Scott Neville of Clearfield, Utah, who graduated from the University of Utah in December with a degree in mathematics and in computer science, has received a prestigious Churchill Scholarship to study at the University of Cambridge in the United Kingdom.

He is one of only 15 students in the U.S. to receive the award this year and is the third Churchill Scholar from the U, all of whom are mathematicians.

“Having three Churchill scholars in the last four years is truly remarkable,” said Ruth Watkins, president of the University of Utah. “There is no doubt that Scott will continue to successfully represent the U at Cambridge.”

Neville was drawn to math when he was introduced to the Collatz Conjecture in high school.

“The conjecture is interesting for its simplicity and difficulty, as well as its lack of consequence,” said Neville. “I proved via enumeration and equation manipulation that there was only one cycle with exactly one odd number, and none with exactly two odd numbers. This was a known result, but I was ecstatic. I realized there were unsolved problems in math and I could answer them.”

Neville enrolled at the U because he was already involved in an applied mathematics project with professor Duncan Metcalfe in the Anthropology department. The objective was to investigate infeasible years in radiocarbon dating. The work was funded by the Undergraduate Research Opportunities Program.

“This was a good learning experience in both research and communicating mathematics, since the senior researcher had only passing familiarity with the math involved,” says Neville.

The project resulted in a poster given at the Undergraduate Research Symposium in 2016.

“In addition, I knew the U had a rigorous mathematics and computer science program, but I hadn’t actually met any of those professors,” says Neville.

While attending the U, Neville presented his work in Japan, completed advanced courses in modern algebra and number theory, and took second place in the ASFM national collegiate mathematics championship in 2017. He also has co-authored three publications with university faculty.

Neville credits many U faculty for helping him through his undergraduate career. Suresh Venkatasubramanian, Tommaso de Fernex,Duncan Metcalfe, Arjun Krishnan, Aditya Bhaskara, Peter Trapaand Gordan Savin were each instrumental in helping him with research, presentations, course work and advising.

Neville aspires to become a professor at a research university so he can continue working on math and sharing it with others.

“I want to give back to a community that’s given so much to me. I want to continue learning and pushing the limits of what mathematics, and hence humanity, can do,” said Neville.

The Churchill Scholarship, established in 1963 at the request of Winston Churchill, provides undergraduates with outstanding academic achievement in the science, technology, engineering and math fields the opportunity to complete a one-year Master’s program at the University of Cambridge. The award is worth about $60,000 in U.S. dollars, depending on the exchange rate.

Candidates go through a rigorous endorsement process in order to apply, but only after their home institution has been vetted with the Winston Churchill Foundation. The U was added to the Foundation in spring 2014.

The Churchill Scholarship has been called “the most academically challenging of the U.K. scholarships.”

Neville will begin his studies at Cambridge in October 2018.

“Math is so much fun. My research has allowed me to work on problems that truly interest me, and has shown me the connections between different areas of math. Any student who is excited by math should try doing research, because it is a chance to experience math in a completely different way than in the classroom,” said Simper.

Under the direction of Tom Alberts, assistant professor in mathematics at the University of Utah, Simper has worked on two research projects over the past year and half. One focused on the stochastic heat equation on Markov Chains. The second studied the Bak-Sneppen model, a simplified model of evolution that incorporates natural selection and spatial interaction between species. She is currently writing up the results of this second project for publication.

“I’m proud to have called her my student and research collaborator, just as the mathematics department as a whole is proud of her as one of our best students ever,” said Alberts.

Simper continued her research experience this past summer on aNational Science Foundation Research Experience for Undergraduates fellowship, where she did research with Bjorn Sandstede, a professor in applied mathematics at Brown University. Her project focused on dynamical systems with noise, studying them both analytically and numerically. This research was the basis for another publication in progress and was the focus of a presentation she gave to the University of Utah Department of Mathematics.

Sandstede said that Simper’s “intellectual achievements are outstanding; she is passionate about mathematics and is one of the most creative and advanced undergraduate students I have known and worked with during my career.”

Recently, Simper was awarded the Alice T. Schafer Prize for Undergraduate Women in Mathematics, which highlights one outstanding undergraduate woman nationally who demonstrates high quality of performance in advanced mathematics course, a real interest in mathematics and an ability for independent work.

Simper will use the Churchill Scholarship to pursue a Master of Advanced Study in Pure Mathematics at the University of Cambridge starting in the fall. Don Tucker, professor in math at the University of Utah and mentor to Simper, said, “She will be a credit to our nation both as a scholar and as a person.” Upon completion, Simper plans to come back to the U.S. to complete her doctorate in mathematics.

Simper aspires to become a professor, and hopes through research and teaching to inspire students to realize math is more than just solving equations, it is all around them. Alberts, described Simper as such: “Mackenzie has tremendous faith in the ability of mathematics research to make important contributions to humanity and to improve the lives of others.”