How statistical physics illuminates sea ice

How statistical physics illuminates sea ice

Since he began studying polar sea ice at NASA in 1975, mathematician Ken Golden has helped document alarming changes in the seasonally shifting, thin veneers covering the Arctic and Antarctic oceans.

Ken Golden. Feature photo above: Arctic melt ponds. Credit: Donald Perovich

There’s now a lot less ice and the University of Utah scientist has since devoted much of his career to applying statistical mechanics—the physics of phase transitions and complex collective behavior in systems like gases and magnets—to better understand the role of climate change in the disappearance of our polar sea ice covers. The stakes couldn’t be higher as the impacts accelerate. In recent decades, according to Golden, the extent of Arctic sea ice has shrunk by about half.

“Not over the past million years, like on geophysical scales, not over a thousand years, but over the past 30 or 40 years. A couple of months ago, even in Antarctica, we just saw a new record low,” Golden said in his opening remarks at the May 17 Climate Summit hosted by the U College of Science’s Wilkes Center for Climate Science & Policy. “But just like throwing a rock into a pond, there are ripple effects, and the bigger the rock, the bigger the ripples and the further they go. The extent of sea ice we’ve lost in the Arctic is about two-thirds the area of the contiguous United States and is probably the largest change on Earth’s surface due to planetary warming. That’s a big rock.”

The part of Earth’s climate system featuring snow and ice, known as the cryosphere, is experiencing severe disruptions as the planet continues warming. Ice still covers 9% to 15% of Earth’s ocean surface, but the trends are ominous.

Read the full article by Brian Maffly in @TheU