Accessibility Menu
Press ctrl + / to access this menu.

New bioinformatics major

New bioinformatics major opens doors to thriving careers


August 28, 2024

Beginning fall 2024, the degree provides rigorous interdisciplinary training to help graduates thrive in rapidly growing sectors.

Tommaso De Fernex, Chair of the Department of Mathematics. Credit: Todd Anderson

Tommaso De Fernex, chair of the Department of Mathematics at the University of Utah, has announced a new bioinformatics bachelor's degree (BS) available beginning fall semester 2024. The degree provides rigorous interdisciplinary training to help graduates thrive in rapidly growing sectors.

At the nexus of data science and life and physical sciences, bioinformatics applies intensive computational methods to analyze and understand complex biological information related to health, biotechnology, genomics and more. Through a comprehensive curriculum, undergraduates at the U will gain expertise in a variety of areas that together form an inter-disciplinary, multi-semester laboratory with rich possibilities.

“This major represents a pivotal step in keeping our students at the forefront of biotechnology,” says De Fernex. “It embodies true interdisciplinary collaboration, drawing expertise from biology, chemistry, and computer science faculties. I'm grateful for the dedication of our faculty in developing this program and for our strong partnerships with the medical campus and Utah's thriving biotechnology sector.”

 The complexity of life

Another math professor at the U, Fred Adler, agrees. The “study of life” is decidedly complex, says Adler who has joint faculty appointments in biology and mathematics and is currently director of the U’s School of Biological Sciences. “Unraveling that complexity means combining the tools developed in the last century: ability to visualize and measure huge numbers of tiny things that used to be invisible, technology to store and analyze vast quantities of data, and the fundamental biological and mathematical knowledge to make sense of it all.”

Continues Adler: “A few years ago, we heard that biology is the science of the 21st century. But with all the excitement and innovation in AI and machine learning, it might seem that this prediction was premature. We think nothing could be further from the truth.” Clearly, with the advent of biostatistical modeling, machine learning for genetics, biological data mining, computer programming and computational techniques for biomedical research, he said, “the preeminent role of biology in the sciences” has arrived.

A busy intersection

Bioinformatics is a field that intersects virtually every STEM discipline, developing and utilizing methods and software tools for understanding biological data, especially when the data sets are large and complex. Mathematics, (including statistics), biology, chemistry, physics, computer science and programming and information engineering all constellate to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.

Historically, bioinformatics and computational biology have involved the analysis of biological data, particularly DNA, RNA, and protein sequences. The field experienced explosive growth starting in the mid-1990s, driven largely by the Human Genome Project and by rapid advances in DNA sequencing technology, including at the U.

The new bioinformatics bachelor’s degree also complements the University’s storied graduate program in biomedical informatics, run by the Department of Biomedical Informatics at the Spencer Fox School of Medicine.

High-growth career field

The field of bioinformatics is experiencing rapid growth, with the U.S. Bureau of Labor Statistics projecting a 15% increase in related jobs over the next decade, outpacing many other occupations. Graduates with a bioinformatics degree can expect to find opportunities in diverse sectors, including biotechnology, pharmaceuticals, healthcare and research institutions. The interdisciplinary nature of this degree equips students with a unique skill set that combines biological knowledge with computational expertise. This blend of skills is increasingly valuable in today's data-driven economy, opening doors to a wide range of career paths and translating into higher earning potential for bioinformatics graduates.

"Students with quantitative expertise, like that offered in the new bioinformatics degree, are in high demand in the life sciences industry," says Peter Trapa, dean of the College of Science. "Recent data on U graduates highlights strong job placement and impressive salaries for graduates with such skills. This degree is designed to prepare students for success in these thriving job markets."

What students can expect

As a bioinformatics major, a student will learn from and collaborate with faculty pushing the boundaries of genomics, systems biology, biomedical informatics and more. Other universities and colleges offer a similar degree, but advantages to the U’s bioinformatics major include the following:

  • Hands-on research experiences in a student’s first year through the College’s celebrated Science Research Initiative
  • Core mathematical foundations through the renowned Department of Mathematics
  • Access to an R1 university with nationally ranked biomedical, health sciences and genomics programs
  • Internship opportunities with industry partners
  • Advisory support and career coaching

Concludes De Fernex, “Our bioinformatics curriculum promises a challenging yet immensely rewarding journey, equipping students for high-paying careers or further advanced studies. In today's world, where science and medicine increasingly rely on big data analysis, bioinformatics stands as a frontier of discovery.”

Students can learn more about the new bioinformatics major by visiting http://math.utah.edu/bioinformatics.

By David Pace

Elevating Public Understanding of Geoscience

Elevating Public Understanding of Geoscience


August 26, 2024. Above: Marjorie Chan

Marjorie Chan, Distinguished Professor Emerita at the Department of Geology and Geophysics at the University of Utah, is the 2024 recipient of the Outstanding Contribution to the Public Understanding of the Geosciences award.

The award is presented by the American Geosciences Institute (AGI) to a person, organization, or institution in recognition of an outstanding contribution to the public understanding of geoscience. "Dr. Chan has demonstrated extraordinary commitment to public outreach and community service throughout her career," according to the press release issued by AGI. "Her earliest efforts focused on inspiring and supporting young women in the geosciences, and over the decades her concerns expanded to promoting public awareness of environmental issues and the urgent need to conserve geological resources."

Chan has given hundreds of public lectures, served as a volunteer consultant on scores of ecological and preservation projects as well as art collaborations, advised and created instructive material for secondary teachers and oversaw major Earth science community initiatives. The U has Chan to thank for coordinating the design and construction of the first LEED-certified building on the academic campus which includes educational visual displays that have since inspired geoscience building designs across the nation.

A PASSION FOR EARTH SCIENCE

Lobby of the Sutton Building, University of Utah

"I am very honored to be recognized by AGI for a career that has been so engaging and fulfilling,” says Chan who served as department chair during which time she appointed the U’s first Geology and Geophysics faculty coordinator of outreach. “Being a part of the Earth science community has been an experience beyond my expectations. I’ve learned from so many wonderful people and made connections across cultures and countries that I will never forget. This has inspired me to share my passion for Earth science with the public. “

That passion for sharing has led to Chan's being featured in documentaries including National Geographic and Discovery Channel television shows. Additionally, she has been a guest on National Public Radio’s Science Friday, and has served as a science advisor for PBS-Nova Science Now. Her NASA science and outreach activities include Endeavor 2016 Dynamic Mars Webinars for K-12 teachers, Mars for Earthlings webinars and short courses and development of teaching modules for higher education instructors.

As the 2014 Geological Society of America (GSA) Distinguished International Lecturer Chan has given 53 lectures spanning India, New Zealand, Australia, China, Japan, and South Korea. In addition to receiving two national meeting presentation awards from SEPM (Society for Sedimentary Geology), she is the winner of the GSA Distinguished Service Award (2020) and the GSA Sloss Award for Lifetime Achievements in Sedimentary Geology (2019). She was also elected GSA Fellow in 1995. In her national committee work she has chaired the GSA Diversity Committee (2012-2013), the GSA Sedimentary Geology Division (2014-2015) and the U.S. National Committee for Geological Sciences (2022-2023).

Referring to the recent honor, Chan says “the award recognizes the impact of many important mentors and colleagues, and their investment in me. Being honored by AGI is an affirmation of the value in giving back to a profession that has brought me so much enrichment in my life.”

The Frederick Albert Sutton Building, the first LEED-certified building on U academic campus.

From Precambrian to Pleistocene

Chan earned a PhD in Geology from the University of Wisconsin-Madison in 1982 and a BS in Geology from the University of California-Davis in 1977. During an academic career of more than 40 years at the U, she has authored or co-authored more than 150 peer-reviewed articles on a range of sedimentary topics. Her work has spanned the Precambrian up to the Pleistocene with recent research that applied terrestrial examples to better understand Martian geology.

When it comes to outreach Chan knows that public engagement is often an afterthought or less valued than research and teaching. “I feel that spreading our knowledge more widely is a core principle of scholarship. Our societal future relies on public understanding of the complexities in the natural world.”

Chan, who retired this year, is being recognized for the award at the Friends of AGI Awards Reception during the GSA Connects conference in Anaheim, California, on September 24, 2024.

 

by David Pace

About The American Geosciences Institute, AGI is a federation of scientific and professional organizations representing over a quarter-million geoscientists, is a nonprofit 501(c)(3) organization dedicated to serving the geoscience community and addressing the needs of society. AGI headquarters are in Alexandria, Virginia.

Scientists Find Hope in Cone Snail Venom

Scientists Find Hope in Cone Snail Venom


Aug 23, 2024
Above : Ho Yan Yeung, PhD (left) and Thomas Koch, PhD (right, also an author on the study) examine a freshly-collected batch of cone snails. Image credit: Safavi Lab.

Based on work by Toto Olivera, the father of research on cone snail venom, scientists are now finding clues for how to treat diabetes and hormone disorders in a toxin from one of the most venomous animals on the planet.

An international research team led by University of Utah scientists has identified a component within the venom of a predatory marine cone snail, the geography cone, that mimics a human hormone called somatostatin, which regulates the levels of blood sugar and various hormones in the body. The hormone-like toxin’s specific, long-lasting effects, which help the snail hunt its prey, could also help scientists design better drugs for people with diabetes or hormone disorders, conditions that can be serious and sometimes fatal.

The results were published Aug. 20 in the journal Nature Communications.

A blueprint for better drugs

Somatostatin acts like a brake pedal for many processes in the human body, preventing the levels of blood sugar, various hormones, and many other important molecules from rising dangerously high. The cone snail toxin, called consomatin, works similarly, the researchers found—but consomatin is more stable and specific than the human hormone, which makes it a promising blueprint for drug design.

By measuring how consomatin interacts with somatostatin’s targets in human cells in a dish, the researchers found that consomatin interacts with one of the same proteins that somatostatin does. But while somatostatin directly interacts with several proteins, consomatin only interacts with one. This fine-tuned targeting means that the cone snail toxin affects hormone levels and blood sugar levels but not the levels of many other molecules.

In fact, the cone snail toxin is more precisely targeted than the most specific synthetic drugs designed to regulate hormone levels, such as drugs that regulate growth hormone. Such drugs are an important therapy for people whose bodies overproduce growth hormones. Consomatin’s effects on blood sugar could make it dangerous to use as a therapeutic, but by studying its structure, researchers could start to design drugs for endocrine disorders that have fewer side effects.

Consomatin is more specific than top-of-the-line synthetic drugs—and it also lasts far longer in the body than the human hormone, thanks to the inclusion of an unusual amino acid that makes it difficult to break down. This is a useful feature for pharmaceutical researchers looking for ways to make drugs that will have long-lasting benefits.

Learning from cone snails

Finding better drugs by studying deadly venoms may seem unintuitive, but Helena Safavi, associate professor of biochemistry in the U’s Spencer Fox Eccles School of Medicine and the senior author on the study, explained that the toxins’ lethality is often aided by pinpoint targeting of specific molecules in the victim’s body. That same precision can be extraordinarily useful when treating disease.

“Venomous animals have, through evolution, fine-tuned venom components to hit a particular target in the prey and disrupt it,” Safavi said. “If you take one individual component out of the venom mixture and look at how it disrupts normal physiology, that pathway is often really relevant in disease.” For medicinal chemists, “it’s a bit of a shortcut.”

Among Safavi’s coauthors are faculty from the U’s School of Biological Sciences, including Baldomero Olivera and Samuel Espino. The U has been a hotspot for research into the venom’s pharmacological properties since Olivera arrived in Utah in 1970 from his native Philippines, bringing his interest in cone snails with him.

Read the full, original story by Sophia Friesen in UofU Health.
Read about Toto Olivera’s 2022 Golden Goose Award for early research in cone snails here.

Deep Beneath Our Feet: A Seismic Surprise

Deep Beneath Our Feet: A Seismic Surprise


Aug 20, 2024
Above: Earth’s interior. Credit: Michael Thorne

For the decades since their discovery, seismic signals known as PKP precursors have challenged scientists. Regions of Earth’s lower mantle scatter incoming seismic waves, which return to the surface as PKP waves at differing speeds.

The origin of the precursor signals, which arrive ahead of the main seismic waves that travel through Earth’s core, has remained unclear, but research led by University of Utah geophysicists sheds new light on this mysterious seismic energy.

PKP precursors appear to propagate from places deep below North America and the western Pacific and possibly bear an association with “ultra-low velocity zones,” thin layers in the mantle where seismic waves significantly slow down, according to research published in AGU Advances, the American Geophysical Union’s lead journal. (The AGU highlighted the research in its magazine Eos.)

“These are some of the most extreme features discovered on the planet. We legitimately do not know what they are,” said lead author Michael Thorne, a U associate professor of geology and geophysics. “But one thing we know is they seem to end up accumulating underneath hotspot volcanoes. They seem like they may be the root of whole mantle plumes giving rise to hotspot volcanoes.”

These plumes are responsible for the volcanism observed at Yellowstone, the Hawaiian Islands, Samoa, Iceland and the Galapagos Islands.

Thorne’s team, which included research assistant professor Surya Pachhai, devised a way to model waveforms to detect crucial effects that previously went unnoticed. Using a cutting-edge seismic array method and new theoretical observations from earthquake simulations, the researchers developed, they analyzed data from 58 earthquakes that occurred around New Guinea and were recorded in North America after passing through the planet.

Their new method allowed them to pinpoint where the scattering occurred along the boundary between the liquid metal outer core and the mantle, known as the core-mantle boundary, located 2,900 kilometers below Earth’s surface.

Read the full article by Brian Maffly @TheU.

STEM Safety Day 2024

Stem Safety Day


August 19, 2024
Above: David Thomas, Director of Safety at the College of Science, addresses participants at the 2023 Safety Day.

Fostering a Culture of Safety

Maintaining a safe working and learning environment is of critical importance, particularly to those in scientific fields. That is why STEM-focused colleges from around campus are coming together to host the University of Utah STEM Safety Day on Friday, September 6, from 8:30 am - 4:00 pm at the Cleone Peterson Eccles Alumni House. This free event is open to all researchers, staff, students and faculty in U Health and the broader campus to brush up on best practices in safety and well-being.

STEM Safety Day will offer a wide range of seminars, trainings, and interactive sessions designed to help the U’s science, engineering and medical community better understand the hazards and mitigate the unique health and safety risks associated with working in STEM disciplines. Topics range from basic first aid and proper use of personal protective equipment, to handling hazardous materials and lab safety protocols. Whether participants work in offices, labs or patient-facing settings, there will be sessions that are applicable to them.

CPR Training at Safety Day: Shelly Beck, Assistant Professor, Health and Kinesiology, The Center for Emergency Programs

“We are dedicated to fostering a culture of safety and wellness in STEM disciplines at the University of Utah,” said David Thomas, Director of Safety at the College of Science and organizer of Safety Day. “By hosting this yearly event with colleges and units throughout campus, along with our consistent daily efforts, we are doing just that.” 

With wellness in mind, the event will also provide flu and COVID-19 vaccines and offer various sessions on personal well-being, including a presentation on mental health self-care by the OSHER Center for Integrative Health.

The event will kick off with a panel discussion and Q&A featuring university and college leadership, including Senior Vice President for Academic Affairs Mitzi Montoya, Vice President of Research Erin Rothwell, College of Science Dean Peter Trapa, Spencer Fox Eccles School of Medicine Dean Samuel Finlayson and John and Marcia Price College of Engineering Dean Charles Musgrave. The panel will be moderated by Chief University Relations Officer Chris Nelson. 

“Safety is an integral part of doing research at the highest level and is one of many areas in which the U needs to continue to lead as an R1 institution,” said Provost Montoya. “Bringing many of our leading STEM units together for this Safety Day provides a unique opportunity for us to collectively improve both the efficacy and safety of our research practices.”

Space is limited for many of the in-demand sessions and early registration is encouraged. To view the finalized agenda and register, visit https://science.utah.edu/events/safety-day.

STEM Safety Day is co-hosted by the College of Science, John and Marcia Price College of Engineering, the Spencer Fox Eccles School of Medicine, the College of Pharmacy and the Office of Environmental Health and Safety. This event is also sponsored by private partners Industrial Supply and Fisher Scientific.

Synthesis 2024

SYNTHESIS 2024


Aftermath 2024

The official magazine of the U Department of Mathematics.

Read More
Spectrum 2023

The official magazine of the U Department of Physics & Astronomy.

Read More
Common Ground 2023

The official magazine of the U Department of Mining Engineering.

Read More
Down to Earth 2023

The official magazine of the U Department of Geology & Geophysics.

Read More
Our DNA 2023

The official magazine of the School of Biological Sciences at the University of Utah.

Read More
Catalyst 2023

The official magazine of the Department of Chemistry at the University of Utah.

Read More
Synthesis 2023

Wilkes Center, Applied Science Project and stories from throughout the merged College.

Read More
Aftermath Summer 2023

Anna Tang Fulbright Scholar, Tommaso de Fernex new chair, Goldwater Scholars, and more.

Read More
Air Currents 2023

Celebrating 75 Years, The Great Salt Lake, Alumni Profiles, and more.

Read More
Spectrum 2022

Explosive neutron stars, Utah meteor, fellows of APS, and more.

Read More
Aftermath 2022

Arctic adventures, moiré magic, Christopher Hacon, and more.

Read More
Our DNA 2022

Chan Yul Yoo, Sarmishta Diraviam Kannan, and more.

Read More
Spectrum 2022

Black Holes, Student Awards, Research Awards, LGBT+ physicists, and more.

Read More
Aftermath 2022

Student awards, Faculty Awards, Fellowships, and more.

Read More
Our DNA 2022

Erik Jorgensen, Mark Nielsen, alumni George Seifert, new faculty, and more.

Read More
Notebook 2022

Student stories, NAS members, alumni George Seifert, and Convocation 2022.

Read More
Discover 2021

Biology, Chemistry, Math, and Physics Research, SRI Update, New Construction.

Read More
Our DNA 2021

Multi-disciplinary research, graduate student success, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

New science building, faculty awards, distinguished alumni, and more.

Read More
Notebook 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Our DNA 2021

Plant pandemics, birdsong, retiring faculty, and more.

Read More
Discover 2020

Biology, Chemistry, Math, and Physics Research, Overcoming Covid, Lab Safety.

Read More
AfterMath 2020

50 Years of Math, Sea Ice, and Faculty and Staff recognition.

Read More
Our DNA 2020

E-birders, retiring faculty, remote learning, and more.

Read More
Spectrum 2020

3D maps of the Universe, Perovskite Photovoltaics, and Dynamic Structure in HIV.

Read More
Notebook 2020

Convocation, Alumni, Student Success, and Rapid Response Research.

Read More
Our DNA 2020

Stories on Fruit Flies, Forest Futures and Student Success.

Read More
Catalyst 2020

Transition to Virtual, 2020 Convocation, Graduate Spotlights, and Awards.

Read More
Spectrum 2020

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Discover 2019

Science Research Initiative, College Rankings, Commutative Algebra, and more.

Read More
Spectrum 2019

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Notebook 2019

The New Faces of Utah Science, Churchill Scholars, and Convocation 2019.

Read More
Catalyst 2019

Endowed Chairs of Chemistry, Curie Club, and alumnus: Victor Cee.

Read More
Our DNA 2019

Ants of the World, CRISPR Scissors, and Alumni Profile - Nikhil Bhayani.

Read More
Catalyst 2019

Methane-Eating Bacteria, Distinguished Alumni, Student and Alumni profiles.

Read More
Spectrum 2019

Featured: Molecular Motors, Churchill Scholar, Dark Matter, and Black Holes.

Read More
Our DNA 2019

Featured: The Startup Life, Monica Gandhi, Genomic Conflicts, and alumna Jeanne Novak.

Read More
AfterMath 2018

Featured: A Love for Puzzles, Math & Neuroscience, Number Theory, and AMS Fellows.

Read More
Discover 2018

The 2018 Research Report for the College of Science.

Read More
Spectrum 2018

Featured: Dark Matter, Spintronics, Gamma Rays and Improving Physics Teaching.

Read More
Catalyst 2018

Featured: Ming Hammond, Jack & Peg Simons Endowed Professors, Martha Hughes Cannon.

Read More

SRI: Just the Beginning

SRI: Just the Beginning


Aug 16, 2024
Above: In the lab, Lauren Wigod, the author and member of SRI's inaugural cohort.

The Science Research Initiative celebrates the graduation of its first cohort.

April showers bring May flowers (and this year in Utah, snow), but more than just plants bloom each spring at the University of Utah. All over campus, students blossom into graduates after years of growth. Among the graduating class this year are many of the first cohort of students of the Science Research Initiative (SRI), marking the four-year anniversary of the program.

The SRI was created to involve undergraduate students in research from their very first day on campus. Former College of Science dean Henry White had the vision for this program and in 2019 passed the torch to Dean Peter Trapa at a critical time when there was a lot of investment. The main goal of the SRI is to facilitate relationships between faculty researchers and students. “We have a lot of great faculty researchers at the U, and there wasn’t a good mechanism to connect students with them, so the program helps eliminate those barriers,” says SRI Director Josh Steffen. The program puts students and faculty in contact and makes expectations of the partnership clear.

NAVIGATING THE PANDEMIC

During its inaugural year, the SRI was still able to engage with students despite the COVID-19 pandemic. Credit: Mathew Crawley

During its inaugural year, the SRI was still able to engage with students despite the COVID-19 pandemic that disrupted the majority of campus activities. For some first- and second-year students, the initial SRI cohort was their only connection with the College of Science during an extremely difficult time. “In the SRI, I felt so cared for and supported both during the pandemic and after," says senior Anika D’Souza. "The program really helped me feel like I can do science.”

“I feel lucky that I started with the SRI because we were taught the methods, and then we were given the opportunity to ask novel questions,” says senior Parker Guzman. With the motto “learn by doing” in mind, budding scientists in the SRI jumpstart their first fall semester at the U with an introductory class designed to teach them about how science happens, help them establish a community within the college, and discover where their research interests lie. The following spring semester, students are planted in a research stream that best fits their interests and begin their scientific journeys.

Current research streams span many scientific disciplines from mathematics to organic chemistry and to climate science. A sampling of projects include “Spintronics and Quantum Sensing,” “Pollination Biology” and “The Geochemistry of Noble Gases.” These streams aren’t just limited to the College either. Students can participate in cancer biology research with the Huntsman Cancer Institute, conservation projects with the Hogle Zoo or Red Butte Garden, or ecological inquiries with the Salt Lake City Mosquito Abatement District.

At its core, the SRI is a program designed to engage students in research, but its impact stretches much further. Early data indicate that SRI students are more likely to stay engaged in the College, maintain a higher GPA, earn other scholarships, and pursue additional research opportunities. Junior Chelsea Bordon says the SRI was a pivotal part of her first year at the U. “Getting into STEM can be really hard, but the SRI helped me meet so many people with different backgrounds that I probably wouldn’t have met otherwise which made that process easier.”

SRI Post-doctoral researcher Rodolfo Probst with undergraduates in Costa Rica.

IMPACTFUL EMPIRICAL RESULTS

While the student experience is at the heart of the SRI, the program engages with and enhances the scientific community beyond the U. Research projects facilitated by the program produce tangible and impactful empirical results that are shared in publications and presented at conferences. Members of the SRI get the opportunity to interact with the broader scientific community at gatherings on the local and national level. SRI students and postdoctoral researchers have presented at a number of conferences including the Ecological Society of America, American Chemical Society, Joint Math Meeting, Wildlife Society Meeting, Math for All, and Southwestern Social Science Association.

In addition to generating empirical evidence, the SRI contributes to the scientific community by creating space for scientists early in their professional academic careers. Postdocs were introduced to the program as stream leaders two years in. Not only do they help the program provide access to more undergraduates, but the postdocs themselves learn as well. Very few positions exist for postdocs to develop their skills after graduate school. As stream leaders for the SRI, they get the opportunity to mentor larger groups of students and run their own research groups. Out of the five post-doc researchers in the first cohort, three have already landed professorships at other research universities.

The SRI is unique from other undergraduate research programs because the experimentation extends beyond the physical laboratory. The program itself is an exploratory space where students can discover their passions — whether that’s in science or elsewhere. As the students are performing experiments, they’re also testing out the experience of being a researcher. The program invites curiosity and innovation with no one criterion of what success looks like.

“Coming into college, I had no idea what I wanted to do. The SRI helped me realize my love for biology and gave me skills as a researcher that will help me succeed in grad school,” says senior Sydney Larsen. Like Larsen, the rest of the first cohort of students graduating this year have their sights set high. Many are continuing their scientific careers in graduate programs, some are headed to medical school, and others have found their path outside of the sciences (one is the author of the article you’re reading right now).

STAYING ROOTED IN SRI’s VALUES

SRI students "learn by doing" beginning their first year at the U.

Just four years ago, the SRI was seeded with 27 students spread over seven research streams. This upcoming academic year, the program is aiming for 400 participants and 65 streams. The goal is that every College student who wants to be involved in research has the opportunity and resources to do so. In addition, SRI leaders want to bring on more postdocs and build the scientific community by engaging with other programs on campus and community partners to create more research projects.

In the next four years, the SRI is projected to continue growing, but leaders of the program hope that they can stay rooted in their values as the numbers of students multiply. “We want to make sure we have the resources we need to still offer quality experiences and support students financially as we grow,” says Associate Director Heather Briggs. The SRI will inevitably continue to yield publications, send students to conferences, and spur new scientific inquiries, but the most valuable aspect of the program by far is the depth of connection it fosters between students and their peers and mentors.

When the SRI was first launched, no one knew exactly how it would help promote the reputation of the U as a Tier-1 research university. It turns out that students shape the SRI just as much as they themselves are shaped by the program. With the inclusion of many student voices and perspectives, novel questions are asked and innovative approaches are taken. Now, with the graduation of the Science Research Initiative’s first cohort, it’s clear what the program’s legacy will be: a robust community of researchers informed by student inquiry; a community that holistically supports and celebrates graduates wherever their ambitions may take them.

By Lauren Wigod

Lauren Wigod HBS’24 enters a PhD program in philosophy of science this fall at the University of California, Irvine. She is a proud member of the first SRI cohort.

This story is featured in Synthesis, the College of Science's annual magazine.
You can read more SRI stories here.

Urban ‘Cool Zones’

Urban 'Cool Zones'


August 14, 2024
Above: A poster created by Salt Lake County to promote cool zones. Credit: KSLNewsRadio

Daniel Mendoza brings science (and change) to the people.

Daniel Mendoza

A research associate professor in the Department of Atmospheric Sciences at the University of Utah, Daniel Mendoza is not your typical academic scientist. With an impressive list of publications, averaging a new paper each month, academic scholarship is only one of his accomplishments. Mendoza has become an environmental social justice advocate, leveraging his research to get the attention of politicians and legislatures. The intersection between what’s happening in the atmosphere and what’s happening on the ground in people’s lives is where Mendoza readily enters.

This summer, Salt Lake has fallen victim to heat waves that mirror those throughout the United States. According to the CDC, extreme heat kills around a thousand people in the U.S. each year, more than any other natural-occurring factor. Effects from the heat are easily felt, but more insidious are the effects from increased concentrations of air pollutants, namely ozone. 

Mendoza explains in an interview with @theU’s Lisa Potter that “ozone is dangerous because it basically causes a sunburn in your lungs that impacts respiratory and cardiovascular health.”

In a recent study, Mendoza and his team asked the question, “can cool zones protect individuals from heat and poor air quality?” “Cool zones” are public buildings that serve as environmental refuges for vulnerable people during periods of extreme heat. Places like recreation centers or libraries are good examples of cool zones; Mendoza chose the Millcreek Library as the location for his case study. 

Obviously cool zones protect individuals from heat with the use of air conditioning, but the study found that the Millcreek Library also reduced exposure to atmospheric ozone by around 80%. 

Given their demonstrated efficacy, Mendoza is now critical of the current scope of cool zones. “We should be thinking about how to make these centers more accessible, for example, keeping them open for longer hours to protect people during the hottest parts of the day.” Many heat refuges close around 2-3 p.m. and aren’t open on weekends.

What people believe

Daniel Mendoza in the 2021 documentary "AWAiRE" that explores the impacts of air quality along the Wasatch Front. Credit: AWAIRE.

Mendoza understands that data alone is not convincing enough to enact change outside of the scientific community. “About 50% of people in the U.S. believe in climate change, but 100% believe in lung cancer, which is why I wanted to pivot from more climate drivers and greenhouse gas emissions and products towards more health criteria,” he says. Furthermore, he continues, “...150% of people believe in the dollar. I mean that’s ultimately what drives policy, what drives a lot of decision making.” 

It was during his Pulmonary and Critical Care Medicine Fellowship program at the U when Mendoza learned more about how to tie in the social and basic sciences with the health sciences. He finished the program in 2020 after completing a capstone project looking at the impact of air pollution on school absences. 

On “orange” or “red” air quality index (AQI) days, students are often still sent outside for recess, resulting in many children experiencing respiratory symptoms and needing to be sent home. Missing school every so often because the air quality is poor doesn’t sound like a huge issue, but it adds up to impact the student as well as the school, its district and the city where they live, he explains.

“When you have repeat absenteeism, then the potential to graduate is much lower, the potential to go to college is much lower, then your tax base is lower,” says Mendoza. Increased school absences cost the city around half a million dollars a year in terms of reduced workforce, education costs and healthcare costs. 

The solution to this pervasive issue of children being sent home because of the deleterious effects of bad air was surprisingly simple: emergency asthma inhalers in every classroom, right next to the Epinephrine Auto-Injectors branded “EpiPens” Says Mendoza, “I worked with Representative Mark Wheatley,” chair for the Utah Asthma Task Force, “and we passed a law…. Utah became the 14 (or 15th) state that has emergency asthma inhalers in every single school.” 

Now on bad air days, instead of sending a student home, students can use the rescue inhaler and remain at school, placing less of an economic burden on the city and giving themselves more time to learn. It’s a health-issue solution based on atmospheric data that changes policy and in turn saves taxpayer dollars. 

Empowering the Community 

Mendoza soon discovered what others had already discovered or at least suspected, that certain populations in the city were more endangered than others. What distinguished those populations was lower-income brackets and racial and ethnic inequities. When he first moved to Salt Lake City, Mendoza was excited about the buzz around air quality. “I thought, this is great. My research is going to be welcomed by the community,” he recalls. Instead, he discovered that these events were forgetting a key part of the problem: the people who are most impacted. 

Mendoza started attending community-based informational gatherings about climate change and the environment. “All of these events are held east of State Street. They were all in English. No one looked like me. Then at the end of the talk, the conclusion was ‘buy electric vehicles and solar panels and we’ll save the world together.’ Well that doesn’t work for everyone.” 

Not only is there a disparity in the communities affected by poor air quality, there is an inequality in accessible solutions to the problem. “For most of them, air quality is not a top priority… they don’t have the luxury of learning like we do,” says Mendoza of those who are most likely to be impacted by bad air quality. 

The first step in empowering the community and addressing this imbalance was to bring science to them. Mendoza began organizing outreach events, this time on the west side of State Street, held in both Spanish and English. 

“We provide them with actionable solutions. For example, we partnered with Utah Clean Energy, and we did an LED exchange where people bought in their normal light bulbs,” he says. Another switch he facilitated was to low-flow showerheads. 

And yet another initiative included furnace filter exchange with 100 homes in Salt Lake County. When indoor air was tested for 43 different potential problematic elements, researchers found elevated levels of uranium, lanthanides, arsenic and lead, “all the nasties.” 

Those “nasties” come from a variety of sources. “If you’re close to a highway, for example, you [breathe in] more of aluminum, associated with brake wear,” says Mendoza of the indoor air quality study, the first study of its kind. “When was the last time you sat outside for eight hours? You spend 90% of your time indoors and 60% of your time in your home, roughly speaking.” 

“The people that we really are very concerned about are, for example, the delivery drivers, who are constantly in that traffic, road construction workers as well. Those people are breathing [in] literally every single car’s tailpipe.” 

‘Run back inside’

Inequities in who breathes bad air requires that one looks closely at why and how bad air gets ingested. “Those with more and better resources can think about these issues involving bad air and what used to be only seasonal atmospheric inversions along the Wasatch Front, and then “just run back inside and we’re fine. But very few studies have been done on these concentrated pollution sources, again in conjunction with what they may be exposed to ‘naturally.’” 

From the 2021 documentary "AWAiRE." Credit: AWAIRE.

Those studies are being done by Mendoza and others and then made actionable on-the- ground initiatives involving switching out devices that are less effective and cost more money in populations who are most threatened by breathing bad air. 

These simple switches in affordable fixtures, for example, have tangible and meaningful impacts that inspire other actions, other policy decisions leading to better health outcomes. 

“Participants in these gatherings  soon became community leaders to help others improve their situation,” says Mendoza, another favorable result to his work. And then there is the financial incentive, that tongue-in-cheek statistic that 150% of people do in fact “believe in the dollar.” 

“These community members, they have to earn income to survive,” he reminds us. “They see their electric bills go down, they see their heating bills go down, they see their water bills go down, and they realize ‘Oh,okay, so it works. Let me tell all my friends about it.’”

Costs of inaction

Policy-makers and the public in general often look at the costs of solutions to problems that require action but sometimes they forget about the costs of inaction

Regardless of whether the focus of a study is cool zones, compounding wildfire emissions, or, most recently a recent study on the eBus project, a main tool for fine scale carbon emissions measurements in urban environements, Mendoza approaches each new inquiry with the same goal: “I want to make sure that my science gets understood by the general public. I want to write in as plain English as possible, because ultimately, I want to enact change, I want my work to do change.” 

Mendoza challenges the stereotypical ideal of a mad scientist locked away in a lab and detached from reality. Instead, he is present on campus, in the community, and at the state capitol building using science to advocate for justice.

Daniel Mendoza holds joint positions as research associate professor in atmospheric sciences; adjunct associate professor in internal medicine; and adjunct associate professor in City & Metropolitan Planning at the University of Utah.

by Lauren Wigod 

Read more on the 2021 documentary "AWAiRE," featuring Daniel Mendoza in @TheU

 

Those with the biggest biases choose first

How our biases are reflected in how fast we make decisions


August 13, 2024

Quick decisions more likely flow from biases, while people who take longer make better decisions, according to study led by Utah mathematicians.

Quick decisions are more likely influenced by initial biases, resulting in faulty conclusions, while decisions that take time are more likely the result in better information, according to new research led by applied mathematicians at the University of Utah.

A team that included Sean Lawley, an associate professor of mathematics, and three former or current Utah graduate students used the power of numbers to test a decision-making model long used in psychology.

They developed a framework to study the decision-making processes in groups of people holding various levels of bias.

“In large populations, what we see is that slow deciders are making more accurate decisions,” said lead author Samantha Linn, a graduate student in mathematics. “One way to explain that is that they’re taking more time to accumulate more evidence, and they’re getting a complete picture of everything they could possibly understand about the decision before they make it.”

The findings were reported this week in the journal Physical Review E.

The researchers explored how initial biases of individuals, or “agents,” in a group affect the order and accuracy of their choices. The goal was to determine whether a decision was driven mainly by an agent’s predisposition as opposed to accumulated evidence.

They found, in short, the faster the decision was made, the less informed it was and more likely to be wrong.

“Their decisions align with their initial bias, regardless of the underlying truth. In contrast, agents who decide last make decisions as if they were initially unbiased, and hence make better choices,” the study states. “Our analysis shows how bias, information quality, and decision order interact in non-trivial ways to determine the reliability of decisions in a group.”

Read the full story by Brian Maffly in @TheU.

Humans of the U: Nathan Patchen

Humans of The U: Nathan Patchen


August 12, 2024

“Initially, I chose to attend the University of Utah because I heard they had an excellent biology program and many opportunities for pre-medical students. I understood that the U was a top research school, and I knew I wanted to pursue a career in the biological sciences.

In my first year, however, I had some great experiences with the university’s chemistry department and fell in love with chemistry. Since then, I have decided to double major in biochemistry and biology. My goal is to pursue an MD-PhD, so I can do both research and work with patients.

I am passionate about improving the quality of life for patients, allowing them to lead healthier and hopefully more fulfilling lives. I hope to do this by working in the field of genetics/genomics and using gene editing techniques to find new tools to combat diseases that are otherwise untreatable. Additionally, I am interested in understanding why and how we age and improving patient outcomes through this process.

These interests are reflected in the research I have been a part of on campus as an undergraduate. The prestigious research that happens at the U is one of the reasons I was drawn to the school. Though research can be frustrating, time-consuming, and tedious, I have found it to be the most enriching part of my education. The incredible opportunity to participate in the forefront of science has drastically expanded my capabilities not only as a scientist but as a person.

Recently in my lab, the principal investigator (PI) assigned me to learn how to synthesize a compound we use for our experiments in an effort to bring our costs down. It was a difficult process to optimize the protocol for our lab, but through extensive troubleshooting and consulting with other labs, I became an expert on the topic.

After months of running the process over and over again without success, my PI and I discovered the error was occurring in a step I was not in control of. We were so excited to have found the solution After correcting the problem, I was able to successfully produce the desired product. Better yet, the new method dropped the cost of our experiments from $60 per experiment to less than a cent. It is exciting that I could play such a key role in helping my lab achieve a research goal that opens realms of possibility. It feels great to be able to contribute to something larger than myself.

I have recently been recognized as a Goldwater scholar which is exciting because it is a testament to my commitment to pursue science and my desire to make an impact on the world through discovery. To me, receiving this award is a great honor, it tells me that someone believes in me, and is willing to invest in my development. It is my goal to live up to that expectation, whether it be through science, medicine, or some other field, my goal is to serve and improve the lives of others.

—Nathan Patchen, a junior in the Honors College studying biochemistry and biology and a 2024 Goldwater Scholarship recipient 

This story originally appeared in @TheU.