50th Anniversary

GOLDEN Anniversary
1970-2020


July 1, 2020, marks the 50-year anniversary of the College of Science, comprised of the School of Biological Sciences, and Departments of Chemistry, Mathematics, and Physics & Astronomy.

A Brief History

Henry Eyring

When the University of Deseret was founded in 1850 in the Territory of Utah, it was primarily a training school for teachers. The newly formed university taught only a handful of topics, including algebra, astronomy, botany, chemistry, geometry, and zoology. Indeed, mathematics and physical sciences were well represented from the earliest days of the university.

By the 1920s, only six organized schools existed at the U: Arts and Sciences, Business, Education, Engineering and Mines, Law, and a two-year Medical School.

James M. Sugihara, PhD 1947

Between 1948 and 1958, through two reorganizations, the School of Arts and Sciences expanded to become the College of Letters and Science. However, the composition was enormous, including departments of air science, anthropology, botany, chemistry, English, experimental biology, genetics and cytology, history, journalism, languages, mathematics, military science and tactics, naval science and tactics, philosophy, physics, political science, psychology, sociology, speech and theater arts, and zoology.

By the late 1960s, Pete D. Gardner, a prominent organic chemist at the U, had convinced the central administration that mathematics and physical sciences would be most effective if separated from the large, amorphous College of Letters and Science.

Therefore, on July 1, 1970, the College of Letters and Science was replaced by three new colleges: Humanities, Social and Behavioral Science, and the College of Science.

The disciplines of biology, chemistry, mathematics, and physics and astronomy were ideally consolidated in one cohesive academic unit. Gardner was appointed as the first dean of the College and served from 1970 to 1973.

The College of Science utilized seven buildings in 1970, including Chemistry (the north wing was finished in 1968), South Biology (completed in 1969), North Biology (the James Talmage Building), Life Sciences (built in 1920 and former home the of School of Medicine), the John Widtsoe Building (housed both the chemistry and the physics departments), the James Fletcher Building and South Physics. The total faculty consisted of about 80 tenured or tenure-track professors across all four departments.

Modern Day Powerhouse

Today the College of Science is one of the largest colleges within the University of Utah, offering undergraduate and graduate degrees in biology, chemistry, mathematics, and physics and astronomy, plus specialized degrees such as a doctorate in chemical physics.

The College supports nearly 2,000 undergraduate science majors and 475 graduate students and employs 143 full-time tenured or tenure-track faculty. The College also employs hundreds of adjunct and auxiliary faculty, postdoctoral fellows, research assistants, lab technicians, and support staff.

Last year, the College received about $36 million in external research funding, which is nearly seven percent of the University’s total external research revenue.

“The exceptional caliber of the College’s faculty has been a driving force behind the University’s ascension as a world-class research university,” says Peter Trapa.

The College has constructed new educational and research facilities in recent years, including the Thatcher Building for Biological and Biophysical Chemistry and the Crocker Science Center on Presidents Circle. The two buildings combined serve thousands of students each year with professional academic advising, expanded classrooms, and cutting-edge labs and instrumentation.

This year, a new project–the Stewart Building for Applied Sciences – was approved by the Utah legislature to renovate the historic William Stewart building and construct a 100,000 square-foot addition to house the Department of Physics & Astronomy and the Department of Atmospheric Sciences.

The proposed Applied Sciences Center will be 140,729 square-feet in size, consisting of 40,729 square feet of renovated space and 100,000 square feet of new construction. Undergraduate teaching labs, research labs, and classrooms will comprise 90% of the footprint and faculty offices will use 10% of the space. The new facility will support more than 40 faculty members, 200 undergraduate majors, 115 graduate students, and nearly 5,000 students taking STEM courses each year at the U.

Building the Future

As the 21st century unfolds amidst a global pandemic, the importance of science and mathematics will only continue to increase.  Our quality of life and economic future depends on the next generation of scientists. The College of Science is refreshing its strategic plan to further strengthen and enhance its academic and educational programs and its scientific leadership in the nation. Emerging priorities include:

  • Fully implement the Science Research Initiative (SRI) in the Crocker Science Center to serve 500 undergraduates per year with specialized research opportunities.
  • Establish new endowed faculty chair positions in each department, and increase the number of endowed professorships and graduate fellowships.
  • Continue to increase the amount of external research funding received in the College per year.
  • Invest in new and existing research directions to strengthen the College’s faculty.
  • Continue to advance our commitment to diversity, and foster inclusive communities of faculty, staff, and students.
  • Increase the six-year graduation rate of declared Science majors, and increase the total number of STEM graduates at the University.

Pearl Sandick, Associate Dean for Faculty Affairs, has led an effort that has distilled the input of faculty, staff, and students into a coherent plan for the future.

“The College will be prepared to meet the demands of the next 50 years in science education and research,” says Sandick. “We will see our way through the current crisis,  with an enhanced focus and commitment to student success, providing the facilities and rigorous training needed to boost the number of STEM graduates in Utah.”

The College is sincerely grateful for its numerous friends and supporters over the last 50 years. Each gift, large and small, propels the College forward. Please join us to write the next chapter, and the following 50 chapters, in the College of Science.   

Goldwater Winner

Lydia Fries

Lydia Fries awarded prestigious Goldwater Scholarship.

The College of Science is pleased to announce that Lydia Fries has been awarded a Goldwater Scholarship for 2020-21.

As a junior in chemistry, Lydia intends to obtain a Ph.D. in either organic chemistry or electrochemistry. She has done research in both Matt Sigman’s and Shelley Minteer’s groups, and Lydia is an author on two papers with both professors. She has worked on a variety of projects involving electrochemistry, palladium catalysis, and computationally focused projects. As an undergraduate she enrolls in many graduate-level courses and is a Teaching Assistant for Organic Spectroscopy I. Lydia was accepted to REU programs this summer, but has committed to an internship at Genentech and hopes that the current pandemic will have subsided by the time her internship is to begin mid-May.

With encouragement from high school teachers, Lydia followed her passion and her strong aptitude for STEM subjects, and ignored the warnings from her broader community that she shouldn’t pursue such an expensive and “useless” degree. She followed her heart and her brain to the University of Utah where she landed in the ACCESS program and was immediately surrounded by many intelligent and motivated women.

In addition to her studies, Lydia enjoys rock climbing and spending time outdoors, and is currently staying at safe at home in St. George.

The Goldwater Scholarship

As the result of a partnership with the Department of Defense National Defense Education Programs (NDEP), Mrs. Peggy Goldwater Clay, Chair of the Board of Trustees of the Barry Goldwater Scholarship and Excellence in Education Foundation, announced that the Trustees of the Goldwater Board have increased the number of Goldwater scholarships it has awarded for the 2020-2021 academic year to 396 college students from across the United States. “As it is vitally important that the Nation ensures that it has the scientific talent it needs to maintain its global competitiveness and security, we saw partnering with the Goldwater Foundation as a way to help ensure the U.S. is developing this talent,” said Dr. Jagadeesh Pamulapati, Director of the NDEP program, as he explained the partnership. With the 2020 awards, this brings the number of scholarships awarded since 1989 by the Goldwater Foundation to 9047 and a scholarship total to over $71M.

From an estimated pool of over 5,000 college sophomores and juniors, 1343 natural science, engineering and mathematics students were nominated by 461 academic institutions to compete for the 2020 Goldwater scholarships. Of students who reported, 191 of the Scholars are men, 203 are women, and virtually all intend to obtain a Ph.D. as their highest degree objective. Fifty Scholars are mathematics and computer science majors, 287 are majoring in the natural sciences, and 59 are majoring in engineering. Many of the Scholars have published their research in leading journals and have presented their work at professional society conferences.

Goldwater Scholars have impressive academic and research credentials that have garnered the attention of prestigious post-graduate fellowship programs. Goldwater Scholars have been awarded 93 Rhodes Scholarships, 146 Marshall Scholarships, 170 Churchill Scholarships, 109 Hertz Fellowships, and numerous other distinguished awards like the National Science Foundation Graduate Research Fellowships.

 

The Goldwater Foundation is a federally endowed agency established by Public Law 99-661 on November 14, 1986. The Scholarship Program honoring Senator Barry Goldwater was designed to foster and encourage outstanding students to pursue research careers in the fields of the natural sciences, engineering, and mathematics. The Goldwater Scholarship is the preeminent undergraduate award of its type in these fields.

 

by Anne Marie Vivienne,
Chemistry News - 03/30/2020

Ana Rosas

Ana Rosas


Every student’s story is one-of-a-kind, and Ana Rosas’ is no exception.

Rosas’ desire to become a doctor was deeply personal. She recalls her grandmother dying just one month after being diagnosed with untreatable and advanced liver cancer. “During my grieving, I thought about what, if anything, could have been done to prolong” her grandmother’s life. Was the late diagnosis due to her grandmother’s Hispanic heritage? Her community’s mistrust of physicians? Socio-economic barriers? “Though I was provided with encouragements,” she wrote in her recent application to medical school, including from select teachers at local Cottonwood High School, “I was also independently driven to learn and become equipped with tools needed to one day give back to my community.”

Ana arrived as a one-year-old in the United States with her mother and aunt, both of whom had been doctors in their native Colombia. But neither woman was eligible to practice medicine in the U.S. Instead, these two single mothers focused on raising their children. Being in a country that unexpectedly eliminated her career did not keep Ana's mother from sharing her expertise. Rosas remembers her mother conducting a hands-on anatomy class with a pig's head on the dining room table, even introducing surgical procedures.

At the University of Utah as a biology major intent on going to medical school, Rosas quickly realized that she didn’t have the same resources or opportunities, finding that she was on her own to navigate, for example, finding a lab to do research. She didn’t know anyone in the health sciences. Seventy emails later she landed in Dr. Albert Park’s lab at Primary Children’s Hospital in Salt Lake City where she worked with her team to better remove laryngeal cysts in infants. The learning curve was steep: literature reviews, in-text citations, and continually managing her share of “imposter syndrome” that started as early as high school where she was a minority. Her work with Park resulted in her presenting a poster at a national Otolaryngology meeting and a first authorship in a related prestigious international journal. “I have not had many undergraduates achieve so much in such a short time,” Park says of Rosas.

Now a senior at the School of Biological Sciences, Rosas has been busy working in not one but two labs. With Kelly Hughes she works with bacteria, specifically Salmonella, and focuses on identifying the secretion signal for a regulatory protein that is required for proper flagellar formation. “I mutagenize the protein,” she says, “by incorporating random amino acid substitutions at each amino acid position of the protein.” Along the way she looks for colonies that are defective. “This way I can send those colonies for sequencing and obtain data that can tell what amino acids are essential for the proper secretion of the protein” under study.

Her second lab experience with Robert C. Welsh in the School of Medicine's Department of Psychiatry brings Rosas' career ambitions back full circle to her heritage and her desire to give back to her community, which is often under-served by the medical profession and under-represented in institutions of higher learning. Using imaging equipment, she and her colleagues are developing a diagnostic and prognostic tool to determine where ALS (Alzheimer’s) patients are in the progression of the disease. Related to that is lab work of another kind. In the “engagement studio” at University Neuropsychiatric Institute (UNI) she is gathering feedback from minority groups to see what obstacles—from language barriers to mistrust of medical authorities–impact their participation in research. “We want to figure out what researchers can do to encourage their cooperation,” she says.

At the same time, while demonstrating that she’s not only successfully balancing on that once precipitous learning curve, Rosas has demonstrated that she’s clearly ahead of it. Currently she is treasurer of the InSTEM group on campus and has helped initiate the new Health Sciences LEAP program which does science outreach in high schools. “I want to help minorities like me,” says Rosas, “better navigate college for the first few years.”  Tanya Vickers who directs the ACCESS program for the College of Science, is most certain she will do exactly that, referring to Rosas as a “remarkable young woman.”

Rosas has indeed come a long way from anatomy lessons on her mother’s kitchen table. Applying to medical schools has provided the chance to reflect on her journey and, considering the barriers and uncertainty she first felt, that journey has proven to be an auspicious one.

 

by David G. Pace

Alex Acuna

Alex Acuna


Alexandra “Alex” Acuna doesn’t even remember her native Venezuela, as she arrived in the U.S. with her parents and two older siblings when she was just a few weeks old. She does recall as a young child huddling in a room for seven months with other families experiencing homelessness at the Road Home Shelter in Salt Lake City where her closest ally was “Mike Wazowski,” a ratty, single-eyed monster toy she hugged day and night.

Eventually, the family moved into a basement apartment with two other families before landing more permanently in government-subsidized housing. “There were a lot of points in our childhood when my siblings and I were skating on thin ice,” she says, referencing everything from food and housing insecurity to fear of deportation; from the stigma of not being part of the majority Latinx community to almost yearly changes in schools. To make matters worse, her parents separated shortly after the family’s arrival. “Survival took up all of our time,” she says.

There was one stabilizing force for the family: food and the community that comes with each cuisine. It started in their modest apartment kitchen with her mother selling empanadas, a cottage industry that grew to a full-fledged Venezuelan restaurant that, in 2014, opened in Salt Lake.

Acuna’s mother, whose college experience was derailed in Venezuela by her first pregnancy, was determined to make sure her children got to the best public schools possible. Even so, as Acuna puts it, once at the UofU she experienced what so many first-generation students do: “I had no access to people who understood the system I was trying to navigate. I didn’t know what I didn’t know. I didn’t know where to look for resources.”

The College of Science’s Access Program was a life ring. Not only did it provide Acuna a scholarship, but a first-year cohort with older students along with housing during the summer before her first year so that she could familiarize herself with campus life. Another important component of the program directed by Tanya Vickers was getting into a lab, something Acuna admits “was not even on my radar.” In Leslie Sieburth’s lab at the School of Biological Sciences Acuna became embedded in a community: “How do you bridge the gap in knowledge,” she asks, “without a network of people?” The answer is you probably don’t, especially with Acuna’s background and lack of opportunities that many college-bound students take for granted.

For three years, Acuna fought self-doubt during “the worst of times” that she was somehow an intruder, a forever-outsider who didn’t belong in a lab that, frankly, she wasn’t even sure the value of. “Tanya was a great mentor,” she says now of Vickers, acknowledging that her mentor helped her see that, while her mother needed her to work in the restaurant, Acuna needed to prioritize her education, a difficult thing to do when you’ve been a character in a shared survival narrative as intense as theirs.

Eventually, the school/work balance was struck. “My mother was never a helicopter mom. But she sees me in the trenches and can now share the glory of it with me.” (Acuna still works weekends in the restaurant, patronized by the flowering Venezuelan community and others in Utah’s capital city.)

Says Sieburth of Acuna, “Alex joined my lab with an enormous amount of raw talent. It was a pleasure to mentor her, and to help her recognize her remarkable facility for research.”

An opportunity seized soon presents other opportunities. In February 2019, Acuna was admitted to the inaugural year of the Genomics Summer Research for Minorities sponsored by the U’s medical school. Currently, she does research in the Tristani-Firouzi lab where the gene-editing and cloning of plants she was doing with Sieburth are now placed for this budding molecular biologist into a medical and physiological context. In the Tristani lab they are studying the genetic component of atrial fibrillation, one of the most common types of cardiac arrhythmia. “It’s given me power to things that I wasn’t even aware of before coming here,” says a grinning Acuna.

What’s next for Alex Acuna? “I know that I’m definitely moving on,” she says of her career as a scientist. “I’m just not clear what direction: academics or medical school.” As a paid undergraduate research assistant, though, one thing she is sure about: “I’ve found a sustainable model. These worlds–personal and professional–they could combine [after all]. They did combine. I understand my ambition, and I now have such sensitivity to activities outside of the lab.”

For Acuna and her family, who are now naturalized citizens of the U.S., their experience is not just an immigrant story of survival; it’s an incomplete narrative born in Venezuela and perpetually vectoring toward real promise.

Dalley Cutler

Dalley Cutler


Biology senior Dalley Cutler's personal hero is Greta Thunberg, the young Swedish activist invited to the United Nations to advocate for reversing man-made climate change and who was subsequently named Time Magazine's Person of the Year. Along with this sixteen-year-old, and others like her, the Idaho Falls native wants to see sensible policies and actions based on scientific understanding.

The same is true of his own research in the Dentinger lab. “Many producers are either incorrectly identifying wild mushroom food products or are purposely lying about the species contained in those food products,” he says. “There are no international or national regulations to protect consumers from buying and eating poisonous wild mushrooms sold on the internet as edible wild mushrooms.” He uses metabarcoding genomic analysis techniques to identify species sold as wild mushrooms in food products.

“I generated the data for this poster some time ago,” he says, referring to the research poster he displayed at the School of Biological Sciences' annual Retreat in August 2019.  “But due to other obligations like class attendance and work I was unable to invest the necessary time to learn how to process and accurately analyze that data.” A scholarship provided by alumni donor George R. Riser was a game-changer for him, providing time away from work obligations to write the appropriate scripts and install the right software that will streamline future projects.

The scholarship has also allowed him to begin generating and processing data for his next project.

Cutler who is graduating with his bachelor's in biology in April 2020 has high hopes to work in a field where he can use scientific techniques to better understand the natural world and to use that understanding to protect and conserve vulnerable ecosystems from the impacts of the climate and ecological crisis that will be occurring over the course of his life.

Inspired by an out-spoken girl in pig tails who was named Time Magazine's Person of the Year for 2019, he is committed as a scientist to make a difference.