The Beauty of Mathematics

THe beauty of Mathematics


April 2, 2024


by Fred Adler

After listening to an egregiously (and quite uncharacteristically) dull math colloquium some years ago, I had a revelation that there are three good reasons to do mathematics:  it is important (solves an open problem), it is useful (cures cancer) and it is beautiful.

 

These good reasons are not mutually exclusive, and my own ideal, rarely achieved, is to combine all three. In case you are curious, the dull talk exemplified one of the bad reasons (it is hard), that I'll say no more about.

So what is this vaunted mathematical beauty? Is mathematical beauty the same as beauty in the arts and nature, or does it just happen to go by the same name?

Faced with a problem of this magnitude, poet and Distinguished Professor Katharine Coles and I decided to do what we do best. Talk about it. This year's Symposium on Science and Literature takes on the idea of beauty, bringing together poet Claudia Rankine, physicist Brian Greene, and neuroscientist/artist Bevil Conway for three days of discussion. As part of the preparation, we are jointly teaching a course this semester on the theme of Beauty to a small class of remarkable students, half from math, half from English. The English students are facing the trauma of making sense of math and physics and attempting to see the beauty therein. The Math students are facing the terror of making sense of complex poetry and attempting to see its beauty. And we are all taking on the collective challenge of reading philosophy to peek behind the curtain to ask what beauty is.

At the atomic scale, when one sheet of atoms arranged in a lattice is slightly offset from another sheet, moiré patterns can create some exciting and important physics with interesting and unusual electronic properties. (Image courtesy of Ken Golden)

Before revealing the answer, I'll share some of the mathematical ideas we have discussed, largely following the charming “The Joy of x by Stephen Strogatz, inspired by his popular series for the New York Times online called "The Elements of Math.” Given the mixed group, the mathematics, in the spirit of Strogatz's book, is fundamental and not technical.

We began with an age-old question: What does the golden ratio have to do with rabbits? The golden ratio appears in geometry, describing the shape of a rectangle that is supposedly the most appealing to the eye, and appearing in the elegant logarithmic spiral. But this number also shows up as the limit of the ratio of the consecutive values of the Fibonacci sequence (1,1,2,3,5,8,13,21...). Each number is the sum of the previous two numbers, and the sequence can be generated by counting the population of immortal and fecund rabbits who produce babies every month and take just two months to mature. The beauty, we decided, lies in the unexpected connection of geometry and arithmetic.

The most elegant and venerable link between geometry and numbers is the Pythagorean theorem, that the sum of the squares of the sides of right triangle is equal to the square of the hypotenuse. Where do those squares come from anyway? I know three broad classes of proof. The first is rather pretty, involving drawing squares on the sides and hypotenuse and cleverly chopping them to get them to match. The second, which I came up with when I couldn't figure out how to do the first, is rather ugly, involving drawing lines, taking ratios, and doing a bunch of nasty algebra. The best proof, which I had not seen before, was attributed to the teenage Einstein in one of the books we read for the class ``A Beautiful Question" by Nobel-prize winning physicist Frank Wilczek. It is based on what we mean by area. If you take any shape and make it twice as big by stretching equally in all directions, the area gets bigger by a factor of 4. That's where the squares come from if you made the shape 3 times as big, the area would be 3^2=9 times bigger. Rather than building on tricky drawing or algebra, this proof requires adding just one line to the picture, and then thinking. In mathematics, beauty lies in deep simplicity. And, as in music and the arts, that kind of simplicity has to be earned.

Fred Adler writes equations inside his office at the University of Utah in Salt Lake City on Sept. 5, 2023. (Photo by Marco Lozzi | The Daily Utah Chronicle)

I became interested in mathematics because of the magic of numbers. And large numbers have an allure all their own. The Fibonacci series, like rabbit populations, grows rather fast. But what if you want to write down really huge numbers? We can use the way that mathematical ideas build on themselves, recalling the progression of arithmetic in elementary school. Addition is repeated counting (6+7=13 means counting to six and then counting to seven). Multiplication is repeated addition (6*7=42 means adding up seven 6's). Exponentiation is repeated multiplication (6^7=279936 means 6*6*6*6*6*6*6, multiplying together seven 6's). The numbers are starting to get pretty big. But to really turbocharge, let's try repeated exponentiation. Donald Knuth invented "arrow notation" to handle this question. ­6­­↑↑7 is 6 raised to the 6th power seven times, or 6^6^6^6^6^6^6. There's really no way to say how big this number is. Even 6­­↑↑3 has 36,305 digits written in decimal notation. But no matter how absurdly large these numbers become, they are still nothing compared with infinity. The beautiful has the sense of the inexhaustible, the beauty of a poem, the face of one you love.

We have touched on many other mathematical questions. Is the quadratic formula ugly, or does it have "inner beauty"? Is there a beautiful poetry behind the existential angst of probabilities? Will I ever get over my prejudice against fractals?

Along the way, we've learned a few things. Good things happen when geometry and algebra get together. Beauty has an element of surprise, evoked by connections between apparently different things. Beauty arises when complexity meets simplicity and when simplicity meets complexity. Einstein was a beautiful and deep thinker. Keats was a great poet who evoked deep thoughts with beautiful words.

There is a toast attributed variously to G.H. Hardy and other famous mathematicians: “Here’s to pure mathematics. May it never be useful for anything!” The Enlightenment philosopher Immanuel Kant argues that beauty indeed must lie outside anything useful, attractive or even morally good. But mathematics has the remarkable power to surprise us with beauty when it seeks to be useful, and with usefulness when it seeks beauty.

Fred Adler is Professor of Mathematics and Director of the School of Biological Sciences at the University of Utah.

The 2024 Science and Literature Symposium takes place April 10-12. This year's topic arises from reexaminations of beauty that are occurring broadly not only in the arts and across such disciplines as ethnic and disability studies, but also in biology, where dominant theories about the possible evolutionary purposes of beauty are being questioned. 

>> HOME <<


The future of physics education

The Future of Physics Education


April 1, 2024

Above: Ricardo Gonzalez, REFUGES Afterschool Program Coordinator in class. Credit: Todd Anderson

The March issue of Nature Physics, a premier academic publication, was all about education. Physics Education Research (PER) is a scientific field of study in which researchers collect and analyze data related to the learning environment.

Ramón Barthelemy

“Physics curricula and education systems have remained largely unchanged for decades, and much can be done to improve them,” reads the issue’s editorial. “Nature Physics provides an overview of the current state of physics education research and offers recommendations on how to make learning environments more equitable and inclusive, diversify graduates’ skillsets and enable them to tackle important societal issues and challenges.”

The editors hand-picked contributors who focus on PER from varying perspectives. Ramón Barthelemy, assistant professor in the U’s Department of Physics & Astronomy and founder of the PERU Group, was co-author of a comment titled “Racial equity in physics education research.” AtTheU spoke with Barthelemy about his contribution to the landmark issue.

Nature Physics doesn’t typically focus on education. Was this issue a big deal?

Yes, it is! The editors reached out to my wonderful colleague, Dr. Geraldine Cochran at Ohio State, who brought in a bunch of folks from the U.S. and Brazil. I was excited to hear that Nature Physics chose to include a racial equity perspective in their journal, and I was excited that Dr. Cochran invited me to participate.

How did you and your co-authors decide which aspects of racial equity in PER to include?

Dr. Cochran made the overall framework, and within that, each one of us brought our unique perspective. For me, it was really important that we at least mention LGBTQ+ communities, for example. We are very intersectional in the work that we’re doing. The main focus is race, but you can’t talk about race and ignore the sociocultural, sociohistorical, sociopolitical differences that really impact people.

A big focus of all physics education research is identity—how can we get all students to see themselves as physicists? When we talk about one identity category, we have to think about it in terms of other categories as well—gender identity, sexual identity, income level, whether your parents went to college or not, and so on. I was just happy to work with a group of people that recognize that it’s not just the one thing that affects us, it’s all things that affect our success in physics.

Why is identity an important aspect to the physics education research field?

Physics historically has had one of the biggest challenges in terms of not only diversifying representation in the field, but also diversifying the experience of being a physicist. When we look across the physics literature, we’re not seeing gains in the experiences of women, People of Color and LGBTQ+ folks that we’d like to see. The same issues that people talked about in the seventies and the nineties are the same issues that people are talking about when I and my colleagues interview them today in our own research. So, we have to keep this at the forefront of the broader physics education conversation, because physics just isn’t seeing the kind of change that we are seeing in other fields, unfortunately.

Read the entire interview conducted by Science Writer Lisa Potter in @TheU

>> HOME <<


Why does ice form at a range of temperatures?

Why does ice form at a range of temperatures?


April 1, 2024
Above: Chemistry professor Valeria Molinero. Credit: Brian Maffly

From abstract-looking cloud formations to roars of snow machines on ski slopes, the transformation of liquid water into solid ice touches many facets of life. Water’s freezing point is generally accepted to be 32 degrees Fahrenheit.

But that is due to ice nucleation—impurities in everyday water raise its freezing point to this temperature. Now, researchers at the University of Utah have unveiled a theoretical model that shows how specific structural details on surfaces can influence water’s freezing point.

A team led by chemistry professor Valeria Molinero presented its results at the spring meeting of the American Chemical Society (ACS). Held virtually and in person in New Orleans, March 17-21, the spring conference featured nearly 12,000 presentations on a range of science topics. Molinero’s study was just one of a handful the society highlighted.

“Ice nucleation is one of the most common phenomena in the atmosphere,” said Molinero, who investigates physical and materials chemistry. “In the 1950s and 1960s, there was a surge of interest in ice nucleation to control weather through cloud seeding and for other military goals. Some studies addressed how small shapes promote ice nucleation, but the theory was undeveloped, and no one has done anything quantitative.”

Read the full article in @TheU.

>> HOME <<


Utah Symposium in Science & Literature

Utah Symposium in Science and Literature


March 27, 2024

Poet Claudia Rankine, physicist Brian Greene, and neuroscientist and artist Bevil Conway are the keynote speakers for this year’s Utah Symposium in Science and Literature, taking place from April 10-12 at the Eccles Alumni House on campus.

Claudia Rankine is the author of “Citizen: An American Lyric,” a New York Times bestseller, as well as four other books of poetry and three plays. She is the founder of The Racial Imaginary Institute, an NEA fellow, a former Chancellor of the Academy of American Poets, and a professor at NYU. Brian Greene is renowned for his groundbreaking discoveries in superstring theory and is known to the public through his books, “The Elegant Universe,” “The Fabric of the Cosmos,” and “The Hidden Reality,” which have collectively spent 65 weeks on the New York Times bestseller list and sold more than 2 million copies worldwide. He is a professor of physics and mathematics and the director of Columbia University’s Center for Theoretical Physics. Bevil Conway is a senior investigator at the National Eye Institute and the National Institute of Mental Health, and an expert on the neuroscience of color. His artwork is in the Boston Public Library, the Fogg University Art Rental Collection, the N.I.H. Building 35 Public Art Collection, and many private collections.

The Utah Symposium returns this year after a long Covid hiatus, and will feature the involvement of U professors and grad students from numerous departments and disciplines, from English to math to music to philosophy. The theme of this year’s Symposium is “Mere Beauty,” a topic arising from the reexaminations of beauty occurring not only in the arts and humanities, but also in biology, where dominant theories about the possible evolutionary purposes of beauty are being questioned.

Co-chairs Fred Adler, Professor of Biology and Mathematics, and Katharine Coles, Distinguished Professor of English, developed the Symposium’s theme together. Coles explains, “In some ways, the topic of Beauty as a topic of interdisciplinary discussion and examination seems very abstract. However, I think it has become my favorite Symposium topic so far. It seems to touch on every discipline and, in many ways, on every aspect of our lives. Nature seems to have built us to respond to beauty; it’s hard not to wonder why.”

Read the full article about the symposium in @TheU.

The Utah Symposium is free and open to the public. For more information, please visit scienceandliterature.org.

>> HOME <<


U Fulbright Scholar Semi-Finalists 2024

Three Science Students selected as Fulbright SEMI-finalists


March 21, 2024

Nine U students selected as Fulbright finalists; three of them call the College of Science home.

The University of Utah is proud to announce that nine students have been selected as semi-finalists for the prestigious Fulbright U.S. Student Program. Three are affiliated with the College of Science in the Fulbright area of Research.

Sponsored by the U.S. Department of State’s Bureau of Educational and Cultural Affairs, this nationally competitive program supports academic exchanges between the United States and over 140 countries around the world. Selected program participants pursue graduate study, conduct research, or serve as English Teaching Assistants abroad. See us.fulbrightonline.org.

For 2024-2025, the University of Utah submitted 19 Fulbright applications. Its cohort of semi-finalists represents multiple schools and colleges, including the College of Education, College of Humanities, College of Science, College of Social and Behavioral Sciences, David Eccles School of Business, and the Honors College. The group includes two students who intend to enter graduate programs, three students who proposed research projects, and four students who aim to serve as English Teaching Assistants. Projected countries include Costa Rica, Denmark, France, Germany, Italy, South Korea, and Taiwan.

Making it to the semi-finalist round is a significant accomplishment for these students and means that their applications have been forwarded by the Fulbright National Screening Committee to the Fulbright Commission or U.S. Embassy in the host country for final review. Finalists will be notified later this spring, with the timing of notifications varying by country.

Below are the three finalists from the College of Science all in the category of Research.

Marina Gerton (B.S. in Biology and Chemistry, December 2023) aims to undertake a research project at the University of Costa Rica under the mentorship of Mario Espinoza that focuses on the secret life of snappers--insights from fish movements. Gerton got an early start in science. She graduated from West High School in Salt Lake City where she participated in the 2018 University of Utah Science and Engineering Fair with her project "Mucoadhesive HA-based film releasing metronidazole to treat bacterial vaginosis." Her ambition is to pursue a PhD in marine science, specifically focusing on conservation research.

"While I had a slightly different focus when I first started in the lab," she says, "I’m now working on using paper and plant waste products (think recycled paper, yard clippings, agricultural waste, etc.) as, essentially, a food source for this really interesting bacteria Teredinibacter turnerae." Currently working in Eric Schmidt's lab in the Department of Medicinal Chemistry, she says that "one of the most interesting aspects of her research is that the bacteria she works with live in symbiosis with another organism, shipworms, and actually grow within specialized host cells in the shipworms’ gill tissue." It’s especially interesting, she states, as we know this species produces various compounds of medicinal interest, and "we’re still able to see production of those compounds when it’s grown on these waste products."

Gerton loves boxing and swimming, but is quick to say that she loathes running "with a passion." She also claims that watching commercials for Best Friends or the WWF can make her cry. (She avoids them along with pineapple on her pizza.) Finally, what would she do if she had more time outside of academics? One word: bake.

Moses Samuelson-Lynn (HBS in Math, BA in German, Spring 2024) aims to research “A New Set of Efficient Initial Variables for Cluster Algebras of Finite Mutation Type” at the Max Plank Institute for Mathematics in the Sciences in Germany. His main interest is in pure mathematics, especially number theory, analysis, geometric graph theory, geometric group theory and algebraic geometry.

His undergraduate research has led him to multiple presentations at the Joint Mathematics Meetings. His ambition is to earn a PhD in pure mathematics with the goal of becoming a research professor.

Samuelson-Lynn lives in West Valley City and he enjoys playing piano, bicycle riding, chess, origami and programming. In addition to his Fulbright aspirations, he will be joining a research team in Germany over the summer of 2024 directly after graduation. He will be investigating applications of subatomic-scale sensitivity of nitrogen vacancy centers in ultra-pure diamond at GSI Helmholtz in Darmstadt, Germany. He is completing an honors thesis on the classification of surfaces and is a member of the university German club.  UPDATE (4/3/2024): Moses Samuelson-Lynn has been announced as a finalist and will now be participating in the program as Fulbright scholar. Congratulations!

 

Catherine Warner (HBS, Math'19; Ph.D. in Math, Spring 2025) is a graduate student in the mathematics department where she anticipates earning her PhD in 2025. She aims to undertake a research project titled “Semiduality Groups: An Analog of Duality Groups” at the University of Sannio in Italy.

Werner's path to mathematics wasn’t exactly obvious. "I began undergrad as a biomedical engineering student," she says. "And even before that I mostly played golf throughout my earlier schooling while secretly reading classical philosophy in my free time,"  She quickly realized that engineering wasn’t enough. "I realized that ever since my early reading as a child, I’m used to expecting some deeper structures to reality, some sort of a deeper meaning. I just didn’t know how to find it."

Following the completion of her undergraduate degree, and partly pushed by that curiosity "and partly for lack of anything better to do," she adds, "I signed on for abstract math. I did so with hesitation because it seemed to me to be airy, lacking contact with reality. But the more I pursued geometric group theory, the more I became fascinated. Because I realized something pretty fundamental: One of the ways of finding hidden structures of the world is math — the amazing pursuit of the human mind, attempting to penetrate and order reality by following the structure of the mind itself."  UPDATE (3/21/2024): Catherine Warner has been announced as a finalist and will now be participating in the program as Fulbright scholar. Congratulations!

____________________

Fulbright alumni from the United States and around the world have gone on to achieve distinction in government, science, the arts, business, philanthropy, and education. Among the ranks of Fulbright alumni are 62 Nobel Prize recipients, 78 MacArthur Foundation Fellows, 89 Pulitzer Prize winners, and 41 current or former heads of state or government.

Fulbright semi-finalists from the University of Utah were advised throughout the application process by the Office of Nationally Competitive Scholarships (ONCS) housed in the Honors College. ONCS staff members assist outstanding students and alumni in developing competitive applications, preparing for interviews, and securing University endorsements for a variety of prestigious nationally competitive scholarships, including Fulbright.

You can learn about all of the Fulbright semi-finalists at the U here.

The 2025-2026 Fulbright competition will open on April 2, 2024. To learn more, contact Alison Shimko, the University of Utah’s Fulbright Director and the Associate Director of ONCS, at alison.shimko@utah.edu or consult nationallycompetitivescholarships.utah.edu.

Cataract Canyon Comes Back to Life

Cataract Canyon Comes Back to Life


February 18, 2024 | Rolling Stone

Damming the Colorado River wiped out a magnificent stretch of rapids for half a century. Now, incredibly, they’re returning — on their own

Brenda Bowen. Professor of Geology & Geophysics | Chair of the Department of Atmospheric Sciences | Director, Global Change and Sustainability Center

“I cannot emphasize how amazing, and important, it is that Returning Rapids [a small group of river-rafting enthusiasts who consider Cataract Canyon a second home] is convening the science community around this, and bringing in agencies and tribal communities and people from different backgrounds,” says Brenda Bowen, a geoscientist with the University of Utah who’s been coming on Returning Rapids trips since 2019. “It’s already changed the trajectory of the outcomes of this landscape because they’ve brought more attention to it, and they’re helping people organize around it.”

And yet many river rafters, conservationists, and scientists see these lower reaches of Cataract Canyon, for all of their scientific, cultural, and recreational significance, as falling through the cracks of government-agency management, where no precedent seems to exist for who takes responsibility for a reservoir turned returning river. Eric Balken, executive director of the Glen Canyon Institute, which focuses on restoring the Glen and Grand canyons, says that “many land and water managers treat the emerging landscape as an area that will one day be under water again, even though the data suggests the opposite. This management approach of ‘That’s just where the reservoir used to be, it’s not important’ is so misguided. As the reservoir comes down, what’s emerging has similar qualities to all the popular and cherished parks and monuments in this area, like Bears Ears, Grand Staircase Escalante, and Grand Canyon.”

A recent environmental impact report by the Bureau of Reclamation, which is in charge of dams, implied erroneously that mostly invasive species were returning as Lake Powell’s water level dropped. But Returning Rapids  has brought scientists down Cataract, who find native plants returning, birds returning as shorelines emerge, beavers returning as willows and cottonwoods sprout on those shorelines. In response to a request for comment, the Bureau of Reclamation directed me back to the report with the erroneous implications.

Canyonlands National Park, which manages the river, and Glen Canyon National Recreation Area (NRA), which manages the reservoir, tell me in a joint statement that the agencies are aware of the landscape emerging in Cataract; staff see it on routine river patrols and receive Returning Rapids’ trip reports. Both agencies “maintain active programs for resource monitoring throughout the park, including monitoring of archaeological sites, monitoring for invasive vegetation species, and monitoring of various plants and wildlife species. As the lake level drops, areas of shoreline are incorporated into the park’s existing science-based monitoring and research programs to understand and respond to the changing lake environment.”

Returning Rapids regularly shares its observations and data collected from scientists on its trips with these and other agency managers, and has invited and brought Canyonlands officials on its science expeditions. Mike DeHoff [a river runner and local from Moab, Utah, has] invited officials from the NRA, but none have yet accepted. Although Returning Rapids recently attained a new degree of credibility in becoming a project under the Glen Canyon Institute, often when DeHoff shares real-time data of changing conditions with agency decision-makers, he says, he’s usually greeted with some iteration of “Wait, who are you guys?”

Read the entire article by Cassidy Randall with photographs by Len Neceferin in

>> HOME <<


Where the Wild Things Went During the Pandemic

Where the Wild Things Went During the Pandemic


March 18, 2024

A new study of camera-trap images complicates the idea that all wildlife thrived during the Covid lockdowns.

Austin Green

In the early months of the Covid pandemic, when every bit of news seemed bleak, there was one heartwarming narrative that took hold: With humans stuck in their homes, the world was safe again for wild animals, which could now wander freely through cities, parking lots or fields that once might have been crowded with people.

But a new global study, which used wildlife cameras to track human and animal activity during the Covid lockdowns, suggests that the story was not that simple. Austin Green HBS'16, PHD '22 , currently post-doctoral researcher in the College of Science's Science Research Initiative, is one of the many co-authors and a leader in Utah in the collection of data of wildlife as it intersects with urban environments.

“We went in with a somewhat simplistic notion,” said Cole Burton, a wildlife ecologist and conservation biologist at the University of British Columbia, who led the research. “You know, humans stop, animals are going to breathe a sigh of relief and move around more naturally. And what we saw was quite different.”

Although humans disappeared from some places during the lockdowns, they surged into others, like parks that remained open when little else was, the researchers found. And there was enormous variability in how wild mammals responded to changes in human behavior. Carnivores and animals living in remote, rural places, for instance, were more active when people faded from the landscape, while the opposite was generally true for large herbivores and urban animals.

The study, which was published in Nature Ecology & Evolution on Monday, deepens and complicates scientists’ understanding of what has been called the “anthropause,” when pandemic lockdowns radically altered human behavior. It also highlights the nuanced ways in which humans affect the lives of wild animals, as well as the need for varied and multifaceted conservation efforts, the authors said.

“There’s no ‘one size fits all’ solution when it comes to mitigating the impacts of human activity on wildlife,” said Kaitlyn Gaynor, a wildlife ecologist and conservation biologist at the University of British Columbia. “Because we see that not all species are responding similarly to people.”

Read the full article by Emily Anthes in the New York Times.

>> HOME <<


Finding Nemo (that is, nematodes) in the GSL

Finding Nemo (that is, nematodes) in the GSL


March 13, 2024

Brine shrimp and brine flies aren't the only animals inhabiting the Great Salt Lake. Utah biologists find tiny nematodes in its reef-like microbialites.

Julie Jung examines nematodes recovered from Great Salt Lake. Credit: Brian Maffly, University of Utah ^^ Banner video above: "Finding Nematode: How University of Utah biologists founds worms in the Great Salt Lake" credit Brian Maffly

Scientists have long suspected nematodes, commonly known as roundworms, inhabit Utah’s Great Salt Lake sediments, but until recently, no one had actually recovered any there.

It took a University of Utah postdoc with a hammer and loads of field experience to solve the puzzle. Along with biology professor Michael Werner, postdoctoral researcher Julie Jung announced in a study published this week that they discovered thousands of tiny worms in the lake’s microbialites, those reef-like structures that cover about a fifth of the lakebed.

Their initial attempts failed to find nematodes in lakebed sediments, prompting Jung to take a hammer to samples of microbialites where she struck biological pay dirt. Breaking up the carbonate structures yielded thousands of nematode specimens representing several species, resulting in a significant discovery.

Previously, just two multicellular animals have been known to inhabit the lake’s highly saline waters—brine shrimp and brine flies. Now there is a third, opening several new lines of inquiry into Great Salt Lake’s largely hidden web of life.

With more than 250,000 known species, nematodes comprise the world’s most abundant animal phylum in both aquatic and terrestrial biospheres. They live deep in the oceans, deep underground, and in frigid, arid conditions. The nematode species Caenorhabditis elegans is used in science as a model organism whose genome has been thoroughly mapped.

The new Great Salt Lake findings represent the most saline environment where nematodes have ever been recovered, according to Werner, an assistant professor in the university’s School of Biological Sciences.

“Just what is the limit of animal life? What environments can animals actually survive? That captures some imagination about looking at other planets where we might find complex multicellular life,” said Werner, the senior author of a study published in the Proceedings of the Royal Society B. “If there was life also on Mars, it might have looked a little bit like the [lake’s ultrasalty] North Arm right now.”

But there’s even more to the story. In a “crazy” side experiment, Werner’s team fed bacteria from the lake to C. elegans to see what would happen if they exposed these worms to the lake’s water, which is 50 times more saline than this species’ usual habitat.

After 24 hours, these worms were still alive, while those nourished on the model species’ usual diet were dead within five minutes.

“We didn’t expect it to work, but it did!” Werner exclaimed. This suggests that bacteria can help nematodes adapt to highly saline conditions, but more research is needed to identify the mechanisms at play.

Read the full article by Brian Maffly in @TheU. Read additional articles from outside media below:

 

 

 

 

 

2024 Wilkes Climate Hackathon


2024 Wilkes Climate HackathoN

 

https://wilkescenter.utah.edu/

On January 26 and 27, the Wilkes Center for Climate Science & Policy held its second annual Climate Solutions Hackathon, with wildland fire as this year’s theme.

The challenge posed to U students of any major was to propose an innovative, data-driven solution in one of five categories: 1) prediction and forecasting; 2) risk mitigation; 3) alert systems and evacuations, 4) community resiliency and rehabilitation, or 5) health hazards.

The hackathon organizers encouraged undergraduate and graduate students to form teams and submit a proposal in a slide deck within 24 hours. During the in-person portion of the event, U faculty from various departments along with local representatives from the US Forest Service engaged the different student teams with feedback and guidance. 

The Wilkes Center also provided a Video Mentoring Space with short, pre-recorded videos of researchers sharing suggested solution pathways.

Ultimately, the Wilkes Center received 17 submissions.  Below are the top three winners.

 

Team Wildfire Resilience Collective: (from left to right) Elizabeth Williams, Hannah Meier, Tegan Lengyel, Rebecca Senft.

First Place ($3,000)
Wildfire Resilience Collective


Rebecca Senft (Ph.D. graduate student, School of Biological Sciences)
Hannah Meier (Ph.D student, Ecology and Evolutionary Biology
Tegan Lengyel (Ph.D. graduate student, School of Biological Sciences)
Elizabeth Williams (Undergraduate, biomedical engineering and pediatric clinical health)

Rebecca Senft was noncommittal about the hackathon until a week before. “Then I was like, yeah, I'm going to do it! I'm going to sit down and actually spend this time with my cohort members, and bond, and learn about this problem, and see what I can throw at the wall that will stick.”

Her teammate, Hannah Meier, said she had already been thinking about resilience a lot. “I lived in California during the big 2020 fires and then moved to Oregon and came here from Oregon. So, I'm very familiar with wildfires.”

Team Fire Nest: (from left to right) Suhaani Shelat, Kalina Manova, Navi Brar and Sarah Choe.

Second Place ($2,000)
Fire Nest


Kalina Manova, (Undergraduate, Biomedical Engineering)
Suhaani Shelat (Undergraduate, Mechanical Engineering)
Navi Brar (Undergraduate, Biochemistry)
Sarah Choe (Undergraduate, Computer Science)


They proposed a fire-safe home development company for communities in the Wildland-Urban Interface and other fire-prone areas. Their idea seeks to address the home insurance crisis where many insurers in wildfire-prone areas like California are pulling back coverage or exiting the state entirely.

 Unfortunately, a lot of the fire prone areas are not really fire resistant, just due to poor planning,” said Kalina Manova. “There aren't really many laws that enforce it. Even after a wildfire has burned through an area.”

 Their idea is to increase awareness about fire-resistant homes and provide a low-cost service system to help communities implement fire-safe housing practices.

“Our development company's goal, at the end of the day, is to help communities become more fire resistant and be able to come back easier economically and wiser from natural disasters like fires,” said Sarah Choe.

Team Fire Smart Educational Program: (from left to right) Xuan Hoang, Gaby Karakcheyeva, Brandon Saavedra, Celine Cardena, (Shreesh Srivastava not pictured)

Third Place ($1,000)
Fire Smart Educational Program


Gaby Karakcheyeva (Undergraduate, Biology)
Celine Cardeña (Undergraduate, Sociology & Gender Studies)
Brandon Saavedra (Undergraduate, Architecture)
Xuan Hoang (Undergraduate, Multidisciplinary Design)
Shreesh Srivastava (Undergraduate, Computer Science)

 

This team focused on creating a K-12 educational program around wildfire.

 “I got like zero wildfire education growing up,” said Gaby Karakcheyeva. “It would be really nice if we could teach people to not start wildfires and teach people to appreciate nature and all that stuff.”

They proposed a citizen-science model for engaging communities to gather data which could be integrated into Utah’s K12 curriculum. They also envision partnerships with the US Forest Service, which currently provides a wildland fire curriculum content, and the local Unified Fire Authority in Utah.  

 We want to be able to educate our future generation on the risk of wildfires and wildlife management,” said Celine Cardeña.

by Ross Chambless

 


All the hackathon submissions can be read and explored on the Wilkes Center’s Hackathon webpage.

You can also listen to Ross Chambless’ interviews with the winning teams on the Wilkes Center’s Talking Climate podcast.

Deep in the hack.

 

>> HOME <<


 

Busy as a Beaver: Utah Forge

Busy as a beaver: Utah Forge


February 29, 2024
Above: Utah FORGE's Gosia Skowron discusses thermal characteristics with students in a classroom visit. Credit Flash Point SLC


Beaver dams might look like scattered piles of sticks in the water but they serve an important role in offering protection and a training ground for young beavers to learn dam-building skills. In Beaver County, Utah — named after the many beaver dams in the region — another project has successfully been providing benefits to its community: The U.S. Department of Energy (DOE) Geothermal Technologies Office’s (GTO) largest initiative, the Frontier Observatory for Research in Geothermal Energy (FORGE).

Deep in the heart of this rocky area in the western United States, FORGE researchers, scientists, and other professionals are working hard to advance enhanced geothermal systems (EGS). FORGE has realized many achievements in EGS since GTO launched the initiative in 2015—including becoming a full-scale underground research laboratory with eight wells covering more than 10 miles drilled in total.

The initiative is managed by the Energy & Geoscience Institute at the University of Utah where faculty from the Department of Geology & Geophysics are deeply enmeshed.

As the site continues to grow toward its technical goals for EGS, FORGE staff also educate and engage with local residents and students to increase awareness about the clean energy that can be harnessed through the heat beneath their feet. Their outreach work in this area is proving valuable to help local officials, residents, and businesses understand geothermal energy, and in forging substantive relationships and understanding with the community as they've expanded the technical capacity of their site.

The staff’s dedication to improving basic knowledge of geothermal technologies is clear throughout its outreach activities. “They're very visible, they're here all the time, they're talking all the time,” said Beaver County Commissioner Tammy Pearson of the FORGE team at DOE’s Enhanced Geothermal Shot™ summit in 2023. “They do quarterly reports with our commission. They are really integrating in the education system, in our elementary schools and the high schools. I think they are just so consistent in their visibility and engagement."

In November 2023, the team held a workshop for teachers to learn more about the “heat beneath our feet” and FORGE’s work (check out their resources for teachers). In addition, FORGE’s outreach team has visited several classrooms and even created a geothermal song parody contest for students. The FORGE team also works to develop and distribute resources to K-12 and university-level students and supports classroom activities and science fairs.


Watch a video and read the rest of the article (with more photos) by the Office of ENERGY EFFICIENCY & RENEWABLE ENERGY.

University of Utah students BJ Iturrieta and Sarah Buening "flash the U" while hosting the Utah FORGE booth during the university's Welcome Week. Credit: Utah FORGE

 

 

 

 

>> HOME <<