MLK Week

mlk Week 2021


Historically, the Black, Indigeneous, and People of Color (BIPOC) community has been underrepresented in science and mathematics. The College of Science recognizes that scientific research benefits from diversity in the lab and in the classroom, and we are working to promote a culture of acceptance, equity, and inclusion in our college. This is ongoing work, and takes the dedication of all of us to strive to improve. This month, we are highlighting Black chemists, biologists, physicists, astronomers and mathematicians that have made extraordinary contributions to their field. 

Rev. Dr. Martin Luther King, Jr. Week (MLK Week) has become a platform to engage students, faculty, staff and community members in critical conversations around contemporary Civil Rights issues and race in America. The University is planning numerous activities for MLK week. We hope that students, faculty and staff are able to find ways to participate in these opportunities. 

The College of Science has developed a series of Zoom backgrounds highlighting Black scientists and mathematicians. We encourage you to use these during MLK week and the upcoming semester. 

Zoom Backgrounds


Please download and use these zoom backgrounds highlighting Black scientists and mathematicians to use during MLK week and the upcoming spring semester.

To add and use a Virtual Background in Zoom:

  • Right click and save the Virtual Background image.
  • Under Zoom - Preferences/Settings, choose Background and Filters.
  • Click the plus sign (+) to the right of Virtual Backgrounds to upload a new background image.
  • For further instructions, consult Zoom's Help Center.

Alice Ball

Dr. Alice Augusta Ball (July 24, 1892 – December 31, 1916) was an American chemist who developed the "Ball Method", the most effective treatment for leprosy during the early 20th century. She was the first woman and first African American to receive a master's degree from the University of Hawaii, and was also the university's first female and African American chemistry professor.

Edray H. Goins

Dr. Goins is a Professor of Mathematics at Pomona College. He specializes in number theory and algebraic geometry, and his interests include Selmer groups for elliptic curves using class groups of number fields, Belyi maps and Dessin d'enfants. He grew up in Los Angeles, obtained a Ph.D. from Stanford (1999) and he was previously at Purdue University. He was the president of the National Association of Mathematicians (NAM) which seeks to promote the success of underrepresented minorities in the mathematical sciences. He spends most of his summers engaging underrepresented students in research.

Renee Horton

Dr. K. Renee Horton is a native of Baton Rouge, Louisiana and lifelong lover of science and NASA. A graduate of Louisiana State University with a B.S. of Electrical Engineering with a minor in Math in 2002 and a Ph.D. in Material Science with a concentration in Physics, becoming the first African American to graduate from the University of Alabama in 2011 in this area. Dr. Horton currently serves as the Space Launch System (SLS) Quality Engineer in the NASA Residential Management Office at Michoud Assembly Facility (MAF) in New Orleans. In 2016, Dr. Horton was elected President of the National Society of Black Physicists (NSBP) as the second woman to hold the office, and In 2017, she was elevated to a Fellow in the NSBP, which is the highest honor bestowed upon a member.

Robert Henry Lawrence Jr.

Dr. Robert Henry Lawrence Jr. was a chemist by training, and was also the first African American astronaut. Lawrence was born in Chicago in 1935. After graduating from Bradley University with a chemistry degree, he joined the United States Air Force, eventually becoming a test pilot.

Soon after, the Air Force selected him to become an astronaut to work on low-orbit intelligence missions. This program was the precursor to the NASA’s space shuttle program. During his training, Lawrence also got a PhD in physical chemistry from the Ohio State University.

Lawrence never made it into space. In 1967, he died during a training flight at Edwards Air Force Base. He had completed about 2,500 hours of flight time in his short career. Bradley University named a scholarship in Lawrence’s honor, and a school in Chicago was also named for him. On Feb. 14, 2020, a shuttle bearing Lawrence’s name embarked for the International Space Station, carrying, among other things, supplies for scientific research.

Brandon Ogbunu

Dr. Ogbunu is an Assistant Professor in the Department of Ecology and Evolutionary Biology and leader of the Genetics, Ecology, Evolution, and Quantitative Science (GEEQS) Lab at Yale University. His research takes place at the intersection of evolutionary biology, genetics, and epidemiology. He uses experimental evolution, mathematical modeling, and computational biology to better understand the underlying causes and consequences of disease, across scales: from the biophysics of proteins involved in drug resistance to the social determinants driving epidemics at the population level. In doing so, he aims to develop theory that enriches our understanding of the evolutionary and ecological underpinnings of disease, while contributing to practical solutions for clinical medicine and public health. 

Chanda Prescod-Weinstein

Dr. Chanda Prescod-Weinstein is an Assistant Professor of Physics and Core Faculty Member in Women’s Studies at the University of New Hampshire. In addition, she is a monthly columnist at New Scientist and a contributing columnist at Physics World. Her work lives at the intersection of particle physics and astrophysics, and while she is primarily a theoretical researcher, maintains strong ties to astronomy.  Dr. Prescod-Weinstein is a topical convenor for Dark Matter: Cosmic Probes in the Snowmass 2021 process, and a lead axion wrangler for the NASA STROBE-X Probe Concept Study. Using ideas from both physics and astronomy, she responds to deep questions about how everything in the universe got to be the way it is. In addition, she researches feminist science studies, and believes all have the right to know the universe.

Candice R. Price

Dr. Price is an Assistant Professor of Mathematics and Statistics at Smith College. Her primary area of mathematical research is DNA topology, that is, knot theory applied to the structure of DNA, but she has research interests in the broad area of applied mathematics. She is a co-founder of the Underrepresented Students in Topology and Algebra Research Symposium (USTARS) and co-creator of the website mathematicallygiftedandblack.com that features profiles of Black mathematicians. Her service mission is to support those underrepresented in STEM by creating and supporting programs that increase visibility and amplify the voices of women and people of color in STEM while creating networks and community in STEM to provide opportunities to share resources. 

Clifton Sanders

Clifton G. Sanders, Ph.D., is the Provost for Academic Affairs at Salt Lake Community College. A chemist by training, he has more than 25 years teaching, administrative and leadership experience in higher education. He has held several administrative posts at SLCC, including Division Chair for Natural Sciences, Dean of Science, Mathematics and Engineering, and Interim Vice President for Workforce and Literacy. Dr. Sanders led the development of several STEM programs and has provided leadership for several local and national initiatives in STEM education and workforce development, including major grants sponsored by the Department of Labor and the Department of Energy, and collaborative projects with the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS) and Utah MESA/STEP. Prior to joining SLCC, Dr. Sanders was a senior research scientist and has several patents in biomaterials technology. His research was sponsored by the National Institutes of Health and the Department of Defense.


Carsten Rott

Carsten Rott


Professor Carsten Rott, who will join the Department of Physics & Astronomy in early 2021, has been appointed to the Jack W. Keuffel Memorial Chair, effective January 1, 2021. Rott will hold the chair through December 2025.

“It’s such a great honor to be appointed, and I’m looking forward to my arrival at the U to begin my work,” he said.

The Jack W. Keuffel Memorial Chair in Physics & Astronomy was established to honor and continue the work the late Jack W. Keuffel, a professor and pioneer in cosmic ray research at the U from 1960-1974.

More About Rott
For as long as he can remember, Rott has been fascinated by the night sky, the stars, and the planets. As a child growing up in Germany, he could see the Orion nebula, the Andromeda galaxy, and star clusters. He wondered what these objects were and what else was in the night sky waiting to be discovered.

He combined his love of astronomy with learning computer programing and was fascinated by the ability to write computer programs to model biological systems, fluid dynamics, and astrophysics. By comparing the outcomes of his simulations, he could check to see if his intuition was correct or if he got the physics right, which was invaluable in training his logical thinking skills. “As a high school student, I spent many months trying to understand why my simulations of rotating galaxies would not maintain spiral arm structures or why my models of stars weren’t stable,” he said. Struggling with such questions made him want to understand the underlying phenomena.

Rott studied physics as an undergraduate at the Universität Hannover and went on to receive a Ph.D. from Purdue University in 2004. “Becoming a physicist has at times been a challenge, but it has broadened my horizons so much, and I’m extremely happy I decided to pursue a career in science,” he said.

High-Energy Neutrinos
His research is on understanding the origins of high energy neutrinos, which are tiny, subatomic particles similar to electrons, but with no electrical charge and a very tiny mass. Neutrinos are abundant in the universe but difficult to detect because they rarely interact with matter. These particles originate from distant regions of the universe and can arrive on the Earth more or less unhindered, providing scientists with information about distant galaxies. High-energy neutrinos are associated with extreme cosmic events, such as exploding stars, gamma ray bursts, outflows from supermassive black holes, and neutron stars, and studying them is regarded as a key to identifying and understanding cosmic phenomena.

“One of my main research focuses is to look for signatures of dark matter with high-energy neutrinos. By studying them, we can explore energy scales far beyond the reach of particle accelerators on Earth,” he said.

While most of his work is considered pure research and doesn’t have immediate applications, Rott did figure out a new way to use neutrino oscillations to study the Earth’s interior composition. He spent several months at the Earthquake Research Institute at the University of Tokyo to collaborate with researchers on the topic, and he hopes this new method can help scientists better understand and predict earthquakes.

IceCube Neutrino Telescope
Rott has been a member of the IceCube Neutrino Telescope since the start of the construction of the detector in 2005. IceCube is the world’s largest neutrino detector designed to observe the cosmos from deep within the South Pole ice. The telescope uses an array of more than 5,000 optical sensor modules to detect Cherenkov light, which occurs when neutrinos interact in the ultra-pure Antarctic ice. When a neutrino interaction occurs, a faint light flash is produced, allowing them to be detected.

The IceCube Neutrino Observatory at NSF's Amundsen-Scott South Pole Station Credit: Mike Lucibella, Antarctic Sun

Approximately 300 physicists from 53 institutions in 12 countries are part of the IceCube Collaboration, which tries to solve some of the most fundamental questions of our time, such as the origin of cosmic rays, nature of dark matter, and the properties of neutrinos. The science spectrum covered by the IceCube Neutrino Observatory is very broad, ranging from cosmic ray physics, particle physics, and geophysics to astroparticle physics.

The team of scientists has already achieved some amazing scientific breakthroughs with this telescope. For example, they discovered a diffuse astrophysical neutrino flux in 2014 and recently achieved the first step in identifying the sources of astrophysical neutrinos associated with a highly luminous blazar, which was discovered in 2018. A blazar is an active galaxy that contains a supermassive black hole at its center, with an outflow jet pointed in the direction of the Earth. Over the next years, the team looks forward to making more discoveries by observing the universe in fundamentally new ways.

Life in Korea
Before joining the U, Rott was invited to Korea to begin a tenure-track faculty position at Sungkyunkwan University (SKKU). He took the opportunity to build an astroparticle physics program at one of the major research hubs in Asia. “I was excited to be part of a university that had the vision and determination to become a world-leading university, and I was able to build one of the largest astroparticle physics efforts in Asia, while accomplishing many of my research objectives,” he said.

He enjoys Korean culture and life in Korea, which is very practical and straightforward. “In Korea, people like to get things done fast,” he said. “It’s great to get rapid feedback, for example, on a proposal. You know quickly if your proposal is funded or not.” Being based in Korea has allowed him to collaborate more closely on other projects, including the COSINE-100 dark matter experiment in Korea and the JSNS2 sterile neutrino search and Hyper-Kamiokande neutrino program in Japan. He plans to spearhead initiatives to establish stronger ties between the University of Utah and leading universities in Asia and Korea.

Future Research
Currently, the IceCube team is in the middle of preparing an upgrade to the IceCube Neutrino Telescope. This new telescope will be installed within two years in Antarctica. For the IceCube upgrade, Professor Rott’s team has designed a more accurate camera-based calibration system for the Antarctic ice. Improved calibration will be applied to data collected over the past decade, improving the angular and spatial resolution of detected astrophysical neutrino events.

“The origin of high-energy neutrinos and any new phenomena associated with their production remains one of the biggest challenges of our time,” Rott said. “I’m extremely excited about correlating observations of high-energy neutrinos with other cosmic messengers. To establish any correlation, it’s essential that we can accurately point back to where neutrinos originated on the sky.”

Rott further explains, “We hope that the IceCube upgrade will be just the first step towards a much larger facility for multi-messenger science at the South Pole that combines optical and radio neutrino detection with a cosmic ray air shower array.”

 

by Michele Swaner - Physics & Astronomy News

 

Mission Unstoppable

 

Mission Unstoppable


Watch chemistry professor and mixed martial artist, Dr. Janis Louie, on CBC television's Mission Unstoppable. Dr. Louie uses exercise to show how science solutions play an important role in our bodies.

Born and raised in San Francisco.– Dr. Louie earned degrees and honed her chemistry skills at University of California, Los Angeles (UCLA), Yale University, and the California Institute of Technology (CalTech) before settling in Salt Lake City and joining the faculty in the University of Utah Department of Chemistry. Her research is centered on the discovery, development, and utilization of transition metal catalyzed reactions to overcome obstacles in traditional synthetic approaches.  Dr Louie's honors include the Cope Scholar Award, the Camille-Dreyfus Teacher Scholar Award, and the inaugural AAAS If/Then Ambassadorship.

Student Spotlights


Beckman Scholar

Jordan Herman, PhD’20

HIV Microscopy

Anna Vickrey, PhD’20

Dominique Pablito

2020 Churchill Scholar

2020 Research Scholar

Goldwater Winner

Goldwater Winner

Ana Rosas

>> HOME <<


Priyam Patel

Priyam patel


Visualizing the Topology of Surfaces

Imagine a surface that looks like a hollow doughnut. The “skin” of the doughnut has no thickness and is made of stretchy, flexible material. “Some of my favorite mathematical problems deal with objects like this–surfaces and curves or loops on such surfaces,” said Priyam Patel, assistant professor of mathematics, who joined the Math Department in 2019. “I like how artistic and creative my work feels, and it’s also very tangible since I can draw pictures representing different parts of a problem I’m working on.”

Patel works in geometry and topology. The two areas differ in that geometry focuses on rigid objects where there is a notion of distance, while topological objects are much more fluid. Patel likes studying a geometrical or topological object extensively so that she’s able to get to know the space, how it behaves, and what sort of phenomena it exhibits. In her research, Patel’s goals are to study and understand curves on surfaces, symmetries of surfaces, and objects called hyperbolic manifolds and their finite covering spaces. Topology and geometry are used in a variety of fields, including data analysis, neuroscience, and facial recognition technology. Patel’s research doesn’t focus on these applications directly since she works in pure mathematics.

Challenges as a Minority

Patel became fascinated with mathematics in high school while learning to do proofs. She was fortunate to have excellent high school math teachers, who encouraged her to consider majoring in math in college. “When I was an undergraduate at New York University (NYU), I had a female professor for multivariable calculus who spent a lot of time with me in office hours and gave me challenging problems to work on,” said Patel. “She was very encouraging and had a huge impact on me.”

As a woman of color, Patel often felt out of place in many of her classes at NYU. Later, she was one of a handful of women accepted into a Ph.D. program at Rutgers University. Unfortunately, these experiences led to strong feelings of “impostor syndrome” for her as a graduate student. Eventually, she overcame them and learned to celebrate her successes, focusing on the joy that mathematics brings to her life. She has also worked to find a community of mathematicians to help support her through the tough times. “I’ve received a lot of encouragement from friends and mentors both in and outside of my math community,” she said. “I feel especially fortunate to have connected with strong women mentors in recent years.”

Mentors and Outside Interests

Feng Luo, professor of mathematics at Rutgers, was Patel’s Ph.D. advisor, and he played an active role in the early years of her math career. “Talking about math with Dr. Luo is always a positive experience, and his encouragement has been pivotal to my success as a mathematician,” said Patel. Another mentor is Alan Reid, chair and professor of the Department of Mathematics at Rice University. Patel notes that there are many aspects to being a mathematician outside of math itself, and these mentors have helped her navigate her career and offered support, encouragement, and advice.

Patel loves mathematics but makes time for other things in life. She enjoys rock climbing, yoga, dancing, and painting. Music is also a huge part of her life, and she sings and plays the guitar.

Future Research

Patel is currently working on problems concerning groups of symmetries of certain surfaces. Specifically, she has been studying the mapping class groups of infinite-type surfaces, which is a new and quickly growing field of topology. “It’s quite exciting to be at the forefront of it. I would like to tackle some of the biggest open problems in this area in the next few years, such as producing a Nielsen-Thurston type classification for infinite-type surfaces,” she said. She is also interested in the work of Ian Agol, professor of mathematics at Berkeley, who won a Breakthrough Prize in 2012 for solving an open problem in low-dimensional topology. Patel would like to build on Agol’s work in proving a quantitative version of his results. Other areas she’d like to explore are the combinatorics of 3-manifolds and the theory of translation surfaces.

 

by Michele Swaner

 

COVID Connections

Creating a Virtual Symposium


Tanya Vickers

Rising to the Challenge

Science is about preparing the next generation of innovators, explorers, and connoisseurs of curiosity. For the last 29 years the College of Science ACCESS program has been the “first step” on this journey of discovery. The ACCESS program runs from June to August and is open only to first-year students freshmen and transfers).

A cornerstone of the ACCESS experience is the opportunity for the student cohort to share their work with faculty and peers during a research poster symposium. The symposium is a powerful learning experience that mirrors professional science conferences and a career in the field, and plays a key role in the program.

When COVID-19 hit the U.S., the longstanding tradition of the Spring Research Symposium was in jeopardy. As the director of ACCESS , I was driven to find a way to continue the capstone symposium, and provide talented first-year student scientists the opportunity to showcase their research, in spite of social distancing.

With just six weeks until the event we decided to design, build, and launch a novel virtual research symposium platform. The sudden shift and short time-frame presented a real challenge, but it was also an opportunity to pursue and explore innovative approaches to current standards that, if not for CO VID-19, would have been stagnant.

It’s been six months since the Virtual Symposium, and we are still surprised by its success. The merits and results of the virtual platform challenged the notion that in-person is best. The in-person symposium normally saw about 200 guests. In contrast, the virtual symposium reeled in nearly 6,000-page views in three days and 260 guests attended the live zoom presentations.

Thinking Differently

COVID-19 upended and reshaped our everyday lives and challenged everyone to find new approaches to routine activities and novel fixes for nascent problems, much like scientists do on a regular basis.

When the on-campus student research experience was cut short in March, it didn’t mark the end of learning for the 2019-2020 ACCESS cohort. Research faculty agreed to continue mentoring remotely, which included helping the students report their research in a scientific poster they would present virtually. Unfortunately, the technology for a virtual research poster presentation did not exist.

That’s when I began the process of envisioning and creating the Virtual Symposium platform, as it’s now known. I started with identifying the critical elements of an in-person research symposium and considering how to transpose them to a virtual model. My experience teaching and using Canvas (used to deliver course content) shaped the content, and with the collaboration and support of Micah Murdock, Associate Director of Teaching and Learning Technologists (TLT ), a novel virtual research symposium was fully realized.

Embracing Technology

The platform was a lofty goal that required three defining features: a webpage for students to introduce their project, a message board for peers, guests, and mentors to pose questions, and a live Zoom presentation with question and answer.

Each student had a personal webpage that included their research poster, a 3-minute video summary of their research project, and a short personal bio. These elements provided guests with an introduction and interactions analogous to an in-person symposium.

In-person symposia can feel rushed, but the virtual platform offered the advantage of providing guests more time to preview projects on their own, before using one, or both, forum tools—the student scientist’s discussion board, or the 30-minute Zoom live session scheduled on the last day—to ask questions or comment.

Building For the Future

Throughout this process, we wanted to build a tool with the future, as well as other disciplines and applications, in mind. We are proud to announce that the platform has already seen use for the School of Biological Sciences Virtual Retreat, ACCESS Alumni Career Panel, and a number of campus-wide projects. Most recently, the Virtual Symposium was chosen to serve as the cornerstone of the new College of Science high school outreach platform SCIENCE NO W—engaging students, presenters, and elite scientists from across the U.S. and around the world.

As a species and as scientists, we always look forward to new ideas and what can be done. In our darkest hours, we find a space for new forms of unity and growth, and can challenge ourselves to create and expand. CO VID has been undeniably difficult, but the development of new platforms and technologies, like the Virtual Research Symposium, show that sometimes, when we are forced to make changes to long held traditions, the outcome goes beyond finding an equivalent, making what we thought was “best” even better.

Special thanks to Dean Peter Trapa, ACCESS Program Manager, Samantha Shaw, and to the ACCESS students and mentors for believing in the vision of a Virtual Research Symposium.

For more information on the Virtual Symposium platform contact: tanya.vickers@utah.edu.

 

by Tanya Vickers

 

Dean’s Update

From the Dean


The latest updates on the College of Science by Dean Peter Trapa.


MLK Week

Carsten Rott

Mission Unstoppable

Priyam Patel

COVID Connections

Giant Poisonous Rats

A Catalyst for Safety

Frontiers of Science

Next-Gen Astronomy

$602 Million in Funding

 

 

Giant Poisonous Rats

The secret social lives of giant poisonous rats.

The African crested rat (Lophiomys imhausi) is hardly the continent’s most fearsome-looking creature—the rabbit-sized rodent resembles a gray puffball crossed with a skunk—yet its fur is packed with a poison so lethal it can fell an elephant and just a few milligrams can kill a human. In a Journal of Mammology paper published today, Smithsonian Conservation Biology Institute, University of Utah and National Museums of Kenya researchers found the African crested rat is the only mammal known to sequester plant toxins for chemical defense and uncovered an unexpected social life—the rats appear to be monogamous and may even form small family units with their offspring.

Sara B. Weinstein and Katrina Nyawira.

“It’s considered a ‘black box’ of a rodent,” said Sara Weinstein, lead author and Smithsonian-Mpala postdoctoral fellow  and postdoctoral researcher at the University of Utah. “We initially wanted to confirm the toxin sequestration behavior was real and along the way discovered something completely unknown about social behavior. Our findings have conservation implications for this mysterious and elusive rat.”

People in East Africa have long suspected the rat to be poisonous. A 2011 paper proposed these large rodents sequester toxins from the poison arrow tree (Acokanthera schimperi). A source of traditional arrow poisons, Acokanthera contains cardenolides, compounds similar to those found in monarch butterflies, cane toads and some human heart medications. Cardenolides, particularly the ones in Acokanthera, are highly toxic to most animals.

“The initial 2011 study observed this behavior in only a single individual. A main goal of our study was to determine how common this exceptional behavior was,” said co-author Denise Dearing from the University of Utah.

When threatened, the African crested rat lives up to its name and erects a crest of hair on its back to reveal a warning on its flanks—black and white stripes running from neck-to-tail on each side of its body. The 2011 study hypothesized that the rats chew the Acokanthera bark and lick the plant toxins into specialized hairs at the center of these stripes.

In the new study, researchers trapped 25 African crested rats, the largest sample size of the species ever trapped. Using motion-activated cameras, they documented nearly 1,000 hours of rat behavior. For the first time, they recorded multiple rats sequestering Acokanthera toxins and discovered many traits that suggest they are social, and likely monogamous.

“Everyone thought it was a solitary animal. I’ve been researching this rat for more than ten years, so you would expect there to be fewer surprises,” said Bernard Agwanda, curator of Mammals at the Museums of Kenya, co-author of this study and the 2011 paper. “This can carry over into conservation policy.”

A rich social life

As a postdoctoral fellow at the Mpala Research Centre, Weinstein first searched for the rats with camera traps, but found that they rarely triggered the cameras. Weinstein was then joined by Katrina Nyawira, the paper’s second author and now a graduate student at Oxford Brookes University. Together, they spent months experimenting with live traps to capture the elusive rodents.

“We talked to rangers and ranchers to ask whether they’d seen anything.” said Nyawira. Eventually they figured out that loading the traps with smelly foods like fish, peanut butter and vanilla, did the trick. “Out of 30 traps, we finally got two animals. That was a win. This thing is really rare.”

Those two animals changed the course of the study. They first caught an individual female, then caught a male at the same site two days later.

The African crested rat.

“We put these two rats together in the enclosure and they started purring and grooming each other. Which was a big surprise, since everyone we talked to thought that they were solitary,” Weinstein said. “I realized that we had a chance to study their social interactions.”

Weinstein and Nyawira transformed an abandoned cow shed into a research station, constructing stalls equipped with ladders and nest boxes to simulate their habitat in tree cavities. They placed cameras in strategic spots of each pen and then analyzed every second of their footage, tracking the total activity, movement and feeding behavior. The aim was to build a baseline of normal behavior before testing whether behavior changed after the rats chewed the toxin cardenolides from the poison arrow tree.

“They’re herbivores, essentially rat-shaped little cows,” Weinstein said. “They spend a lot of time eating, but we also see them walk around, mate, groom, climb up the walls, sleep in the nest box.”

The footage and behavioral observations strongly support a monogamous lifestyle. They share many of the traits common among monogamous animals: large size, a long life span and a slow reproductive rate. Additionally, the researchers trapped a few large juveniles in the same location as adult pairs, suggesting that offspring spend an extended period of time with their parents. In the pens, the paired rats spent more than half of their time near each other, and frequently followed each other around. The researchers also recorded special squeaks, purrs and other communicative noises making up a wide vocal repertoire. Further behavioral studies and field observation would uncover more insights into their reproductive and family life.

After the researchers established a baseline of behavior, they offered rats branches from the poison arrow tree. Although rats did not sequester every time the plant was offered, 10 rats did at least once. They chewed it, mixed it with spit, and licked and chewed it into their specialized hairs. Exposure to the Acokanthera toxins did not alter rat behavior, and neither did eating milkweed, the same cardenolide-enriched plant used as chemical defense by monarch butterflies. Combined, these observations suggest that crested rats are uniquely resistant to these toxins.

“Most people think that it was a myth because of the potency of the tree,” said Nyawira. “But we caught it on video! It was very crazy.”

The rats were selective about using Acokanthera cardenolides, suggesting that rats may be picky about their toxin source, or that anointed toxins remain potent on the fur a long time, just like traditional arrow poisons from the same source.

African crested rat conservation

The African crested rat is listed as IUCN species of least concern, but there’s little actual data on the animals. Agwanda has studied African crested rats for more than a decade—and sees indications that they’re in trouble.

“We don’t have accurate numbers, but we have inferences. There was a time in Nairobi when cars would hit them and there was roadkill everywhere,” said Agwanda, who continues to monitor the populations. “Now encountering them is difficult. Our trapping rate is low. Their population is declining.”

The research team is planning future studies to better understand their physiology and behavior. “We are particularly interested in exploring the genetic mechanisms that allow the crested rats and their parasites to withstand the toxic cardenolides” said co-author Jesús Maldonado of the Smithsonian Conservation Biology Institute and Weinstein’s Smithsonian-Mpala Postdoctoral fellowship co-advisor.

“We are looking at a broad range of questions influenced by habitat change. Humans have cleared forests to make farms and roads. We need to understand how that impacts their survival,” Agwanda said. Additionally, Agwanda is building an exhibit at the Museums of Kenya to raise awareness about this unique poisonous animal.

About the Smithsonian’s National Zoo and Conservation Biology Institute

The Smithsonian’s National Zoo and Conservation Biology Institute leads the Smithsonian’s global effort to save species, better understand ecosystems and train future generations of conservationists. As Washington, D.C.’s favorite destination for families, the Zoo connects visitors to amazing animals and the people working to save them. In Front Royal, Virginia, across the United States and in more than 30 countries worldwide, Smithsonian Conservation Biology Institute scientists and animal care experts tackle some of today’s most complex conservation challenges by applying and sharing what they learn about animal behavior and reproduction, ecology, genetics, migration and conservation sustainability to save wildlife and habitats. Follow the Zoo on Facebook, Twitter and Instagram.

About the National Museums of Kenya

National Museums of Kenya (NMK) is a state corporation established by an Act of Parliament, the Museums and Heritage Act 2006. NMK is a multi-disciplinary institution whose role is to collect, preserve, study, document and present Kenya’s past and present cultural and natural heritage. This is for the purposes of enhancing knowledge, appreciation, respect and sustainable utilization of these resources for the benefit of Kenya and the world, for now and posterity. NMK’s mutual concern for the welfare of mankind and the conservation of the biological diversity of the East African region and that of the entire planet demands success in such efforts. In addition, NMK manages many Regional Museums, Sites and Monuments of national and international importance alongside priceless collections of Kenya’s living cultural and natural heritage. As an institution that must respond to the growing needs of the society, NMK is striving to contribute in a unique way to the task of national development.

Media Contacts

Sara Weinsteinpostdoctoral researcher at the University of Utah; postdoctoral fellow at the Smithsonian-Mpala

Denise Dearingdistinguished professor and director, School of Biological Sciences

Lisa Potterresearch/science communications specialist, University of Utah Communications
Office: 801-585-3093 Mobile: 949-533-7899 

Adapted from a release by the Carnegie Observatories. Also published in @theU

A Catalyst for Safety

A Catalyst for Safety


In June 2019, a chemical spill in a Department of Chemistry laboratory led to a full department shutdown until a comprehensive safety assessment could be completed. Within days, most laboratories re-opened. Within weeks, the department had put into motion an unprecedented safety makeover in partnership with the Office of Environmental Health and Safety (EHS) and the College of Science. Since then, the college and EHS have enacted creative solutions to rebuild a culture of lab safety from the ground up—and it has paid dividends in implementing safeguards related to COVID-19.

Tommy Primo

“Everyone from the department level up to the President’s Office has made significant changes to how the U regulates laboratory safety,” said Peter Trapa, dean of the College of Science. “By the time COVID-19 hit, we had the right infrastructure, the right coordination between EHS and our own folks, so that we could quickly lead out in the COVID era.”

Committed committees

Matthew Sigman

At the time of the spill, the U’s laboratory safety culture had been through a series of internal and external audits, including one by the Utah State Legislature. The reports identified crucial gaps in safety and made recommendations for improvement. The U has made significant progress addressing these recommendations, including establishing and expanding the number and authority of college and departmental-level safety committees. Within the College of Science, the Departments of Chemistry, Mathematics, Physics & Astronomy and the School of Biological Sciences all have committees made up of staff and faculty who performed routine lab inspections and reported violations. The previous safety system’s structure allowed some violations to remain unresolved. Now, the committees are empowered to recommend how violations get addressed. They’ve also expanded their scope to include postdocs and graduate students who can make suggestions for outdated practices or areas that need attention. In the coming weeks, safety committees will be required in all University colleges.

“To change the safety culture, there has to be the motivation, and it has to be a grassroots effort,” said Matthew Sigman, Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry. “This is a success because it’s collaborative, it’s conversational, and it’s pragmatic. It’s about building relationships and getting buy-in from the top down.”

Sarah Morris-Benavides

In January, EHS and the College of Science jointly hired Sarah Morris-Benavides as the first associate director of safety for the College. Morris-Benavides facilitates communication between researchers, and helps translate regulatory protocols between the college and EHS. She also heads the College of Science’s safety committee that is made up of the department committee chairs. She and the committees have worked closely to ensure that classes and research are conducted safely in light of the coronavirus restrictions.

“I can’t tell you how valuable they’ve been,” said Morris-Benavides of the response to COVID-19. “We had a great benefit that these committees were already established and in place.”

Every month, the college safety committee meets to discuss each department’s safety protocols. “We have the ability to say, ‘Well, here’s something that they’re doing in biology. Does that make sense for physics?” she said. “Chemistry learned a lot from their amazing safety turnaround, and they’ve shared their best practices. It all benefits every department.”

Precipitating solutions

Selma Kadic

The U overhauled the previous laboratory safety system by restructuring EHS directly under the Vice President for Research Office, and Frederick Monette became its new director. This helped rebuild trust between the EHS and researchers, who had historically been at odds.

“Fred Monette was all in right away. His willingness to sit down with people, listen to their concerns, and back it up financially meant a lot to the people in the department,” said Holly Sebahar, professor of chemistry who was the chair of the chemistry safety committee at the time of the shutdown.

Safety violations can be complicated; some are easy fixes, such as ensuring lab members wear proper PPE, but other issues are expensive, such as electrical or ventilation upgrades within older buildings. Traditionally, the burden of arranging infrastructure upgrades and their cost often fell solely on the principal investigator (PI) of the laboratory in question.

Angus Wu

To change that, EHS and the College of Science lobbied for an infrastructure improvement project to fund overdue, expensive safety upgrades in College of Science buildings, many of which were identified as deficiencies during the chemistry shutdown. The resulting $1 million capital improvement project will address electrical upgrades, seismic bracing, and ventilation improvements in several buildings, beginning in January 2021. Addressing these deficiencies in one comprehensive project will be much quicker, more economical, and result in less disruption to laboratory operations compared with the past approach of fixing each issues one by one at the request of individual laboratories.

Working with the College of Science, the VPR Office facilitated the purchase of 20 new refrigerator/freezers rated for storage of flammable chemicals to replace units that failed to meet regulatory requirements, sharing the cost 50/50 with the PIs. These initiatives demonstrated the administration’s commitment to promoting a culture of safety across the university.

From the ground up

As another example of a changed safety culture, the Department of Chemistry aims to incorporate safety in all aspects of academic life. Every speaker, seminar and many group meetings now incorporate a ‘safety moment,’ with each presenter asked to share an example of a safety incident and how they addressed it.

Shelley Minteer

“We have upwards of 30 or 40 external visitors a year. That’s a lot of safety moments. They’ll walk through that experience, then walk through the lab procedures to fix the problem,” Sigman said. “It’s a lessons learned, but also it’s an open conversation. We want to have the lowest risk, but we know when you sign up to be a chemist, you have the danger. Even when you cross the t’s, dot the i’s, something can happen.”

The collaborations go beyond the science—last year, EHS, the College of Science and the College of Mines and Earth Sciences co-hosted a two-day lab safety symposium with speakers and training sessions that addressed all types of issues, from chemical storage to creating effective safety committees. More than 400 staff, students and faculty attended the mandatory event to emphasize that every individual is responsible to making their environment safe. The U is applying that same philosophy for COVID-19.

“As we started going through the safety culture changes, we realized that it’s not that students or post docs or faculty won’t follow safety protocols, they will, if they know where they are, if they can find the paperwork,” said Shelley Minteer, associate chair for faculty for the Department of Chemistry and COVID-19 coordinator for the department. “We learned a lot from the safety ramp up. We need clear guidelines and good communication. We’ve been applying those same principles to COVID.”

 

by Lisa Potter - first published in @theU

 

Next-Gen Astronomy

 

Gail Zasowski

Next-gen astronomical survey makes its first observations.

The Sloan Digital Sky Survey’s fifth generation collected its very first observations of the cosmos at 1:47 a.m. on October 24, 2020. As the world’s first all-sky time-domain spectroscopic survey, SDSS-V will provide groundbreaking insight into the formation and evolution of galaxies—like our own Milky Way—and of the supermassive black holes that lurk at their centers.

Funded primarily by member institutions, along with grants from the Alfred P. Sloan Foundation, the U.S. National Science Foundation, and the Heising-Simons Foundation, SDSS-V will focus on three primary areas of investigation, each exploring different aspects of the cosmos using different spectroscopic tools. Together these three project pillars—called “Mappers”—will observe more than six million objects in the sky, and monitor changes in more than a million of those objects over time.

The survey’s Local Volume Mapper will enhance our understanding of galaxy formation and evolution by probing the interactions between the stars that make up galaxies and the interstellar gas and dust that is dispersed between them. The Milky Way Mapper will reveal the physics of stars in our Milky Way, the diverse architectures of its star and planetary systems, and the chemical enrichment of our galaxy since the early universe. The Black Hole Mapper will measure masses and growth over cosmic time of the supermassive black holes that reside in the hearts of galaxies, and of the smaller black holes left behind when stars die.

“We are thrilled to start taking the first data for two of our three Mappers,” added SDSS-V spokesperson Gail Zasowski, an assistant professor in the University of Utah’s Department of Physics & Astronomy. “These early observations are already important for a wide range of science goals. Even these first targets provide data for studies ranging from mapping the inner regions of supermassive black holes and searching for exotic multiple-black hole systems, to studying nearby stars and their dead cores, to tracing the chemistry of potential planet-hosting stars across the Milky Way.”

A sampling of data from the first SDSS-V observations. Center: The telescope’s field-of-view, with the full Moon shown for scale. SDSS-V simultaneously observes 500 targets at a time within a circle of this size. Left: the optical-light spectrum of a quasar, a supermassive black hole at the center of a distant galaxy, which is surrounded by a disk of hot, glowing gas. The purple blob is an SDSS image of the light from this disk, the width of a human hair as seen from about 21 meters (63 feet) away. Right: The image and spectrum of a white dwarf –the left-behind core of a low-mass star (like the Sun) after the end of its life.

The newly-launched SDSS-V will continue the path-breaking tradition set by the survey’s previous generations, with a focus on the ever-changing night sky and the physical processes that drive these changes, from flickers and flares of supermassive black holes to the back-and-forth shifts of stars being orbited by distant worlds. SDSS-V will provide the spectroscopic backbone needed to achieve the full science potential of satellites like NASA’s TESS, ESA’s Gaia, and the latest all-sky X-ray mission, eROSITA.

As an international consortium, SDSS has always relied heavily on phone and digital communication. But adapting to exclusively virtual communication tactics since the beginning of the COVID-19 pandemic was a challenge, along with tracking global supply chains and laboratory availability at various university partners as they shifted in and out of lockdown during the final ramp-up to the survey’s start. Particularly inspiring were the project’s expert observing staff, who worked in even-greater-than-usual isolation to shut down, and then reopen, the survey’s mountain-top observatories.

“In a year when humanity has been challenged across the globe, I am so proud of the worldwide SDSS team for demonstrating—every day—the very best of human creativity, ingenuity, improvisation, and resilience.” said SDSS-V director Juna Kollmeier, of the Carnegie Observatories. “It has been a challenging period for SDSS and the world, but I’m happy to report that the pandemic may have slowed us, but it has not stopped us.”

Anil Seth


The University of Utah will actually operate as the data reduction center for SDSS-V, supported by the U’s Center for High Performance Computing. Joel Brownstein, a research associate professor in the Department of Physics & Astronomy, is the head of data management and archiving for SDSS-V. “As we see the first observations streaming to Utah from the mountain observatories, we are just starting to grasp the amazing potential of this ambitious data set. We are fully and proudly committed to making our results more accessible to the larger community by introducing new tools that enable a dynamic, user-driven experience.”

SDSS-V will operate out of both Apache Point Observatory in New Mexico, home of the survey’s original 2.5-meter telescope, and Carnegie’s Las Campanas Observatory in Chile, where it uses the 2.5-meter du Pont telescope.

SDSS-V’s first observations were taken in New Mexico with existing SDSS instruments, in a necessary change of plans due to the pandemic. As laboratories and workshops around the world navigate safe reopening, SDSS-V’s own suite of new innovative hardware is on the horizon—in particular, systems of automated robots to aim the fiber optic cables used to collect the light from the night sky. These robots will be installed at both observatories over the next year. New spectrographs and telescopes are also being constructed to enable the Local Volume Mapper observations.

Dr. Anil Seth, the University of Utah’s representative on the Advisory Council that oversees SDSS’s operations, highlighted the impact of the project’s open data policies and worldwide collaboration. “SDSS’s 20-year legacy has touched nearly every astronomer in the world by this point. It has become the go-to reference for astronomy textbooks on galaxies, made the most precise measurements of how our Universe is expanding, and showed us how powerful shared data can be. I look forward to see what new results SDSS V will reveal!”

For more information, please see the SDSS-V’s website at www.sdss5.org.

Adapted from a release by the Carnegie Observatories. Also published in @theU

Jordan Herman, PhD’20

WWJHD?


Few encounter a fer-de-lance snake and walk away unscathed. While working in Costa Rica recent School of Biological Sciences (SBS) graduate Jordan Herman (PhD’20) moved closer to observe a toucan dismembering the green iguana it was having for lunch. When the bird took off and dropped half of it, Herman picked up the iguana’s tail and realized she had nearly stepped on the coiled and camouflaged pit viper at her feet. As the bird returned to finish its meal, Herman stood still, suddenly stuck between an intimidating toucan and the venomous snake. She escaped the dangerous situation by offering up the tail and backing away slowly.

For Herman, this moment earned her “a new appreciation for how cool and terrifying nature can be.”

Herman originally came to the SBS graduate program in 2014 from the University of Minnesota–Twin Cities. Her research has been focused on the fitness consequences that mockingbirds experience when they are co-exploited, how the co-occurring parasites interact with each other, and the roles that host defenses play in these species interactions.

Now a post doctoral fellow in the Clayton-Bush lab, Herman thrives in the outdoors and has always been captivated by birds. While working as a field assistant in the Galapagos Islands off the coast of Ecuador, she became hooked on parasitic nest flies and their endemic bird hosts. This interest, in turn, brought her to Argentina, where she worked on the effects of parasitic nest flies and brood-parasitic cowbirds on their shared host, the chalk-browed mockingbird.

Her passion for the outdoors extends to her adopted home of Utah. When she isn’t backpacking all over the Intermountain West, you can find her spending time in her Salt Lake City garden with her four chickens–Dotty, Penguin, Mungo, and Jerry. Currently, she and her partner Joey have also been treating themselves to sushi takeout from Sapa, a local Asian fusion restaurant where, she says, “you can still order mussel shooters!”

Outside of her research, Herman has also made a lasting impact in SBS where she is grounded in a close-knit community of biologists with wide-ranging research interests. As a mentor, she has soared by offering strong support and advice to those around her. “Jordan’s unwavering sense of self allows her to be a generous mentor,” explains fellow graduate student, Maggie Doolin (Dearing lab), “and one of the most consistent sources of truth and support I’ve encountered anywhere throughout my life. She is one-of-a-kind,” continues Doolin, “and I’m lucky to have had her welcome me to the SBS grad program for all things life and science.” When asked what the best advice Herman herself has received in graduate school, she replies, “Publish early!” You can find Herman’s publications in journals like Ecology and the Journal of Avian Biology.

Clearly an expert in field research, Herman uses her knowledge to give back to her community. “Given the amount of field research, field courses, and outdoor recreation that happens in SBS, our community has a major need for wilderness preparedness,” she says. This need gave rise to Herman’s involvement in developing the biennial subsidized Wilderness First Aid course which is available to students, faculty, and staff in the SBS. A future goal is to expand this program to more personnel across the College of Science.

Jordan Herman, PhD, is truly a force of nature. Next time you’re stuck between an intimidating toucan and a camouflaged pit viper, remember to ask yourself, WWJHD?:  What would Jordan Herman do? The School of Biological Sciences is indebted to Jordan Herman. She will always have a place here among the wide variety of birds and lifelong friends nestled at the base of the Wasatch Mountains.

 

by Andy Sposato

Andy is a graduate student in the Gagnon lab and co-founder of the LGBTQ+ STEM Interest Group in the College of Science.