Black carbon sensor could fill massive monitoring gaps
February 22, 2024
Black carbon is the most dangerous air pollutant you’ve never heard of. Its two main sources, diesel exhaust and wood smoke from wildfires and household heating, produce ultrafine air particles that are up to 25 times more of a health hazard per unit compared to other types of particulate matter.
Despite its danger, black carbon is understudied due to a lack of monitoring equipment. Regulatory-standard sensors are wildly expensive to deploy and maintain, resulting in sparse coverage in regions infamous for poor air quality, such as the greater Salt Lake City metropolitan area in Utah.
A University of Utah-led study found that the AethLabs microAeth MA350, a portable, more affordable sensor, recorded black carbon concentrations as accurately as the Aerosol Magee Scientific AE33, the most widely used instrument for monitoring black carbon in real time. Researchers placed the portable technology next to an existing regulatory sensor at the Bountiful Utah Division of Air Quality site from Aug. 30, 2021-Aug. 8, 2022. The AethLabs technology recorded nearly identical quantities of black carbon at the daily, monthly and seasonal timescales. The authors also showed that the microAeth could distinguish between wildfire and traffic sources as well as the AE33 at longer timescales.
Because black carbon stays close to the source, equipment must be localized to yield accurate readings. The microAethsensor’s portability would allow monitoring at remote or inaccessible stationary sites, as well as for mobile use.
“Having a better idea of black carbon exposure across different areas is an environmental justice issue,” said Daniel Mendoza, research assistant professor of atmospheric sciences at the University of Utah and lead author of the study. “The Salt Lake Valley’s westside has some of the region’s worst air quality partly because it’s closest to pollution sources, but we lack the ability to measure black carbon concentrations accurately. Democratizing data with reliable and robust sensors is an important first step to safeguarding all communities from hazardous air pollution.”
Read the entire story by Lisa Potter in @TheU.
Read the study published on Feb. 1, 2024, in the journal Sensors.
Read the full story by Sean Higgins at KUER 90.1.