Accessibility Menu
Press ctrl + / to access this menu.

Birds of the Philippines

What factors put Philippine birds at risk of extinction?

The lush forests and more than 7,000 islands of the Philippines hold a rich diversity of life, with 258 bird species who live nowhere but the Philippine archipelago. A new study from University of Utah researchers suggests that, due to deforestation and habitat degradation, more bird species may be endangered than previously thought—including species that may not have been discovered yet. The study is published in Frontiers in Ecology and Evolution.

“Our study provides a roadmap for not only which species may warrant heightened conservation attention,” says Kyle Kittelberger, a doctoral student in the University of Utah School of Biological Sciences. “But which traits a species may have that can help inform if it may likely be more at risk of extinction.”

Birds of the Philippines

Phillippine Frogmouth

Located in Southeast Asia, the Philippines is considered a global biodiversity hotspot and one of the most biodiverse countries in the world, hosting nearly 600 bird species. A high proportion of the wildlife is endemic to the country, meaning that it is found nowhere else. The Philippines also hosts some of the highest richness of species recently identified as distinct from other closely related species, showing that scientists still have much to learn about the Philippine ecosystems.

Within the last decade the number of endemic species has risen from 172 to 258. This increase of 86 endemic species is more than all the endemic bird species in China (67) or India (75) and more than any country in South America or Africa.

Çağan Şekercioğlu, an associate professor in the School of Biological Sciences who has done ornithological field work in over 90 countries on all continents cannot forget his first visit to the islands.

“When I first visited the Philippines in 2008, I was awestruck by the diversity and especially the endemism of its avifauna but also greatly depressed by the rapid loss of habitat,” he says. Excursions into the field took hours due to extensive deforestation. “While looking for rare forest birds in the lowlands of Mindanao, we were literally trying to keep ahead of the loggers that were cutting down century-old rainforest trees within a couple hundred meters of us,” he adds. Despite that, in 13 days he saw 161 bird species he had never seen before—and still has 163 bird species to go.

Deforestation, habitat degradation and wildlife exploitation, however, threaten that biodiversity. Southeast Asia, the authors write, is forecast to lose over a third of its biodiversity over the next century. The Philippines in particular ranks eighth in the world for the number of globally threatened bird species.

“There is a pressing need to assess what traits make some species more at risk of extinction than others and to use this understanding to help inform conservation efforts,” Kittelberger says.

Traits of threatened birds

To understand the status of Philippine birds, the researchers first determined the bird traits most predictive of extinction risk by correlating bird species’ ecological and life-history traits, including body mass, diet, elevation range, and clutch size (the number of eggs laid in a nesting season) with their conservation status. A species endemic to the Philippines was significantly more likely to face an extinction risk, they found. Narrow elevation ranges, dependence on forests and high body mass also put birds at risk for extinction.

Philippine Serpent-eagle

Then the researchers turned around and evaluated Philippine birds’ expected conservation status using those traits, comparing predicted conservation status with the IUCN Red List conservation designations. They found that 84 species were predicted to be in worse shape than their Red List designation, with 14 species predicted to be globally threatened (i.e. vulnerable, endangered, or critically endangered) that aren’t currently classified as such.

“We predicted that the Philippine Serpent-eagle and Writhed Hornbill, two species that are not currently recognized as being globally threatened, are respectively endangered and critically endangered,” Kittelberger says. “We also predicted that the Palawan Peacock-pheasant, Calayan Rail and Philippine Eagle-owl, three species currently recognized internationally as being vulnerable, are likely endangered species. All these birds, therefore, warrant heightened conservation attention as they may be more threatened than currently believed.”

Lost before they’re found

Among the 84 species predicted to be more threatened, 12 were recently recognized as separate species, and three of those were predicted to be “vulnerable.”

Palawan Peacock-pheasant

“The Philippines have a very high level of endemism and it is currently estimated that there are twice as many bird species in the Philippines that have not yet been split and officially recognized, so there is a real risk of losing species before they are described,” Kittelberger says.

Kittelberger says that their research can be applied broadly to assess the conservation status of birds throughout the region.

“The most important thing that the Philippines can do to protect birds,” Kittelberger says, “is to address the high levels of deforestation, habitat degradation, and wildlife exploitation, and to increase land protection for wildlife and increase funding for conservation efforts.”

Find the full study at https://www.frontiersin.org/articles/10.3389/fevo.2021.664764/full 

Co-authors also include Montague H. C. Neate-Clegg, J. David Blount and Çağan Şekercioğlu of the U’s School of Biological Sciences, Mary Rose C. Posa of the California Botanic Garden and John McLaughlin of the University of California, Santa Barbara. The study was supported by the Christensen Fund.

 

By Paul Gabrielsen, first published in @theU

Getting Started

Internship Resources & Recognition


Internships are a great way to gain skills and experience, learn about a possible future career, and network. While internships can be great experiences on their own, we have created some ways to make the experience even better.

 

Earn an Internship Badge!


>> INTERNSHIPS HOME <<

 

 

Staff: Cyri Dixon

physics advisor cyri dixon wins outstanding new advisor Award


 

The College of Science is pleased to announce that Cyri Dixon received the New Outstanding Advisor Award for 2021. Cyri is an advisor in the Department of Physics & Astronomy.

Comments from students and faculty:

Cyri is an incredible advocate for students. She is kind and thoughtful and makes you feel comfortable expressing your feelings about things. She is the best physics advisor I have had. ~student comment

Thanks for everything you do. People like you make the world turn.~Dr. Rich Ingebretsen, faculty

Whenever I am worried about a student, Cyri knows what is going on or knows what to do to address the problem. Thank you Cyri for your help, patience and for caring about all our students. ~Dr. Tugdual Stephan Lebohec, faculty

Cyri has been a terrific advisor for me. She has always been available for chats or emails and been quick to respond to all of my questions, even unusual or specific ones that are only tangentially related to completing a physics degree. After every meeting I’ve had with her I tell my wife, “she’s a great advisor.” I think Cyri absolutely deserves this award. ~student comment

Cyri is one of the nicest people I have ever met. She is very quick to respond to any questions, she’s always willing to help out no matter what. She has always been able to help me out with whatever I have needed. She’s very easy to talk to and she makes you feel like you can do just about anything. ~student comment

The College of Science and the Department of Physics & Astronomy appreciate the exceptional performance Cyri Dixon brings to her role every day. Her impact is felt through the College and across the University. Congrats, Cyri!

 

Todd B. Alder

Todd Alder


Todd B. Alder contracted COVID-19 early on in the pandemic and today still suffers from residual effects. But being just a “long hauler” as opposed to the alternative is what he calls being “lucky.” Says Alder, “Like many of us (I am guessing), this virus has disrupted my life with family and friends, my law practice, and my ability to travel. But on the plus side, I am really enjoying the Zoom calls where I am wearing a dress shirt and tie on top and something very questionable on the bottom.”

It's a scenario of late that many of us find ourselves experiencing (working on Zoom, not necessarily being pant-less), but the light touch that this biologist-turned-patent-attorney has towards not only the pandemic but work and life itself is evident. And so is his generosity. In April Alder was a featured alum in the School of Biological Sciences’ BioLuminaries speaker series (on Zoom, of course). As a registered patent attorney and partner at Thorpe North and Western (TNW) in Sandy, Alder illuminated the circuitous path one can take as a biology student toward fulfillment and job security… not to mention the love of chihuahuas.

More on that later.

The Road Less Traveled

Alder points to his PhD advisor, SBS’s Gary Rose, as the mentor who gave him “great direction over the years, particularly when I was stuck.” At the time Rose’s lab primarily focused on the neurophysiology of electrosensory systems in electric fish. Alder took an alternate path to study neuronal mechanisms underlying temporal processing in the auditory midbrain, a subject related to Rose’s PhD dissertation from a decade earlier. It was Rose’s broad way of thinking about science, research and the labyrinth that is life and career that still benefits Alder today.

“My dissertation was very broad over some fairly diverse scientific disciplines. This would not have been possible without Gary's early influence in teaching that young graduate student to not only see the world in a different way, but to approach problems and question them in a different way as well. I will always be grateful to Gary for helping me to see that there are no isolated questions or problems in science, but that everything has a much broader context and, as Robert Frost wrote, ‘that has made all the difference.’"

That difference played out while Alder was at the U in a remarkably refreshing and surprising way. “I was recording from a neuron in the midbrain of an anuran amphibian,” he explains, “and I thought of a test to further understand how these particular neurons worked.” Normally, neurons are not held in a stable state long enough for the kind of procedure Alder was planning. “But I stopped the program that was making the frog calls and quickly wrote a section of code so the program could do the test.”

It was that recompiling of the code—and a few crossed fingers—that led to a startling discovery. Once he turned the equipment back on the neuron in question was still there. From that test Alder showed that the generally accepted theory explaining how a neuron differentiates between high and low pulse rates was wrong. It turns out that neurons do not accomplish this differentiation though energy integration. Instead, Alder found that neurons were actually counting the number of pulses that occur within the range of pulse rates to which the neuron is tuned.

“That was one of the most exciting days of my life,” Alder says, “and I have always been amazed that those very complex questions were answered with [a] test performed on one neuron (it was repeated of course).” Alder graduated from SBS with his PhD in 2000.

Tripping the Patent Fantastic

Over the course of seven years, the mixture of biology, neurophysiology, molecular biology, etc. actually led to a degree in law which in turn opened up many opportunities for Alder to work with some very diverse and fascinating technologies. Enter his work in patent law following a clerkship at TNW beginning in 2002.

A Utah native, Alder hasn’t moved far geographically (he still lives in Utah and received all three of his degrees, including his law degree, from the U). But career-wise and developmentally it has been a galactic trip. For this reason he is quick to remind up-and-coming biologists at the U that education is not, and should never have been, about getting a job. “If you really contemplate the principles you are learning and integrate them into your life, it will change you and the way you think. To me, that is worth so much more than what type of job your degree can get you.”

About dogs … and a bear

Perhaps because of his wide-ranging academic, research and now patent career, Alder’s interests, like his dissertation, are broad and diverse. He loves to rock hound, watch horror movies, study theoretical physics and philosophy, collect old books, and “seriously mess with door-to-door sales people.” (Hopefully, while masked.) “Oh, and I once goosed a black bear in the wild, which made him terribly grumpy. But that is a story for a different day... .”

Which brings us to another enduring interest of Todd Alder’s and that is his love of chihuahuas. One advantage of working from home non-stop, quarantined from everyone else, is that your pets become a fixture, a pain and, if cuddly enough, a kind of accessory for that dress shirt above that questionable garment immediately below.

You can watch a recording of the BioLuminaries lecture by Todd Alder and co-presenter Heng Xie (PhD’04) on SBS’s YouTube Channel here.

 

By David Pace

Are you a Science Alumni? Connect with us today!

Our DNA 2021

OUR DNA Magazine


OUR DNA, the School of Biological Sciences magazine, is published twice a year. If you do not currently receive our newsletter, please contact development@biology.utah.edu to be added to our mailing list.

MORE PUBLICATIONS


 

Spectrum 2023

The official magazine of the U Department of Physics & Astronomy.

Read More
Common Ground 2023

The official magazine of the U Department of Mining Engineering.

Read More
Down to Earth 2023

The official magazine of the U Department of Geology & Geophysics.

Read More
Our DNA 2023

The official magazine of the School of Biological Sciences at the University of Utah.

Read More
Catalyst 2023

The official magazine of the Department of Chemistry at the University of Utah.

Read More
Synthesis 2023

Wilkes Center, Applied Science Project and stories from throughout the merged College.

Read More
Aftermath Summer 2023

Anna Tang Fulbright Scholar, Tommaso de Fernex new chair, Goldwater Scholars, and more.

Read More
Air Currents 2023

Celebrating 75 Years, The Great Salt Lake, Alumni Profiles, and more.

Read More
Spectrum 2022

Explosive neutron stars, Utah meteor, fellows of APS, and more.

Read More
Aftermath 2022

Arctic adventures, moiré magic, Christopher Hacon, and more.

Read More
Our DNA 2022

Chan Yul Yoo, Sarmishta Diraviam Kannan, and more.

Read More
Spectrum 2022

Black Holes, Student Awards, Research Awards, LGBT+ physicists, and more.

Read More
Aftermath 2022

Student awards, Faculty Awards, Fellowships, and more.

Read More
Our DNA 2022

Erik Jorgensen, Mark Nielsen, alumni George Seifert, new faculty, and more.

Read More
Notebook 2022

Student stories, NAS members, alumni George Seifert, and Convocation 2022.

Read More
Discover 2021

Biology, Chemistry, Math, and Physics Research, SRI Update, New Construction.

Read More
Our DNA 2021

Multi-disciplinary research, graduate student success, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

New science building, faculty awards, distinguished alumni, and more.

Read More
Notebook 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Discover 2020

Biology, Chemistry, Math, and Physics Research, Overcoming Covid, Lab Safety.

Read More
AfterMath 2020

50 Years of Math, Sea Ice, and Faculty and Staff recognition.

Read More
Our DNA 2020

E-birders, retiring faculty, remote learning, and more.

Read More
Spectrum 2020

3D maps of the Universe, Perovskite Photovoltaics, and Dynamic Structure in HIV.

Read More
Notebook 2020

Convocation, Alumni, Student Success, and Rapid Response Research.

Read More
Our DNA 2020

Stories on Fruit Flies, Forest Futures and Student Success.

Read More
Catalyst 2020

Transition to Virtual, 2020 Convocation, Graduate Spotlights, and Awards.

Read More
Spectrum 2020

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Discover 2019

Science Research Initiative, College Rankings, Commutative Algebra, and more.

Read More
Spectrum 2019

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Notebook 2019

The New Faces of Utah Science, Churchill Scholars, and Convocation 2019.

Read More
Catalyst 2019

Endowed Chairs of Chemistry, Curie Club, and alumnus: Victor Cee.

Read More
Our DNA 2019

Ants of the World, CRISPR Scissors, and Alumni Profile - Nikhil Bhayani.

Read More
Catalyst 2019

Methane-Eating Bacteria, Distinguished Alumni, Student and Alumni profiles.

Read More
Spectrum 2019

Featured: Molecular Motors, Churchill Scholar, Dark Matter, and Black Holes.

Read More
Our DNA 2019

Featured: The Startup Life, Monica Gandhi, Genomic Conflicts, and alumna Jeanne Novak.

Read More
AfterMath 2018

Featured: A Love for Puzzles, Math & Neuroscience, Number Theory, and AMS Fellows.

Read More
Discover 2018

The 2018 Research Report for the College of Science.

Read More
Spectrum 2018

Featured: Dark Matter, Spintronics, Gamma Rays and Improving Physics Teaching.

Read More
Catalyst 2018

Featured: Ming Hammond, Jack & Peg Simons Endowed Professors, Martha Hughes Cannon.

Read More

NSF CAREER Award

NSF CAREER Award


Priyam Patel receives National Science Foundation CAREER Award.

Priyam Patel, assistant professor of mathematics at the U, has received a National Science Foundation CAREER Award. The National Science Foundation's CAREER Award is the most prestigious NSF award for faculty members early in their careers as researchers and educators. It recognizes junior faculty members who successfully integrate education and research within their organizations. The award comes with a federal grant for research and education activities for five consecutive years.

Priyam Patel

“I'm thrilled to receive the award, and I'm very excited to have the ability to pursue the research and educational projects the grant will afford,” said Patel. “The award also recognizes the support the Math Department and the University of Utah provide to faculty.”

Patel works in geometry and topology. The two areas differ in that geometry focuses on rigid objects where there is a notion of distance, while topological objects are much more fluid. In her research, Patel’s goals are to study and understand curves on surfaces, symmetries of surfaces, and objects called hyperbolic manifolds and their finite covering spaces. Topology and geometry are used in a variety of fields, including data analysis, neuroscience, and facial recognition technology. Patel’s research doesn’t focus on these applications directly since she works in pure mathematics.

She is currently working on problems concerning groups of symmetries of certain surfaces. Specifically, she has been studying the mapping class groups of infinite-type surfaces, which is a new and quickly growing field of topology. “It’s quite exciting to be at the forefront of it. I would like to tackle some of the biggest open problems in this area in the next few years, such as producing a Nielsen-Thurston type classification for infinite-type surfaces,” she said. She is also interested in the work of Ian Agol, professor of mathematics at Berkeley, who won a Breakthrough Prize in 2012 for solving an open problem in low-dimensional topology. Patel would like to build on Agol’s work in proving a quantitative version of his results. Other areas she’d like to explore are the combinatorics of 3-manifolds and the theory of translation surfaces.

Patel joined the Math Department in 2019.

by Michele Swaner, first published @ math.utah.edu

Mysteries of the Universe

Mysteries of the universe


Utah researchers join project to unlock enigma of 'dark energy'

Researchers from the University of Utah are joining forces with others for a universal five-year project that seeks to map the universe and gain insights into the mysteries of dark energy.

In a culture where science fiction reigns as one of the most popular genres for movies and television, the terms "dark matter" and "dark energy" likely convey a sense of foreboding to many.

But they got their label simply because scientists know so little about them, said Angela Berti, a U. postdoctoral researcher working on the project.

"You hear 'dark matter, dark energy' kind of thrown out there, and to the extent that you've kind of read popular science news, you might be aware that the astronomy community and the physics community knows that there's some additional mass out there in the universe," she said.

In the last 20 years, researchers discovered that the universe continues expanding at an increasingly rapid rate, which is considered "strange and unusual," according to Berti.

"We don't really have a great explanation for it. So the placeholder, we call it dark energy, something that's causing the universe to expand faster and faster," she said.

The Dark Energy Spectroscopic Instrument, also known as DESI, in Tucson, Arizona, will collect data on the light from more than 30 million galaxies and other distant objects, which researchers will use to make a 3D map of the universe. DESI captures spectra, which are elements of light that correspond to the colors of the rainbow. Spectras split light into wavelengths, or redshifts, which researchers measure to find the distance to a galaxy or far-off object in space.

The project launched officially in mid-May after years of preparation. About 50 universities are participating in the U.S. and around the world.

With millions of galaxies to map, the researchers will use an algorithm to find the best estimate for distances between objects. Berti's role includes checking data on sample subsets of individual galaxies and spectra to make sure the algorithm data aligns. She will help find objects for which the algorithm is less effective in estimating distances, so researchers can improve the system.

"It's kind of cool because the reason it's really useful is when you have millions and millions of galaxies, you can't do that process by hand for every single one," Berti said.

She's also testing alternative modeling techniques for measuring redshifts.

DESI is the largest project so far to measure "very precisely the expansion rate of the universe, basically to just measure more precisely the rate at which it's expanding, and the rate at which the expansion might be changing," Berti said.

It will measure galaxies in one-third of the entire sky, she said.

The researchers don't know what they'll discover. But to make progress in understanding why the universe is expanding faster and faster, they need to measure that expansion as precisely as possible.

She said the project seeks to indirectly unravel some of the mysteries surrounding dark energy, which like dark matter, has eluded scientists for many years.

"The frustration and the foreboding comes from the fact that we haven't yet figured out what it is. It doesn't mean that we won't figure it out, and it doesn't mean that our current science is wrong, it just means that our current understanding is incomplete. And that's frustrating. ... They're two big, pressing mysteries that are yet uncracked," Berti said.

The project will "help us understand the properties of this unexplained phenomena better, and the more we understand the details about what's going on, the better chance we have of coming up with a theory that we can test," she said.

 

By Ashley Imlay, first published in KSL.com

Nikhil Bhayani

Nikhil Bhayani


“Every time I come to the U with my kids,” says Nikhil K. Bhayani, MD, FIDSA (BS’98), “I take them on a reality tour. I [recently] told my youngest son, ‘Let’s retrace my footsteps when I used to go from one of the lecture halls at Presidents Circle, to the Student Union. This is the way my day was like.’”

They ended up at the Pie Pizzeria Underground, a decades-long favorite haunt of students and faculty just west of main campus on 2nd South, famous as much for its densely graffitied walls as its provocatively named specialties like “Hawaii Pie-O” and “Holy Shittake.” “It really feels like a college campus,” says Bhayani of the U. “My son tells me that he wants to get pizza here [at the Pie] every day.”

Though born in Virginia, Bhayani considers Salt Lake City, where he was raised, home. His parents, both originally from India, married in New York City after Bhayani’s father had finished graduate studies at the University of Rhode Island.

“I always wanted to go to medical school,” says Bhayani who graduated in 1998 with a biology major and a chemistry minor. (His brother Mihir also graduated from the University of Utah with a degree in chemistry in 2000 and is also a medical doctor.) While an undergraduate he worked in a bioengineering lab run by Richard Normann, and later in one of the labs at the Moran Eye Center. He recalls fondly some of his fellow Indians, in particular Rajesh, Monica and Leena Gandhi, a few years older than he, but also graduates in biology who went onto medical careers in infectious diseases and cancer.

Bhayani later attended Ross University School of Medicine in Portsmouth, Dominica, and was awarded his medical degree in 2003. In 2006 he completed medical residency training at Mercy Hospital and Medical Center in Chicago where his brother currently lives.

Nikhil and his family now live in Texas where he practices medicine at Dallas-Fort Worth Infectious Diseases, an integrated health care network comprised of physicians, hospitals, case managers, community clinics, and managed care partners.

There he also enlisted as an Infectious Diseases and Epidemiology Physician Advisor at Texas Health Resources in Arlington. In 2016, Bhayani was named Physician of the Year by the Texas Health Arlington Memorial Hospital. Not one to rest on his laurels, he was hired earlier this year as an Assistant Professor in the Department of Internal Medicine, at Texas Christian University and the University of North Texas School of Medicine where he brings his undergrad U experience full-circle by teaching pre-med-students. Especially gratifying recently was when a graduating senior, also interested in infectious diseases, came to him to ask if he could “shadow” him for four weeks for one of the student’s electives.

In clinical practice, says Bhayani, who works long-term with patients who live with HIV and other infectious diseases, “the research is always changing what we do. You have to keep up with developing trends… . We get patients who are insured, who have steady jobs and who are a little more educated, so when they read about new medications they want to make sure they're getting the latest. In private practice you want to be at the top of your educated game. This motivates me to stay on top too."

In his administrative role as physician advisor, Bhayani oversees all infectious disease policy-making—like the use of antibiotics, what lab teams are going to be doing—at fifteen acute care hospitals under the umbrella of the Texas Health Resources system. With a large African immigrant population Dallas/Ft. Worth, also home to a major international airport, experiences emerging infectious diseases and thus needs intense anti-microbial stewardship, including CDC protocols and cooperation with the local health department. Bhayani is at the center of these various sector components.

As you grow up and become successful, always look back and reflect how you got there and give back to the community you were nurtured in.”

It’s an intense but meaningful career, and sometimes Bhayani considers what it would be like to return more to teaching and mentoring, the kind that he feels he got at the University of Utah’s School of Biological Sciences. “My dad always said, ‘As you grow up and become successful, always look back and reflect how you got there and give back to the community you were nurtured in,” says Bhayani. Even so, he never wants entirely to give up his clinical experience at what amounts to the largest nonprofit based healthcare group in the country, second only to Intermountain Healthcare based in Salt Lake City.

“As I reflect, who I am today is thanks to my parents and the University of Utah for giving me motivation and an opportunity to pursue higher education,” says Bhayani who with his wife of eighteen years, also originally from India where her parents still live, is busy raising two sons. This while trying to keep up with following the NBA, NFL and, of course, the Utes, which he loves.

“Most of the work is done by my wife,” Bhayani concedes. He refers to her as the “pillar of the house, that “she keeps everything going. Left to me it would be like college all over again.”

Pizza anyone?

In May 2021, after months of battling the COVID-19 pandemic, Bhayani was selected as Top Physician of the Year by the International Association of Top Professionals (IAOTP) for his outstanding leadership and commitment to the healthcare industry.

 

by David Pace

Are you a Science Alumni? Connect with us today!