Humans of the U: Gail Zasowski

Humans of the U: Gail Zasowski


June 10, 2025
Above: Gail Zasowski

I was raised in a fairly rural area where being a scientist wasn’t really seen as a career option, but when I started college, I took Astronomy 101 for fun.

 

Gail Zasowski. Photo credit: Matt Crawley

I really fell in love with it, and I realized that becoming an astronomer was a real possibility for me.

What really draws me to it is that it’s incomprehensible. I enjoy working with things that are too far away and too big for our brains to actually picture. Building models and testing our predictions — describing things our minds can’t grasp in a mathematical way — is empowering. The universe is understandable, even if we don’t fully understand it.

We’re scientists, but we’re people, and all science is done by individuals who work together and help each other. Having people around you is what keeps you grounded. It reminds you that we’re also human beings — we’re not terrifying.

I’ve met a lot of students at the early stages of their careers, and later on, when they were graduating, I would ask them how things had gone. One of the common themes among those who felt they were successful was that they connected with other students early on — people who were invaluable in helping them through classes and connecting them with mentors.

I had the opportunity to apply for a grant with a large educational component, and I met with several students and faculty to design a mentoring program. We really wanted to remove barriers in our community and give everyone the opportunity to learn from their fellow students.

One of the things I try to emphasize in all the classes I teach is that anyone can do science. Everyone can learn how to approach a problem analytically, think critically about it, break it down, and solve it. I focus a lot in my classes on problem solving, and I consider it a win when students walk away feeling like they can figure out problems in their day-to-day life.

You don’t have to be in science to think critically and problem-solve. That’s applicable in every career. Science isn’t just a set of content — it’s a set of skills that everyone can learn and use to better their own lives. Making sure everyone has access to those skills and training without being alienated is important.”

— Gail Zasowski is Associate Professor of Physics & Astronomy and hails from East Tennessee. This story was developed by Ethan Hood and originally appeared in @ The U.

 

Humans of the U: Sydney Brooksby

Humans of the U: Sydney Brooksby


May 27, 2025
Above: Sydney Brooksby in competition on archery range. Credit: USA Archery

People only get brave when they have nothing to lose. Be brave anyway.

As I entered college, I was in renal failure and had two choices: Return home and enjoy the rest of my declining life, or make one last effort to achieve my childhood dream. I chose the latter. I received an auto renal kidney transplant, picked up my textbook and asked myself this question, ‘How far are you willing to go?’ I’m willing to go farther than anyone has before me.

My disease drove me to pursue a degree in biology. It’s been incredible to be in a position, as a student, where I can exercise my own ambition by drafting a gene-editing research proposal to mitigate the effects of my own disease, Turner Syndrome (TS). I was born with Mosaic TS, a genetic mutation that causes one of a female’s X chromosomes to be incomplete or completely missing.

Throughout my undergraduate experience, eliminating the uncertainty of my condition was aided through studying genomics. I was able to take authority over my own health care. It made every surgery, procedure and supplemental diagnosis easier to comprehend and overcome.

All the while I continued competing in archery as a member of the U.S.A. RED Team with a goal of qualifying for the 2028 Los Angeles Olympics.

My favorite biology course has been Gene Expression (BIOL 5120), taught by Prof. Michael Werner of the School of Biological Sciences. In this class, I learned how to translate my excitement for genomics and genetic engineering into a research proposal. With chromosomal mutations like Turner Syndrome, recovering lost genetic information is at the core of any real solution. My proposal outlined how gene-editing technologies—such as CRISPR-Cas9homology-directed repair (HDR) and mRNA delivery—could be used to ‘copy and paste’ missing genetic content onto a fragmented X chromosome. I focussed on the SHOXa gene with the goal of recovering genetic function in female hormone secretion and physical growth of patients with Turner Syndrome. Understanding the science, specifically gene-editing technologies, offers real hope for addressing TS and other genetic diseases.

I’ve been very blessed with my medical condition, and also with the knowledge I’ve gained during my undergraduate studies that allows me to theorize actionable solutions. I hope to one day attend medical school and specialize in hepatobiliary (kidney/liver) transplant surgery with a supplemental focus in chromosomal abnormalities!

What I would say to my freshman self and undergraduates just beginning their journey at the U, ‘People only get brave when they have nothing to lose. Be brave anyway.’”

by Sydney Brooksby

Sydney is majoring in biology with an emphasis in genomics/genetics, and minoring in medical humanities. U.S.A. RED Team member (archery) and 2028 Los Angeles Olympics hopeful.

This story was developed and edited by Tanya Vickers, School of Biological Sciences
and originally appeared in @The U. 

Migratory songbirds’ fall feather molt

migratory songbirds’ fall feather molt


May 27, 2025
Above: The wing of a violet-green swallow displaying it second prebasic plumage that was actively molting its flight feathers, on Aug. 25, 2024 at the U’s Bonderman Field Station at Rio Mesa. Credit: Kyle Kittelberger.

As climate warms, migratory songbirds’ fall feather molt advances by a day every year. Data from 22,000 songbirds captured at Bonderman Field Station reveal changes in how they replace their feathers.

Kyle Kittelberger holding a rare Connecticut warbler. This was only the third time this species was caught in Utah and first ever at Bonderman.

Birds regularly shed and regrow their body and wing feathers in a process, called molting, that is critical for flight, migration, insulation, breeding and survival.

A new study by University of Utah biologists examined molt phenology, or the timing of feather replacement, in response to climate change and made some startling discoveries.

Using 13 years of bird-banding data collected at the university’s field station in southeastern Utah, the research team led by graduate student Kyle Kittelberger documented how molt has shifted for birds, particularly in relation to climate factors such as El Niño. Their findings suggest that molt may be becoming more flexible and climate-sensitive in the fall, with implications for avian survival, migration and reproduction.

“In the fall, we found that birds are shifting both their body and their flight feather molt earlier over time across the 13 years at a rate of about one day earlier per year,” said Kittelberger, who is wrapping up his doctorate in biology professor Çağan Şekercioğlu’s lab. The shift is likely a response to climate-driven changes in the birds’ migration and breeding.

“Molt is a really fundamental component of a bird’s lifecycle. It’s one of the main elements that a bird does, one of the main activities in addition to breeding and migrating,” Kittelberger said.  “It allows for the replacement of old, worn and damaged feathers. If you have poor feather quality that could impact, for example, your migration. You might not be able to fly as well. It could also in the spring impact your ability to attract a mate.”

Yet changes in molt phenology have not previously been closely studied in North America. Kittelberger’s study, to be published in next month’s edition of The American Naturalist and available now online, is based on data recorded from 22,072 birds, representing 134 species, captured from 2011 to 2024 at the U’s Bonderman Field Station at Rio Mesa outside Moab.

Şekercioğlu’s Biodiversity and Conservation Ecology Lab oversees a seasonal mist net program that captures mostly migratory songbirds in the spring (early April to early June) and fall (August through early November) as the birds travel between their wintering grounds in the south and summer breeding areas to the north. The station’s 16 nets are up for six hours a day most days, depending on weather, starting 30 minutes before sunrise.

During capture seasons, the nets are checked every 30 minutes. Species, sex, age, molt stage, feather and body conditions and other data are collected from each bird pulled from the nets before it’s released to continue its biannual journey. Bonderman posts weekly and annual banding reports.

“We didn’t see any shift at the community level for spring body molt,” Kittelberger said. “Some of the reasons for that might be birds tend to migrate much faster in the spring because it’s more of a direct shot getting back to their breeding grounds so that they can start preparing for the breeding season, whereas in the fall, it’s a slower and more meandering process.”

Read the full article by Brian Maffly in @ The U

Urgency and hope at 2025 Wilkes Climate Summit

Urgency and hope at 2025 Wilkes Climate Summit


May 22, 2025
Above: Wilkes Scholar and Geology & Geophysics undergraduate Autumn Hartley presents research at the Wilkes Climate Summit. Credit: Todd Anderson

“Let’s start with the three pillars of urgency. Climate change—it’s here, it’s us, and it’s damaging,” said William Anderegg, director of the Wilkes Center for Climate Science & Policy at the University of Utah. “There are also three companion pillars of hope—it’s solvable, we’re making progress, and the benefits of solving it are enormous.”

Conor Walsh, assistant professor at the Columbia Business School, delivering his keynote address.

Anderegg’s message resonated with his audience of scientists, policymakers, business leaders and others gathered at the third annual Wilkes Climate Summit, hosted by the Wilkes Center on May 15 at the Cleone Peterson Eccles Alumni House on the U’s campus.

This year’s theme—innovation, science and solutions—was manifest in the day’s keynote addresses, panel breakout sessions, and presentations from the seven finalists vying for the $250K Wilkes Climate Launch Prize.

“When [the Wilkes Center] was set up a number of years ago, the dream was to bring immediate innovation to the problem of climate,” said U President Taylor Randall, speaking of Clay and Marie Wilkes whose $20 million donation launched the Wilkes Center in 2022. “[They] fundamentally believed in science and science’s ability to create scalable change and create scalable solutions…When I see individuals [here] dealing with this problem, I leave with nothing but hope and optimism.”

The Wilkes Center’s mission is to accelerate climate solutions through research, education and innovation, goals especially important during these tumultuous times.

“Many of the cuts to science and research that those of us around the country are worried about will hinder America’s prosperity, economic growth, competitiveness and global leadership,” Anderegg said in his opening remarks. “We need science and innovation more than ever.”

Anderegg outlined the four core questions guiding everything the center does, which capture the spirit of discussions happening throughout the summit:

  • How can we accelerate solutions to yield a global, downward trend in greenhouse gas emissions?
  • How can we get the best science into the hands of decision- and policymakers?
  • How can we train the next generation of leaders?
  • How can we foster innovation to develop, deploy and scale these climate solutions?

“The scientific understanding is really crystal clear; the 2020s are a pivotal decade for climate action,” Anderegg said. “We have a rapidly closing window to avoid the impacts of dangerous climate change and chart a sustainable and prosperous future for everyone here in Utah, around the U.S. and around the world.”

Clean energy transition and the global rise of solar power

The summit kicked off with a morning keynote by Conor Walsh, assistant professor at the Columbia Business School studying the economics of the energy transition. You can read the four highlights from his talks, reports on the seven Wilkes Prize finalist presentations as well as other expansive coverage in the remainder of this article by Lisa Potter in @ The U.

Opinion: Water Wasting? U Decide.

Opinion: Water Wasting Landscapes? U Decide.


April 21, 2025
Above: Water wise plants in a cluster of rocks on the walkway to the J. Willard Marriott Library. Photo credit: Ali McKelvy

by Nathan Murthy

Since 1986, the Great Salt Lake has dropped 22 feet. Twenty-two feet is only the height of a two-story building, a streetlight or a young Saguaro cactus. It’s not that impressive.

Nathan Murthy

But the Great Salt Lake is a wide and shallow inland sea, fatally susceptible to evaporation.

In the time the lake levels dropped, the surface area decreased from 3,300 to 950 square miles, a reduction of 2,350 square miles.

The area lost is larger than the land area of the entire state of Delaware. Water diverted for human use from the Bear, Jordan and Weber Rivers is largely to blame.

The Great Salt Lake is at risk of disappearing in our lifetime.

The inland sea is highly productive, supporting billion-dollar industries like salt, brine shrimp and magnesium. Its wetlands host 10-12 million migratory birds, including American white pelicans, snowy plovers and eared grebes.

Additionally, lake effect snow contributes to the Wasatch Front’s relatively high precipitation levels, enabling Utah’s world-famous skiing and distinctive snow quality. Without the lake, the Salt Lake Valley risks becoming as dry and dusty as the West Desert.

The immense challenge of sustaining Great Salt Lake for current and future generations requires all of us to act. Conserving water in every capacity is vital, especially among the biggest water users who must lead by example.

I examined our campus water usage.

Public universities aren’t federally required to disclose their water usage. However, Savannah Jordaan and Alta Fairbourne, members of ASUU, asked the landscaping department for this information.

In 2024, the U used roughly 227 million gallons to irrigate campus landscaping and 808 million gallons in total — costing nearly $10 million. The good news is, since 2020, water usage has decreased by 14%.

However, we still consume over 800 million gallons annually.

Although $10 million seems expensive, it’s relatively cheap for the quantity.

Utah’s water conservancy districts manage water supply via dams and pipelines, funded largely by property taxes. This subsidizes water costs for all users, particularly tax-exempt institutions like the U. Consequently, the university benefits from taxpayer-funded water infrastructure but lacks significant financial incentives to reduce their own consumption.

A significant portion of the U’s water use goes to irrigating lawns and other landscaping features. Lawns require constant watering, especially during Utah’s scorching summers when temperatures can exceed 100°F.

Evaporation further exacerbates water demand, leaving grass thirsty for more precious watershed water.

America’s obsession with lawns stems from European heritage.

Lawns were brought to North America to mimic the estates of British royalty, symbolizing wealth and prestige. Eastern U.S. college campuses often feature lush green lawns sustained by abundant rainfall.

But the U isn’t in England or the East Coast — it’s in a desert.

At Arizona State University, their landscaping features drought-tolerant trees and succulents, mimicking the surrounding desert and providing ecological functionality. The U must adopt a similar approach.

The short answer to this problem is collaboration between students, landscaping and administration.


Read the full op-ed by Nathan Murthy originally posted in The Chronicle here.

Sustainability Associate Director for the Associated Students of the U, Murthy is an earth and environmental Ssience major in the College of Science and works in the Şekercioğlu lab in the School of Biological Sciences. He is also a Wilkes Scholar through the Wilkes Center for Climate Science and Policy, also in the College of Science. 

Woodrats’ immunity to snake venom

Woodrats’ immunity to snake venom


April 17, 2025
Above: Rattlesnake. Credit:  Pexels, Uriel Venegas

Researchers looking at effects of the desert rodent's toxic diet discover cool temperatures reduce the critter's ability to survive rattlesnake bites. Discovering pharmacologically potent molecules can lead to human medicines.

Adapted from a press release produced by the University of Michigan.

The power of a rattlesnake’s venom to incapacitate its prey may depend on more than just its potency or even the prey animal’s tolerance for the poison. According to a new study published Tuesday in Biology Letters, it also depends a bit on the weather.

Matt Holding. Credit University of Michigan.

“Even across different populations of the same snake species, eating the same prey, we see evolutionary differences in their venoms,” said postdoctoral researcher Matthew Holding, an evolutionary biologist in the University of Michigan Life Sciences Institute and lead author of the study. “With this study, we really wanted to dig into what drives these differences in the natural coevolutionary arms races between the snakes and their prey.”

 With colleagues from the University of Nevada, Reno and the University of Utah, Holding analyzed how blood serum samples from wild woodrats responded to rattlesnake venom, a substance that contains hemotoxins that break down blood cells and neurotoxins that cause respiratory paralysis.

Desert woodrats (Neotoma lepida), also known as pack rats, are an herbivorous rodent native to arid regions of the U.S. Southwest. They are renowned for their immunity to toxins that occur naturally in desert environments, including resin from creosote bushes, their primary food source.

As the natural prey of rattlesnakes, woodrats have also evolved resistance to snake venom: they can survive 500 to 1,000 times the amount that would kill a standard lab mouse. This resistance comes from proteins circulating in the rats’ blood that can neutralize the venom.

For this study, the researchers used serum samples from rats that the Utah coauthors Patrice Kurnath Connors and Denise Dearing collected in 2014 in southwest Utah for a different study exploring this species’ resistance to toxins in creosote.

Biologists Denise Dearing, left, and Patrice Kurnath Connors. Credit: University of Utah.

That research was part of Connors’ doctoral dissertation. She is now an associate professor of biology at Colorado Mesa University.

Before the blood serum samples were drawn, the woodrats had been acclimated to captive environments that were either warm (85°F) or cool (70°F). The researchers found that samples from the warm group were better at inhibiting the venom’s toxicity, compared with samples from the cold group.

“We figured the rattlesnake resistance would be the same whether they were in the cool or the warm, and that when we fed them creosote in either temperature, the rattlesnake resistance would drop,” said Dearing, a distinguished professor of biology at the University of Utah and senior author on the study. “We weren’t really thinking about the effect of temperature on rattlesnake resistance, so we were pretty surprised by the results that there was such a huge effect that in the cooler environments, the rattlesnake venom resistance was really low. And in the warmer environments, it was really high.”

 

Read the full article by Brian Maffly in @The U.

It’s about experiences and the people

Annabelle Rockne – It’s about experiences and the people


March 26, 2025
Above: Annabelle Rockne

“I’ve met so many different people interested in so many things. I have been able to make the most of my experience because of the people surrounding me,” says Annabelle Rockne, a senior in the School of Biological Sciences.

Bennion Center Alternative Break: Hunger & Food at Tilth Alliance Farm in Seattle

One of Annabelle’s most fulfilling roles has been serving as a College of Science Ambassador. “As someone who didn’t get an in-person orientation, seeing students build those relationships, beginning on day one of their college experience, has been incredibly meaningful,” she reflects. College of Science Ambassadors, like Annabelle, play a vital role in welcoming prospective students and their families to campus, guiding first-year students toward success, and organizing events that help students thrive throughout their undergraduate science journey.

Beyond her ambassadorial duties, Annabelle’s academic experiences have also shaped her growth. When asked to pick her favorite biology class, she did not hesitate. She shared that Mycology (BIOL5425) with Professor Bryn Dentinger began as a casual interest in mushrooms but quickly transformed into an immersive experience, complete with foraging trips and hands-on research. “Honestly, this class had absolutely nothing to do with what I want to do with my career, but I loved the opportunity to just learn about something. It’s rare to just learn for the sake of learning while studying at a university, and I really appreciated that opportunity,” she shares.

A desire for new learning experiences soon extended into research. Initially uncertain about pursuing an undergraduate research opportunity, Annabelle was inspired to apply when the Olivera/McIntosh lab posted an opening on the Biology Instagram (@uofubiology). Two years later, she is on the verge of publishing an honors thesis on protein folding, focusing on two peptides derived from cone snail venom that are being evaluated for their potential therapeutic applications. Her unwavering commitment to community, combined with her passion for data, attention to detail, and applying science to solve complex problems, will continue to guide her as she pursues a Master’s in Community-Oriented Public Health at the University of Washington this fall.

Knute Rockne

 

A senior honors student from West Jordan, Utah, Annabelle is majoring in biology with an emphasis in anatomy and physiology, alongside minors in disability studies and chemistry. A bonus fun fact about her is that her great-great grandpa was football legend Knute Rockne (ESPN #3 college coach of all time). Unbeknownst to many, Knute Rockne, who was the coach at Notre Dame, had a degree in chemistry. “I like to think he was helping me out during my hardest OChem exams!” Annabelle jokes, but she's quite serious when she gives advice to other students: “You belong in STEM! I was intimidated at first, thinking everyone else just ‘got it.’ But a passion for science matters more than grades. If you love it, you belong here."

By Tanya Vickers and Isabel DuBay
Communications, School of Biological Sciences

 

A rigorous, collaborative approach to science

A rigorous, collaborative approach to science


March 19, 2025
Above: Stanley Maloy

"The atmosphere in the lab was really phenomenal," distinguished post-doctoral researcher alumnus Stanley Maloy recalls of his time in what is now the University of Utah’s School of Biological Sciences.

"People talked to each other and argued with each other and made suggestions to each other. I thought it was the way science should be done."

Maloy's connection to the U began when he arrived in1981 to work with John Roth, whom colleagues had described to him as "the best bacterial geneticist in the world." Though initially considering other opportunities, it was his visit to Roth's lab that changed Maloy's trajectory.

During his three years at the U (1981-1984), Maloy worked on a then-controversial area of genetic regulation — how genes can auto-regulate themselves. His research challenged the scientific dogma of the time and laid the foundation for his subsequent 30 years of NIH-funded research. In 2024 Maloy was designated a Distinguished Alumnus, recognizing his significant contributions to microbiology, national security, entrepreneurship, and scientific ethics over a career spanning more than three decades.

A Unique Scientific Community

Unlike many postdoctoral experiences where researchers interact primarily within their own labs, the U fostered a broader scientific community. "The group here was phenomenally interactive," Maloy explains. Monthly evening seminars brought together researchers from across disciplines to critically analyze each other's work. "It was the love of thinking about science, considering other explanations, and pondering about what might be wrong."

This culture of rigorous scrutiny fostered what Maloy values most in science: "For science to really serve its purpose, to really reflect reality, it demands that not only that you publish things, but you think through them, that you argue through them, you talk about different applications, different explanations."

From Basic Research to Biotechnology Applications

After leaving Utah, Maloy joined the University of Illinois at Urbana-Champaign in 1984, where he spent 18 years rising through the ranks to full professor. Throughout his career, he has bridged basic science and practical applications through entrepreneurship.

Maloy has been involved in founding several biotechnology companies, each building upon his fundamental research in bacterial genetics. One company focused on "getting bacteria to evolve new functions quickly," with applications in detergents and other chemical processes. Another venture developed neuropeptides, which later spun off into a company focused on creating novel antimicrobials "of types that didn't exist before."

Perhaps the most promising entrepreneurial effort involves cancer therapeutics. Initially conceived as a vaccine platform, the company pivoted when pre-COVID funding for vaccines proved difficult to secure due to legal risks. Instead, they developed targeted delivery systems for treating specific types of cancer resistant to conventional therapies, such as hormone-resistant prostate cancer.

"That company has products in clinical trials right now for types of cancer that there's no other therapy for," Maloy notes proudly. Having passed initial safety trials, the treatments are now being evaluated for efficacy — potentially offering hope where few options currently exist.

Leadership in Scientific Integrity

Beyond his research and entrepreneurial ventures, Maloy has emerged as a leader in scientific ethics. He recently took over authorship of a widely used textbook on scientific integrity and responsible conduct of research, which is required reading for students working on NIH grants.

Working with colleagues from Michigan and Duke University, Maloy is currently completing a comprehensive revision addressing emerging challenges in scientific ethics, including paper mills, inappropriate citations, and the impacts of artificial intelligence on research integrity.

"Most people in society can't distinguish science from pseudoscience," Maloy explains, underscoring why maintaining scientific integrity is crucial. "If we let these false things become really prevalent, then people will say, 'Oh, look, you know, there's 500 articles on this thing. So it clearly must be right.'"

His latest project involves using virtual and augmented reality to create emotional experiences that help researchers internalize ethical principles. “There is compelling evidence that if somebody really emotionally experiences it, they will more rapidly change their behavior," he explains, demonstrating his innovative approach to tackling even non-scientific challenges.

Despite disappointments when projects Maloy has invested significant time and effort into face setbacks or changes in direction due to shifting political landscapes, his work in the Republic of Georgia has proven meaningful. In Georgia he and his team have established an SDSU branch to help transform their post-Soviet higher education system to support its future without permanent dependence.

A Distinguished Legacy

In his emeritus role at San Diego State University, Maloy continues to conduct research through industry collaborations while generously yielding his university laboratory space to make room for new assistant professors.

His recognition as a Distinguished Alumnus by the U celebrates not only his scientific and entrepreneurial achievements but also his commitment to the rigorous, collaborative approach to science that he first experienced in Salt Lake City—an approach that has informed his entire career and now shapes his work to strengthen scientific integrity for future generations.

By David Pace

Stanley Maloy was named AAAS Fellow in 2022 for societal impact of his research on bacterial genetics and leadership in the startup world. Read more here

SRI Stories: Environment for Evolution

SRI Stories: Environment for Evolution


March 18, 2025
Above: Andrea Halling

The Great Salt Lake is a prime example of the tenacity of life to adapt to its environment. With up to nine times the ocean’s salinity and surrounded by desert, common sense would dictate the area to be inhospitable to life.

In the field at Great Salt Lake.

Yet it has thrived, acting as both a habitat for brine shrimp and an anchor for the life cycles of migratory birds. Many esteemed scientists have been drawn to the region to study how life can adapt to such harsh conditions. 

Science Research Initiative (SRI) postdoctoral researcher Andrea Halling takes this a step further. Not only does she spearhead studies into how life adapts in the lake, she also leads a cohort of students doing the same. In cultivating this environment for students to study evolution, she creates an ideal environment for the students to grow and adapt in turn.

While it wasn’t what initially drew her to higher education, Andrea quickly grew a strong interest in physics and biology. There she found “a purpose in building and contributing to our understanding of the world around us,” and her journey would lead her to the study of the advent of multicellular life, exploring how the Snowball Earth event might have kickstarted it for her Ph.D. dissertation. 

To oversimplify, colder liquids are more viscous, making it harder for microorganisms to move through. Increasing their collective size by staying together as a group of cells would physically make it easier to move in the cold, viscous environment. It was a hypothesis supported by her studies, creating the perfect background to launch her further into the field of evolutionary study.

A trajectory of this nature is common in the postdoc demographic, but Andrea’s resume contains a particularly useful quirk in the form of a pre-PhD detour. She taught high school physics and biology, allowing Andrea to enter her mentorship role in SRI with far more momentum than most. “I feel that a lot of the time people assume that freshman level students don’t know enough,” Andrea explains, “that they are empty, that we need to fill their cup of knowledge. And I know from experience that’s absolutely not true. My students are brilliant and have amazing ideas. It’s so fun to be able to build them up from the knowledge they already have.”

Building and expanding this foundation of knowledge is what truly makes SRI so special. As Andrea notes, “Many of these students won’t want to study the Great Salt Lake forever, but there are so many applicable skills that they can learn, to better think like a scientist.” She further notes that “Many wish to go to medical school, where applications will have very similar traits. Doing something like this, like SRI, allows them to set themselves apart.”

Much like the life they are studying, these students have been introduced into a novel research environment rarely found outside of Utah. And thanks to the guidance of Andera Halling, the unique nature of that environment allows them to adapt and to develop equally unique traits and evolve into stronger versions of themselves in the process.

 

 

By Michael Jacobsen

SRI Stories is a series by the College of Science, intended to share transformative experiences from students, alums, postdocs and faculty of the Science Research Initiative. To read more stories, visit the SRI Stories page.

 

Biology Alum receives 2025 U Honorary Doctorate

Cecil Samuelson: U Honorary Doctorate


March 13, 2025
Above: Cecil O. Samuelson

Equal parts University of Utah and Brigham Young University, Cecil Samuelson has managed to bleed purple throughout his long career as a higher education leader and physician.

A three-time alum of the U, Samuelson worked as a rheumatologist, medical school dean and as the U’s vice president of health sciences. He left the university in 1993 to join the executive leadership team at Intermountain Healthcare. A year later, Samuelson was called to serve in The Church of Jesus Christ of Latter-day Saints’ First Quorum of the Seventy, before being named as BYU’s president, a job he held for a decade.

“Honorary degrees are a recognition of exceptional human beings who have transformed the world in ways large and small,” said President Taylor Randall. “Cecil, Julie, King and Linda have invested their time, talents and financial support to causes that have changed our university, state and the world. We are so fortunate to have exceptional leaders who, through everyday acts and transformational investments, have changed individual lives, bolstered education and advanced culture. The legacy of their work will live on for years to come.”

Honorary degrees are awarded to individuals who have achieved distinction in academic pursuits, the arts, professions, business, government, civic affairs or in service to the university. The Honors Committee, which includes representatives from the faculty, student body and Board of Trustees, reviews nominations and then consults with an advisory group of faculty, staff and administrators for additional input. Finalists are presented to the university president, who then selects the recipients.

“This year’s honorary degree recipients personify selfless service in higher education, passionate advocacy, life-changing innovations and artistic creativity,” said Jamie Sorenson, chair of the Board of Trustees Honors Committee. “We are so pleased to recognize these exceptional individuals for the ways they have lived their lives and inspired future generations to live theirs.”

You can read more about the 2025 honorees in @TheU.