things become comparable and quantifiable when they take the form of a mathematical equation, arguably a necessary tool for the great steamship of science to keep plowing the waters of knowledge and understanding.

By CJ Siebeneck
Science Writer Intern


>> HOME <<