Storm Peak Laboratory

Storm Peak Laboratory


Gannet Hallar in the lab.

There are only a handful of high elevation weather labs in the world, and one of them sits at the top of the Steamboat Ski Area.

Maybe you’ve noticed that building just at the top of the Morning Side Chairlift at the Steamboat Ski Resort with all the crazy antennae and satellite dishes on the roof, and wondered what goes on there. While some local organizations are lucky enough to get inside those doors for special tours, the facility is not open to the public.

The Storm Peak Laboratory is an atmospheric science and snow hydrology research center run by the University of Utah, whose mission is to advance discovery and understanding within these scientific fields. In other words, just as you are out there enjoying the fresh air and pristine wilderness that surrounds the ski area, you’ve got some of the best scientists in the world just a few feet away doing their best to protect it.

Storm Peak Laboratory was constructed during the summer of 1995 in the Rocky Mountains of northwestern Colorado (3220 m M.S.L.; 40.455 deg N, -106.744 deg W). The new facility is the latest stage of an evolutionary process of providing a practical, easily accessible facility for researchers, teachers and students of all ages and abilities.

Snow study plot @ 10,000 ft.

We caught up with Dr. Gannet Hallar, Professor at the University of Utah in the Department of Atmospheric Science, who is the director of Storm Peak Laboratory. Under her leadership, the lab has undergone major changes including new instrumentation, new field courses and a significant building expansion. She host many undergraduate and graduate level field courses at the laboratory from a variety of institutions, including the University of Utah, University of Colorado, Texas A&M, etc.

Tell us about this facility and what makes it special.
We are located at the top of the Steamboat Ski Resort next to the Morning Side chairlift in the Routt National Forest. The lab maintains a special use permit through Forest Service for the land surrounding the facility. We are a unique high mountain in-cloud facility, one of only a few in the country

Storm Peak Lab with a coating of rime.

What kind of research is conducted there?
We do atmospheric science research. We study the impact that gasses and aerosols in the atmosphere have on climate and human health. We also study clouds and what types of particles make clouds, as well as water and ice content in clouds.

What is the commute like and how do you get all the gear up there?
On most days we take the chairlift. We have a Pisten Bully snowcat and use snowmobiles to transport equipment. Some of our researchers use snowshoes to walk to and from the chairlift because they don’t ski.

Mountain meteorology class.

Who is studying there?
Atmospheric scientists who study particles, clouds, and gasses, and we also host snow hydrologists. We have people come from all around the country. We have some permanent staff, but we always have different groups visiting. Right now, we have a group from Massachusetts Institute of Technology (MIT) and a group from the National Center for Atmospheric Research in Boulder. We also conduct a lot of field classes for students from universities all over the country. We have a 9-person bunk house, full kitchen, classroom and meeting room. The facility is 2,500 square feet.

What’s the data used for?
We do long term monitoring of several things to investigate atmospheric trends. We are part of an international global atmospheric watch program that collects long term data on particles in the atmosphere and measures trace gasses and how they change over time. Similar to all other sites, we are seeing a significant increase in greenhouse gasses, especially CO2. We are also seeing changes to an increasing number of wildlife. We keep a long-term data record that goes into national database and publish papers on what we find about what is changing in our atmosphere.

The deck at Storm Peak.

Are you publicly or privately funded?
We are primarily federally funded and receive most of our funding from the National Science Foundation. It’s always a challenge to stay sustainable and the government shutdown really affected us. If you’re interested in supporting the lab, we always appreciate donations, which can be given through our website.

What is your mission?
A lot of technology development happens here. For example, our group from MIT is developing new technology to measure clouds which has the potential to address climate change and improve the de-icing of airplanes. We also do a lot of graduate and undergraduate training up here. One thing we are very proud of is how many students are trained in this facility, approximately 100 every year.

 

 

Originally published @steamboatsir.com, photos by Maria Garcia, Ian McCubbin, and Gannet Hallar.

Skaggs Building

South Physics Building

Widtsoe Building

South Biology

Cowles Building

Thatcher Building

Crocker Science Center

CAPE-K

James Talmage Building

Henry Eyring Building

 

Ichthyosaurs Migrations

Ichthyosaurs Migrations


Complete tooth and partial jaws of the ichthyosaur.

Fossil CSI: Mysterious site was ancient birthing grounds for marine giants.

Today’s marine giants—such as blue and humpback whales—routinely make massive migrations across the ocean to breed and give birth in waters where predators are scarce, with many congregating year after year along the same stretches of coastline. Now, new research from a team of scientists—including researchers with the University of Utah (Natural History Museum of Utah and Department of Geology & Geophysics), Smithsonian Institution, Vanderbilt University, University of Nevada-Reno, University of Edinburgh, University of Texas at Austin, Vrije Universiteit Brussels, and University of Oxford—suggests that nearly 200 million years before giant whales evolved, school bus-sized marine reptiles called ichthyosaurs may have been making similar migrations to breed and give birth together in relative safety.

The findings, published today in the journal Current Biology, examine a rich fossil bed in the renowned Berlin-Ichthyosaur State Park (BISP) in Nevada’s Humboldt-Toiyabe National Forest, where many 50-foot-long ichthyosaurs (Shonisaurus popularis) lay petrified in stone. Co-authored by Randall Irmis, NHMU chief curator and curator of paleontology, and associate professor, the study offers a plausible explanation as to how at least 37 of these marine reptiles came to meet their ends in the same locality—a question that has vexed paleontologists for more than half a century.

“We present evidence that these ichthyosaurs died here in large numbers because they were migrating to this area to give birth for many generations across hundreds of thousands of years,” said co-author and Smithsonian National Museum of Natural History curator Nicholas Pyenson. “That means this type of behavior we observe today in whales has been around for more than 200 million years.”

Over the years, some paleontologists have proposed that BISP’s ichthyosaurs—predators resembling oversized chunky dolphins which have been adopted as Nevada’s state fossil—died in a mass stranding event such as those that sometimes afflicts modern whales, or that the creatures were poisoned by toxins such as from a nearby harmful algal bloom. The problem is that these hypotheses lack strong lines of scientific evidence to support them.

To try to solve this prehistoric mystery, the team combined newer paleontological techniques such as 3D scanning and geochemistry with traditional paleontological perseverance by poring over archival materials, photographs, maps, field notes and drawer after drawer of museum collections for shreds of evidence that could be reanalyzed.

3D-modeled image of the Shonisaurus popularis fossil bed.

Although most well-studied paleontological sites excavate fossils so they can be more closely studied by scientists at research institutions, the main attraction for visitors to the Nevada State Park-run BISP is a barn-like building that houses what researchers call Quarry 2, an array of ichthyosaurs that have been left embedded in the rock for the public to see and appreciate. Quarry 2 has partial skeletons from an estimated seven individual ichthyosaurs that all appear to have died around the same time.

“When I first visited the site in 2014, my first thought was that the best way to study it would be to create a full-color, high-resolution 3D model,” said lead author Neil Kelley, an assistant professor at Vanderbilt University. “A 3D model would allow us to study the way these large fossils were arranged in relation to one another without losing the ability to go bone by bone.”

To do this, the research team collaborated with Jon Blundell, a member of the Smithsonian Digitization Program Office’s 3D Program team, and Holly Little, informatics manager in the museum’s Department of Paleobiology. While the paleontologists were physically measuring bones and studying the site using traditional paleontological techniques, Little and Blundell used digital cameras and a spherical laser scanner to take hundreds of photographs and millions of point measurements that were then stitched together using specialized software to create a 3D model of the fossil bed.

“Our study combines both the geological and biological facets of paleontology to solve this mystery,” said Irmis. “For example, we examined the chemical make-up of the rocks surrounding the fossils to determine whether environmental conditions resulted in so many Shonisaurus in one setting. Once we determined it did not, we were able to focus on the possible biological reasons.”

Illustration by Gabriel Ugueto

The team collected tiny samples of the rock surrounding the fossils and performed a series of geochemical tests to look for signs of environmental disturbance. One test measured mercury, which often accompanies large-scale volcanic activity, and found no significantly increased levels. Other tests examined different types of carbon and determined that there was no evidence of sudden increases in organic matter in the marine sediments that would result in a dearth of oxygen in the surrounding waters (though, like whales, the ichthyosaurs breathed air).

These geochemical tests revealed no signs that these ichthyosaurs perished because of some cataclysm that would have seriously disturbed the ecosystem in which they died. The research team continued to look beyond Quarry 2 to the surrounding geology and all the fossils that had previously been excavated from the area.

The geologic evidence indicates that when the ichthyosaurs died, their bones eventually sank to the bottom of the sea, rather than along a shoreline shallow enough to suggest stranding, ruling out another hypothesis. Even more telling though, the area’s limestone and mudstone was chock-full of large adult Shonisaurusspecimens, but other marine vertebrates were scarce. The bulk of the other fossils at BISP come from small invertebrates such as clams and ammonites (spiral-shelled relatives of today’s squid).

“There are so many large, adult skeletons from this one species at this site and almost nothing else,” said Pyenson. “There are virtually no remains of things like fish or other marine reptiles for these ichthyosaurs to feed on, and there are also no juvenile Shonisaurus skeletons.”

The researchers’ paleontological dragnet had eliminated some of the potential causes of death and started to provide intriguing clues about the type of ecosystem these marine predators were swimming in, but the evidence still didn’t clearly point to an alternative explanation.

The research team found a key piece of the puzzle when they discovered tiny ichthyosaur remains among new fossils collected at BISP and hiding within older museum collections. Careful comparison of the bones and teeth using micro-CT x-ray scans at Vanderbilt University revealed that these small bones were in fact embryonic and newborn Shonisaurus.

“Once it became clear that there was nothing for them to eat here, and there were large adult Shonisaurusalong with embryos and newborns but no juveniles, we started to seriously consider whether this might have been a birthing ground,” said Kelley.

Further analysis of the various strata in which the different clusters of ichthyosaur bones were found also revealed that the ages of the many fossil beds of BISP were separated by at least hundreds of thousands of years, if not millions.

“Finding these different spots with the same species spread across geologic time with the same demographic pattern tells us that this was a preferred habitat that these large oceangoing predators returned to for generations,” said Pyenson. “This is a clear ecological signal, we argue, that this was a place that Shonisaurusused to give birth, very similar to today’s whales. Now we have evidence that this sort of behavior is 230 million years old.”

The team said the next step for this line of research is to investigate other ichthyosaur and Shonisaurus sites in North America with these new findings in mind to begin to recreate their ancient world by perhaps looking for other breeding sites or for places with greater diversity of other species that could have been rich feeding grounds for this extinct apex predator.

“One of the exciting things about this new work is that we discovered new specimens of Shonisaurus popularis that have really well-preserved skull material,” Irmis said. “Combined with some of the skeletons that were collected back in the 1950s and 1960s that are at the Nevada State Museum in Las Vegas, it’s likely we’ll eventually have enough fossil material to finally accurately reconstruct what a Shonisaurus skeleton looked like.”

The 3D scans of the site are now available for other researchers to study and for the public to explore via the open-source Smithsonian’s Voyager platform, which is developed and maintained by Blundell’s team members at the Digitization Program Office, and anyone can take a deeper dive with the 3D model @ thesmithsonian.com.

“Our work is public,” said Blundell. “We aren’t just scanning sites and objects and locking them up. We create these scans to open up the collection to other researchers and members of the public who can’t physically get to a museum.”

The paper includes a wide variety of paleobiological and geological data, including geochemical data analyzed at SIRFER, petrographic thin sections that were imaged using Kathleen Ritterbush's system, and involvement of G&G graduate students (Conny Rasmussen is a co-author and her contribution was done when she was a PhD student here).

This research was conducted under research permits issued by the U.S. Forest Service and Nevada State Parks, and was supported by funding from the Smithsonian, University of Nevada, Reno, Vanderbilt University, and University of Utah.

Berlin-Ichthyosaur State Park is part of Humboldt-Toiyabe National Forest in the Shoshone Mountains of west-central Nevada. It is within the ancestral homelands of the Northern Paiute and Western Shoshone peoples.

 

by Lisa Potter, first published in @theU.

Additional stories @ CNN, NYT, Smithsonian Magazine, ScienceNews, WaPo, NewScientist, AP News, WIRED, CBS News, and Nature.

 

 

Melissa Hardy

Postdoctoral Fellow


"I am a postdoctoral researcher at the University of Utah, committed to combining the study of organic chemistry and data science to lead to new solutions for public health. I began my chemistry career in 2012 during my undergraduate studies at Grinnell College in Grinnell, IA (Chemistry and French). In this time, I was a Goldwater Scholar and completed multiple research experiences focusing on the synthesis of medicinally relevant compounds. Following these studies, I moved to the University of California, Berkeley for doctoral studies in Organic Chemistry. I worked with Prof. Richmond Sarpong as an NSF Graduate Research Fellow and Chancellor’s Fellow.

My thesis focused on the synthesis of natural products of the pupukeanane family, a family of topologically complex sesquiterpenes which are of interest as new anti-malarial compounds. In my career, I hope to develop state-of-the-art solutions to accelerate the synthesis of biologically active molecules with the hope of bringing new medicines to market."

  • What motivates and inspires you?
    I think the most inspiring part about scientific research is working with scientists in other fields (and other subfields of chemistry) to bridge the gaps in our knowledge. Collaborative work can be the most transformative and I’m always inspired by interdisciplinary applications.
  • What interests you most about your research?
    I love that data science can be used to bring new insights to chemical reactions. Finding trends and patterns in available data is such an interesting way to make new discoveries that takes advantage of previously untapped information.
  • What do you wish you had known when you first came to Utah?
    Invest in a good winter coat.
  • Your favorite University of Utah thing or experience?
    I love the easy access to the mountains and all the hikes available on campus. The university is full of awesome people ready for outdoor adventures.
  • What do you do for fun outside the lab? How do you handle stress?
    I think having a healthy work-life balance is key to handling stress. I love to cook and sharing my new creations with my friends.
  • What advice do you have for prospective postdocs?
    Come to your new group ready to share what you know and open to learning more about your new research topics.
  • What is the biggest difference between life as a grad student and life as a postdoc researcher?
    For me the type of research is very different! I switched from doing mostly synthetic work to mostly computational chemistry, so the daily work is extremely different and there is so much to learn at any given time. Another great thing about being a postdoc and switching laboratories is that your expertise and the expertise of the group you’re working can be much more orthogonal which makes for great experiences as a mentor and a mentee!
  • What do you plan to do after your postdoc?
    I’m planning to continue work in computational chemistry and data science for the optimization and mechanistic understanding of organic reactions. I haven’t quite figured out what setting I’ll do this in, but I’m excited to see all the new research opportunities developing.

 

first published @ chem.utah.edu

 

Amir Hosseini

Postdoctoral Fellow


Seyyed Amir Hosseini received his PhD in Chemistry from Indiana University, where he trained with one of the world’s premier organic electrochemists (Dr. Dennis Peters). He then joined the University of Utah in December 2020, as a Postdoctoral Research Fellow in the NSF Center of Organic Synthetic Electrochemistry (CSOE) where he is working in Prof. Henry White’s laboratory.

Amir’s research project is focused on the discovering novel electroorganic transformations and using variety of electroanalytical tools to explore the mechanism of the reaction at the molecular level. Recently, he developed a new synthetic strategy for electrooxidation of alcohols that is refer to as electroreductive oxidation. The general idea is to electrochemically generate highly oxidizing radicals by reduction of a sacrificial reagent, i.e., reduction is used to initiate a desired oxidation reaction. Amir has demonstrated that this process is effective for selective oxidation of alcohols to aldehydes and acids.

  • What motivates and inspires you?
    My biggest inspiration is understanding how nature behaves and using fundamental science to solve real-world problems. As a mentor and teacher, seeing students’ progress and growth motivates the most and gives me an extra reason to follow my career in academia.
  • What interests you most about your research?
    My research is mainly focused on making organic molecules using electrical current and understanding the mechanism of organic reactions using analytical and electroanalytical tools. I am fascinated by how molecules behave under reaction conditions and how we can solve the puzzle of reaction mechanisms using advanced analytical tools.
  • What do you wish you had known when you first came to Utah?
    I wish I knew that Utah is a great state and there are ample opportunities for enjoying nature while doing good research.
  • What research topics being explored in the world interest you the most?
    I am very intrigued by the use of electrochemistry in sustainable chemistry and decarbonization.
  • What do you do for fun outside the lab? How do you handle stress?
    For fun, I like working out, hiking, and cooking. I employ several methods to handle stress. First and foremost, I compartmentalize issues and tackle tasks based on their priority. Also, I spend time with my friends and use this opportunity to vent my stress and regain calmness. Finally, long walks help clear my thoughts and decrease my stress.
  • What advice do you have for prospective postdocs?
    Keep your curiosity, remain positive in the face of scientific failures, build a support group from other postdocs and members of your research group, ferment a positive and constructive relationship with your supervisor, and plan for the next step as early as possible.
  • What is the biggest difference between life as a grad student and life as a postdoc researcher?
    The most significant difference is the level of expectations and responsibilities: postdocs are expected to be very self-sufficient and be able to mentor grad students while conducting their research, whereas for graduate students learning research ideas and the relevant techniques are the top priorities. The second difference is that postdoc life is much busier than a grad student. The postdoctoral period is short, and usually, the postdoc researcher must conduct several research projects simultaneously, whereas graduate students generally handle one project at a time.
  • What do you plan to do after your postdoc?
    I want to pursue my career in academia as the principal investigator, where I will mentor the next generation of scientists and help them to enter the world of science.

Equity and inclusion in academic setting is a very important matter for Amir. He is currently serving as the post-doc representative on the DEI committee of the Department of Chemistry. However, his outreach activities are not limited to academia. He volunteers to help new Iranian and Afghan families settling in Salt Lake City. In this role, he assists families who need a translator for taking care of paperwork, enrolling their children in school, and communicating with federal and state officials regarding their urgent needs.

first published @ chem.utah.edu

 

GSL Meteorite

GSL Meteorite


The impact site.

On the morning of Aug. 13, 2022, a loud boom was heard across the Salt Lake Valley. As it turned out, it was the sound of a falling meteorite that eventually landed in the salt flats west of Salt Lake City.

“I was just getting up, I was in my driveway, I heard a loud sonic boom and then some rumbling, kind of like thunder after that,” said Dr. James Karner, a research professor in the Department of Geology and Geophysics. “I actually thought that could be what a meteorite sounds like when it breaks through the atmosphere.”

Karner’s suspicions were confirmed when the ski resort Snowbasin released video footage of a fireball falling through the sky.

“The relative rarity of an event like this — the only other witnessed fall ever in Utah was in 1950,” Karner said. “Before this meteor hit, there had only been 26 meteorites ever found in Utah.”

The meteorite was found in the salt flats by a meteorite hunter from Nevada named Sonny Clary. Clary then agreed to donate a slice of the meteorite to the University of Utah in order to have it studied further, as well as named by The Meteoritical Society.

James Karner

“If you’re the first finder of a meteorite, apparently, you’re very keen on getting your name in the archives,” Karner said. “In order to have a meteorite named, you have to have an institution classify it, just figure out what kind of meteorite it is and write up a little report then propose a name for it, so he agreed to let the University of Utah do that.”

Karner, as the U’s resident meteoriticist, is head of the team tasked with the analysis. “There’s not a lot of people that study meteorites here like at Arizona State or Portland State,” Karner said. “But [Clary] said, ‘I think, Utah, it’d be good for you to have this meteorite since it’s such a community event.’”

So, the process of analyzing and naming the meteorite began.

“The goal of meteoritics is to understand the origins of the solar system,” said Dr. Benjamin Bromley, professor of Physics and Astronomy. “These samples that people find are billions of years old, and many of them were formed as rocks at the beginning of the solar system, as all the solids came together.”

Bromley said the analysis of such samples could contain clues for how Earth and other planets in the solar system were formed.

“These are, in some sense, failed planets because they’re just little bits of debris,” he said. “They’re composed of pretty primordial stuff in many cases. So I think they’re really beautiful and really informative with the clues they have for understanding our solar system.”

Benjamin Bromley

The first step was to determine the composition of the sample. “Most meteorites are called stony meteorites, and they come from asteroids,” Karner said.

To explain this, he had a sample of another meteorite, separate from the one found in the salt flats, and pointed to little silver specks within the sample. “Those are little grains of iron-nickel metal. Those are unique to meteorites because all the iron has been oxidized on the surface of the Earth, but in space, you can get iron-nickel metal, and that tells you you have a meteorite.”

He explained the amount of metal in meteorites could vary from little specks in the stone to a meteorite that was an entire chunk of iron. The meteorite that fell in Utah is known as a high iron chondrite, meaning that, like most meteorites, it is a stony type that came from an asteroid, but with a high amount of iron in its composition.

Once the meteorite was classified, more information could be determined regarding its origin. Karner described how sometimes asteroids divert from their original orbits into elliptical ones, which pass much closer to Earth.

“Asteroids that have gotten knocked out of their regular circular orbit, and now they’re in this Earth-crossing orbit,” he said. “So sometimes we get lucky, we get pieces that break off that little sub-asteroid and come to Earth as meteorites.”

This origin is fairly common as far as meteorites go, but according to Bromley, the high iron quantity reveals something rare about the rock. He said because of the process in which asteroids are formed, known as differentiation, the metals in them sink to the center and the lighter materials rise to the top.

The Great Salt Lake Meteorite.

“So a heavy metal object like this undoubtedly didn’t come from the surface of some asteroid,” he said. “It likely came from a deeper impact that kind of ripped out the interior of something closer to the center of the object.”

The next step is getting the meteorite officially named by The Meteoritical Society. Karner’s proposed name is The Great Salt Lake Meteorite.

“Meteorites are named for usually the closest geographic place name,” Karner said. “I think Great Salt Lake would be cool since they found this near the Salt Lake, and there’s probably pieces that went into the Salt Lake.”

Aside from the science of it all, Karner also stressed how unique of an opportunity this is for the U and the broader community.

“There’s a lot of rock hounds in Utah, people that think they found meteorites, but they’re super rare,” he said. “More rare than diamonds and gold and anything you can think of. Even more rare than that is to see a fireball, hear the explosion and then find the rock that came with it.”

Bromley said he feels U students should care about and take a genuine interest in this science.

“This is studying our origins; this is studying where the Earth came from,” he said. “This is contributing to the body of knowledge for how habitable planets form and that’s extremely important towards understanding what other planets may be out around nearby stars.”

Even limited to Earth, Bromley believes this science has serious application and implications.

“It also speaks to the importance of our own planet and nurturing our planet,” he said. “I view this as a contribution to our own home, understanding it and caring for it.”

Story by Caelan Roberts, first published @ The Daily Utah Chronicle.

>> HOME <<

King of the Playa

King of the Playa


On a crisp October morning, Kevin Perry pedaled his bike across the Great Salt Lake playa, trailing a machine that tests how much wind energy it takes to disturb the crust and move dust across the surface. Colleagues jokingly call him the “king of the playa” because he’s spent so much time here, testing different patches of the lake surface for toxic metals and trying to understand the recipe for dust storms.

Declining water levels exposed much of the Great Salt Lake's bed and created conditions for storms of dust laden with toxic metals that now threaten 2 million people. Parts of the Great Salt Lake hardly resembled a lake at all this fall.

Water levels in October fell to the lowest levels on record, exposing much of the lakebed and creating conditions for storms of dust — laden with toxic metals — that now threaten the 2 million people living nearby.

Rio Tinto Kennecott smelter.

Researchers are racing to understand this new hazard, which adds a new layer of air pollution concern for the Salt Lake City area and threatens to dismantle the progress made to improve air quality in a region where oil refineries, a power plant and a gravel mine are part of the city skyline and the surrounding mountains trap pollution. In neighborhoods on the city’s historically redlined west side, lake dust is raising concern in areas that have experienced decades of environmental disparities and the most vulnerable people some days struggle for a breath of clean air.

“We have 2.5 million residents along the edges of the lake,” said Kevin Perry, a University of Utah atmospheric scientist researching the Great Salt Lake dust. “These dust plumes come off and make the air unhealthy regardless of what’s in it.”

But even those in wealthy enclaves away from the most visible sources of pollution won’t be spared from the dust. New research suggests arsenic-rich concentrations of dust from any source are the highest in wealthy Salt Lake area communities and that fast-growing suburbs could face the brunt of the dust storms’ impact.

Scientists want to understand how much risk the dust’s toxic metals pose to humans, what level of exposure is unsafe and what the implications for Utahans could be over time. No matter what they find, it’s a threat that will only continue to grow as lake levels drop.

On the lakebed

When the wind picks up, the playa surface can start to feel like a sandblaster. Perry's first fat bike, with 4-inch thick tires wide enough to move across sand, lasted about 750 miles before it gave out, corroded by salt.

In the course of researching the Great Salt Lake dust, Perry was forced to abandon a bike in mud, peppered by hail during a lightning storm, and heard bullets whizzing past his head, fired by an illegal target shooter.

Molly Blakowski, doctoral student.

Molly Blakowski, a doctoral student and dust researcher at Utah State University who regularly hiked a 20-mile loop of the playa to collect dust samples, said she would never venture out with less than 4 liters of water. Some moments, it can be hard to see more than 20 feet ahead.

“Everything turns into a mirage,” she said of long research days spent “trapped in your own thoughts.”

In October, water levels on the Great Salt Lake dropped to all-time lows.

Once lively marinas are now dry and empty of sailboats. Brine flies — fundamental to the food web — are disappearing because the water has become so salty. Mining companies applied to dredge longer canals so they could reach water with their equipment.

The lake’s volume is down at least 67% since pioneers once settled in the valley. Humans are responsible for about three-quarters of its decline, according to research from Utah State University. The megadrought roiling the western United States is responsible for the rest of the deficit, which has left more playa to explore.

What some might view as a flat, static environment is actually changing dramatically in front of Perry’s discerning eyes. In one recent research project, he cycled 7 miles several days a week, visiting 11 sites on each trip. One week, a site would be a raised mound of sand and dust. The next week, it could be a hollowed-out depression.

Retreating water levels on the Great Salt Lake.

During dust storms, host spots on the lake will pop and emit swirls of dust, collecting particles less than a fraction of the width of a human hair, darkening the sky and propelling them into communities nearby. The smallest particles can remain airborne for weeks at a time.

The lake bed contains pollutants like arsenic, distributed widely across the surface, which could be an indication that some of it occurs naturally, Perry said.

The lake has long been a catchment for industrial pollution. Each area of the lake has its own recipe of toxic metals and other substances, fed by different polluting industries nearby. Researchers are concerned that what’s been stored in the lake will soon be carried on the wind into Salt Lake City and other neighboring communities.

About 9% of the lakebed was a dust source as of 2018, he said. A protective crust covers other areas of the lake, but it’s being broken down by wind and weathering.

“The longer the lake bed is exposed, we expect that to increase. It could increase to 24% to 25% of the lakebed,” Perry said.

This isn’t a problem caused by climate change; Utahans are simply consuming too much water for agriculture, industry and residential use from the overtaxed rivers that feed the terminal lake. Modeling suggests human water diversion has reduced the lake level by about 11 feet, the Utah State research shows. Meanwhile, increased evaporation due to climate change has caused the lake level to drop less than half a foot.

Lawmakers in Utah — the “industry” state — have begun to turn their attention to the lake, passing a series of bills designed to revamp how the state uses its water. Utah Gov. Spencer Cox in November closed the basin to new water appropriations. But for years, the lake was an afterthought in the state’s unslakable thirst for economic growth.

“The entire state has an unhealthy relationship with water,” Perry said. “We need to start living like we live in the desert.”

Researchers still don’t understand exactly where the dust ends up, whether its toxic metals are being easily absorbed into people’s bodies and what risks that might pose. To try to answer some of those questions, scientists with the U.S. Geological Survey in 2018 and 2019 installed 18 dust traps throughout the Salt Lake City area.

The traps were left out for months and captured everything: dust from the lake, from local construction and from nearby deserts.

When they examined the dust, researchers found some interesting storylines.

“We’ve got some bells going off,” said Annie Putman, a USGS hydrologist who led the study. “The pieces are there to think we should be concerned.”

Traces of arsenic, lead and other toxic metals were discovered across the sites, according to the findings, which were published in the journal GeoHealth in late October.

At every site, concentrations of arsenic were enough to exceed an Environmental Protection Agency marker of concern for residential soil. One site had a concentration 35 times higher, though it’s not clear how that translates to risk for human exposure.

The Bowl

Salt Lake City, often associated with ski slopes that gleam above the city skyline, developed a reputation for air pollution long before dust grew as a concern. Of 888 U.S. metro areas, it ranked the ninth-highest in an EPA risk screening that modeled health risk from toxic chemical releases in 2020, and 20th for short-term particle pollution last year by the American Lung Association.

The pollution burden is felt unequally among residents.

John Lin, Atmospheric Research Professor.

Mountains cradle Salt Lake City on three of its sides. Its fourth border — to the west — leads to the brackish-smelling shores of the Great Salt Lake. Interstate 15 slices the city in half, dividing east from west. On the east side, well-to-do homes sprawl toward the canyons, gaining in elevation.

Housing in neighborhoods that make up the “west side,” as Salt Lake residents call it, commingle with refineries, a wastewater treatment plant, highways, railways and a busy airport. The neighborhoods are typically less wealthy, less white and historically redlined — the west side was deemed a “hazardous” real estate investment in the 1930s by the federal Home Owners’ Loan Corp.

These neighborhoods are closer to the valley floor, where the lion’s share of the air pollution can be found.

“If you look at Salt Lake, it’s essentially a bowl and the dense emissions are in the lower elevations,” said John Lin, an atmospheric research professor at the University of Utah.

And with the exception of ozone, pollutants such as black carbon, nitrogen dioxide and particulate matter “tend to be higher in lower-income neighborhoods, places with nonwhite populations,” Lin said.

In summer, concern centers on wildfire smoke and ozone. Spring and fall were once respites. But now, those seasons are turning to dust.

In the winter, the word “inversion” is a dirty word for Salt Lake residents. During an inversion, a layer of warm air settles over the valley like a lid for the bowl, trapping everything below as if it were a cap.

Daniel Mendoza, assistant professor of atmospheric sciences.

“The pollution builds up a hot spot and doesn’t blow away,” said Daniel Mendoza, an assistant professor of atmospheric sciences at the University of Utah.

Neighborhoods higher in elevation — more often above the inversion’s cap — are typically less impacted as pollution builds. But on the west side, closer to many sources of pollution, residents can get stuck in a thicker pea soup of car exhaust, refinery emissions and other pollutants.

“It irritates the eyes and gives me sinus infections,” said Jorge Casillas, 58, who has lived on the west side for 15 years. “It’s hard to be trapped in the valley.”

Overall, emissions have improved in Salt Lake City, mostly because of vehicle emissions standards enacted by the Obama administration’s EPA, according to Perry. The EPA in 2021 proposed re-listing the Salt Lake City area as in “attainment” for small particle pollution it had been failing to sufficiently control.

“When we switch to electric vehicles, our air quality is going to improve dramatically,” Perry said.

But wildfires and dust storms off Great Salt Lake are erasing the progress that has been made. For those in the West Side, it adds a new layer of concern for their health.

“There’s so much sediment and so much trapped for so long. It’s pulling up stuff that’s been trapped for 100 years,” Casillas said. “Are there carcinogens or other health risks? That’s what I’m worried about. There’s so many children in the neighborhood.”

A drumbeat of media coverage over dust and pollution has frightened some Utahans.

“I’ve received a number of emails from concerned citizens reconsidering living in Salt Lake City,” said Janice Brahney, an assistant professor at Utah State University’s watershed sciences department.

"We don’t know"

When USGS researchers mapped the samples collected from their dust traps, they found something interesting.

While other metals such as nickel, thallium and lead were more likely to exceed those EPA markers in poorer, less-white communities like Rose Park, arsenic was more concentrated in samples from wealthy communities, possibly because of its past use as a fertilizer on agricultural lands.

The researchers suspect that urban, diverse neighborhoods are receiving much of their dust and the toxic metals within that dust from local sources — nearby polluters or construction projects. It’s also possible that dust from the Great Salt Lake and other nearby playas picks up local pollutants from nearby mines, refineries and pesticides as dust travels into the city.

Meanwhile, researchers found the highest levels of dust — and metals — in suburbs outside urban Salt Lake City. Researchers suspect communities north of the city, including areas such as Syracuse, Ogden and Bountiful could be receiving the majority of the dust that blows off the lake. In early October, less than a mile from what was once lakeshore, workers were hammering away to frame new housing.

These areas are an air monitoring dead zone, Perry said.

“There’s almost no sampling done north of Salt Lake City,” he said. “We’re really lacking a coherent network to answer the question of who is impacted the most.”

Annie Putman, USGS researcher.

Putman and colleagues this year set up another 17 dust traps — all nicknamed “Woody” — in counties north of Salt Lake to better evaluate the risk for those areas.

So much remains unknown. While the EPA has screening levels for metals in soil, no environmental standards exist for exposure to toxic metals contained in dust.

“How much arsenic does there have to be over a 24-hour-period for dust to cause problems — we don’t know. We don’t have any study that can tell us that,” Putman said. “What are the short- term or long-term consequences of that? We don’t know at all.”

Researchers are also unsure if the arsenic and other metals in the dust are “bioavailable” — meaning they can be absorbed into plants, animals and humans. Testing is ongoing. Blakowksi is growing cabbage in a laboratory and sprinkling the plants with dust samples from the Great Salt Lake to see how much arsenic they take up.

In California, ratepayers have spent about $2.5 billion controlling dust emissions on Owens Lake, which was drained by the Los Angeles Department of Water and Power only to become the biggest humanmade source of dust in the U.S..

Researchers say the Great Salt Lake represents a much larger threat.

“The area of currently exposed lakebed is over seven times larger than the entire area of Owens Lake,” Blakowski said, adding that the population downwind is about 50 times larger in Utah’s case. “We can’t wait. It’s just going to keep getting dustier and there are serious human health and ecosystem implications if we sit on this too long.”

Images and story by Evan Bush, first published @ NBC News.

Relativistic Jet

Relativistic Jet


Tanmoy Laskar

Mysterious bright flash is a black hole jet pointing straight at Earth.

Earlier this year, astronomers at the Palomar Observatory detected an extraordinary flash in a part of the sky where no such light had been observed the night before. From a rough calculation, the flash appeared to give off more light than 1,000 trillion suns.

The team, led by researchers at NASA, Caltech, and elsewhere, posted their discovery to an astronomy newsletter, where the signal drew the attention of astronomers around the world, including scientists at MIT and the University of Utah. Over the next few days, multiple telescopes focused in on the signal to gather more data across multiple wavelengths in the X-ray, ultraviolet, optical and radio bands, to see what could possibly produce such an enormous amount of light.

Now, the U and MIT astronomers and collaborators have determined a likely source for the signal. Tanmoy Laskar, Assistant Professor in the Department of Physics and Astronomy at the U, was co-author of a study that appeared on Nov. 30 in Nature Astronomy. The scientists report that the signal, named AT 2022cmc, likely comes from a relativistic jet of matter launched by a supermassive black hole at close to the speed of light. They believe the jet is the product of a black hole that suddenly began devouring a nearby star, releasing a huge amount of energy in the process.

Astronomers have observed other such “tidal disruption events,” or TDEs, in which a passing star is torn apart by a black hole’s tidal forces. AT 2022cmc is brighter than any TDE discovered to date. The source is also the farthest TDE ever detected, at some 8.5 billion lights years away—more than halfway across the universe.

Palomar Observatory

How could such a distant event appear so bright in our sky? The team said the black hole’s jet may be pointing directly toward Earth, making the signal appear brighter than if the jet were pointing in any other direction. The effect is called “Doppler boosting.”

AT 2022cmc is the fourth Doppler-boosted TDE ever detected and the first such event that has been observed since 2011. It is also the first TDE discovered using an optical sky survey.

“One of the tell-tale signatures of the presence of such a jet is powerful radio emission from a small volume of space,” said Laskar. A preliminary report alerted the team that this event might have detectable radio emissions. “So, we followed it up with the Karl G. Jansky Very Large Array in New Mexico, and boom, there it was! Bright radio emission signaling a compact, Doppler-boosted jet.”

As more powerful telescopes start up in the coming years, they will reveal more TDEs, which can shed light on how supermassive black holes grow and shape the galaxies around them.

“We know there is one supermassive black hole per galaxy, and they formed very quickly in the universe’s first million years,” said co-author Matteo Lucchini, a postdoc in MIT’s Kavli Institute for Astrophysics and Space Research. “That tells us they feed very fast, though we don’t know how that feeding process works. So, sources like a TDE can actually be a really good probe for how that process happens.”

Feeding frenzy

Following AT 2022cmc’s initial discovery, the team focused in on the signal using the Neutron star Interior Composition ExploreR (NICER), an X-ray telescope that operates aboard the International Space Station.

“Things looked pretty normal the first three days,” recalled the study’s lead author Dheeraj “DJ” Pasham, who is an Einstein Fellow at MIT. “Then we looked at it with an X-ray telescope, and what we found was, the source was too bright.”

Typically, such bright flashes in the sky are gamma-ray bursts—extreme jets of X-ray emissions that spew from the collapse of massive stars.

“Both GRBs and TDEs are events that have superfast jets pointed at Earth,” said Laskar. “One of the key ways to distinguish between them is in the X-rays. Jetted TDEs seem to also have strongly variable X-ray emission.” Indeed, the team found that X-ray emissions from AT 2022cmc swung widely by a factor of 500 over a few weeks.

The team then gathered observations from other X-ray, radio, optical and UV telescopes and tracked the signal’s activity over the next few weeks. Another remarkable property they observed was the signal’s extreme luminosity in the X-ray band.

“This particular event was 100 times more powerful than the most powerful gamma-ray burst afterglow,” Pasham said. “It was something extraordinary.”

They suspected that such extreme X-ray activity must be powered by an extreme accretion episode—an event that generates a huge churning disk, such as from a tidal disruption event, in which a shredded star creates a whirlpool of debris as it falls into a black hole.

The team found that AT 2022cmc’s X-ray luminosity was comparable to, though brighter than, three previously detected jetted TDEs. These bright events happened to generate jets of matter pointing straight toward Earth. The researchers wondered: If AT 2022cmc’s luminosity is the result of a similar Earth-targeting jet, how fast must the jet be moving to generate such a bright signal? To answer this, Lucchini modeled the signal’s data, assuming the event involved a jet headed straight toward Earth.

“We found that the jet speed is 99.99% the speed of light,” Lucchini said.

To produce such an intense jet, the black hole must be in an extremely active phase—what Pasham described as a “hyper-feeding frenzy.”

“It’s probably swallowing the star at the rate of half the mass of the sun per year,” Pasham estimated. “A lot of this tidal disruption happens early on, and we were able to catch this event right at the beginning, within one week of the black hole starting to feed on the star.”

“We expect many more of these TDEs in the future,” Lucchini added. “Then we might be able to say, finally, how exactly black holes launch these extremely powerful jets.”

“When the next TDE is discovered, we will again be ready to catch its light from X-rays to radio waves,” Laskar said. “By combining such data with physical models, we hope to build a full picture of how supermassive black holes at the centers of galaxies grow, evolve, and shape their environments over cosmic time.”

by Lisa Potter | Adapted from a release by Jennifer Chu, MIT News Office
first published in @theu

 

>> HOME <<

 

Clarivate’s Most Cited

Peter Stang


Distinguished Professor Peter J. Stang.

Peter Stang & President Obama.

Seated in the Great Hall of the People in Beijing, China.

Chinese International Science & Technology Cooperation Award.

Peter Stang One of Clarivate's Most Cited Scientists.

Each year, Clarivate identifies the world’s most influential researchers ─ the select few who have been most frequently cited by their peers over the last decade. In 2022, fewer than 7,000, or about 0.1%, of the world's researchers, in 21 research fields and across multiple fields, have earned this exclusive distinction.

Peter Stang is among this elite group recognized for his exceptional research influence, demonstrated by the production of multiple highly-cited papers that rank in the top 1% by citations for field and year in the Web of Science.

Peter Stang was born in Nuremberg, Germany to a German mother and Hungarian father. He lived in Hungary for most of his adolescence. In school, he took rigorous mathematics and science courses. At home, he made black gunpowder from ingredients at the drugstore, and developed a pH indicator from the juice of red cabbage that his mother cooked, and sold to his "fellow chemists".

In 1956, when Stang was in the middle of his sophomore year in high school, he and his family fled the Soviet invasion of Hungary and immigrated to Chicago, Illinois. Not speaking English, Stang failed his American history and English courses but scored at the top of his class in science and math. His teachers were confused by his performance and gave him an IQ test. Stang was confused by the unfamiliar format of the test and scored a 78. In spite of this, Stang was admitted to DePaul University and earned his undergraduate degree in 1963. He received his Ph.D. in 1966 from the University of California, Berkeley.

After a postdoctoral fellowship at Princeton Universitywith Paul Schleyer, he joined the chemistry faculty at the University of Utah in 1969. He became dean of the College of Science in 1997 and stepped down as dean in 2007. He is a member of the National Academy of Sciences, The American Academy of Arts and Sciences and a foreign member of the Chinese Academy of Sciences. He was editor-in-chief of the Journal of Organic Chemistry from 2000 to 2001, and Editor-in-Chief of the ACS flagship journal, Journal of the American Chemical Society (2002-2020).

Awards & Honors

  • Priestley Medal, (2013)
  • National Medal of Science, (2010)
  • Paul G. Gassman Distinguished Service Award of the ACS Division of Organic Chemistry, (2010)
  • F.A. Cotton Medal for Excellence in Chemical Research of the American Chemical Society (2010)
  • Honorary Professor CAS Institute of Chemistry, Beijing, Zheijiang U; East China Normal U and East China U of Science and Technology, (2010)
  • Fred Basolo Medal for Outstanding Research in Inorganic Chemistry, (2009)
  • Foreign Member of the Hungarian Academy of Sciences, (2007)
  • ACS Award for Creative Research and Applications of Iodine Chemistry, (2007)
  • Linus Pauling Award, (2006)
  • Foreign Member of the Chinese Academy of Sciences (2006)
  • Fellow of the American Academy of Arts and Sciences (2002)
  • Member of the National Academy of Sciences.
  • ACS George A. Olah Award in Hydrocarbon or Petroleum Chemistry, (2003)
  • Member, AAAS Board of Directors, (2003–2007)
  • Robert W. Parry Teaching Award, (2000)
  • ACS James Flack Norris Award in Physical Organic Chemistry, (1998)
  • University of Utah Rosemblatt Prize for Excellence, (1995)
  • Utah Award in Chemistry, American Chemical Society, (1994)
  • Utah Governor's Medal for Science and Technology, (1993)
  • Honorary Doctorate of Science (D. Sc. honoris causa) Moscow State University, Moscow, Russia (1992)
  • Fulbright Senior Scholar, (1987–1988)
  • Univ. of Utah Distinguished Research Award, (1987)
  • Fellow AAAS, JSPS Fellow (1985, 1998)
  • Lady Davis Fellowship (Visiting Professor), Technion, Israel, (1986, 1997)
  • Humboldt "Senior U.S. Scientist" Award, (1977, 1996, 2010)
  • Associate Editor, Journal of the American Chemical Society (1982–1999)
  • National Organic Symposium Executive Officer (1985)

 

first published @ chem.utah.edu

>> Home <<