New models shed light on sea ice dynamics


Oct 1, 2024
Above: An upside-down sea ice slab showcasing brine channels that facilitate the drainage of liquid brine and support convection along the interface. CREDIT: Ken Golden, University of Utah.

Polar sea ice is ever-changing. It shrinks, expands, moves, breaks apart, reforms in response to changing seasons, and rapid climate change.

It is far from a homogenous layer of frozen water on the ocean’s surface, but rather a dynamic mix of water and ice, as well as minute pockets of air and brine encased in the ice.

New research led by University of Utah mathematicians and climate scientists is generating fresh models for understanding two critical processes in the sea ice system that have profound influences on global climate: the flux of heat through sea ice, thermally linking the ocean and atmosphere, and the dynamics of the marginal ice zone, or MIZ, a serpentine region of the Arctic sea ice cover that separates dense pack ice from open ocean.

In the last four decades since satellite imagery became widely available, the width of the MIZ has grown by 40% and its northern edge has migrated 1,600 kilometers northward, according to Court Strong, a professor of atmospheric sciences.

A tale of two studies, one north and one south

Ice covering both polar regions has sharply receded in recent decades thanks to human-driven global warming. Its disappearance is also driving a feed-back loop where more of the sun energy’s is absorbed by the open ocean, rather than getting reflected back to space by ice cover.

Utah mathematics professors Elena Cherkaev and Ken Golden, a leading sea ice researcher, are authors on both studies. The Arctic study led by Strong examines the macrostructures of sea ice, while the Antarctic study, led by former Utah postdoctoral researcher Noa Kraitzman, gets into its micro-scale aspects.

Read the full article by Brian Maffly in @TheU.