Biochar Robots win $500K Wilkes Climate Launch Prize

Biochar Robots win $500K Wilkes Climate Launch Prize


Sep 25, 2024
Above: Applied Carbon’s pyrolyzer. PHOTO CREDIT: Applied Carbon

Applied Carbon, formerly known as Climate Robotics, has developed a mobile, in-field solution that picks up crop waste left after harvesting and converts it into carbon-rich biochar in a single pass.

The resulting product is deposited back onto the field, simultaneously increasing soil health, improving crop yields, reducing fertilizer needs, and providing a carbon removal and storage solution that lasts millions of years.

Jason Aramburu, CEO and co-founder Applied Carbon, receives Wilkes Climate Launch Prize in September 2024. CREDIT: University of Utah

The 2024 Wilkes Climate Launch Prize is one of the largest university-affiliate climate awards in the world and is geared to spur innovation and breakthroughs from organizations at all stages, both for-profits and nonprofits—anywhere in the world—to help fund and accelerate solutions to climate change.

“People talk about the ‘missing middle’ of funding in climate tech. For early-stage research, you use government grants to prove the science. Once you have a working design, you might get VC money. But when it comes to building your first few prototypes, investors can’t take the risk,” said Jason Aramburu, CEO and co-founder Applied Carbon. “Programs like the Wilkes Climate Launch Prize are really important to fill a crucial funding gap.”

William Anderegg, director of the Wilkes Center for Climate Science & Policy, awarded the prize to Aramburu during an evening reception held in partnership with the Southwest Sustainability Innovation Engine (SWISIE), a multi-institutional enterprise in which the U and collaborators confront climate challenges facing the desert Southwest and spur economic development in the region.

“Applied Carbon’s bold climate solution addresses a major opportunity for agriculture to contribute to removing carbon from the atmosphere, benefiting farmers and soil health at the same time,” said William Anderegg. “It’s exactly the type of scalable and impactful solution that the Wilkes Climate Launch Prize seeks to supercharge.”

Aramburu and Applied Carbon COO and co-founder Morgan Williams dreamed of a better system that could pick up crop waste and produce and distribute biochar in one pass. Now, they’ve developed an agricultural robot called a pyrolizer that does it all in-field, in one pass.

Read the full article by Lisa Potter in @TheU.

Scientists awarded 1U4U Seed Grants

scientists awarded 1U4U Seed Grants


Above: Microbiolites at Bridger Bay on the northwest corner of Antelope Island. Credit: Utah Geological Survey. Biologists Jody Reimer and Michael Werner are part of a 1U4U team that study microbiolites.

Six College of Science faculty members are members of winning teams awarded seed grants of up to $50,000 as part of the 1U4U Seed Grant Program.

Six faculty members in the College of Science are members of winning teams awarded seed grants of up to $50,000 as part of the 1U4U Seed Grant Program.

The program supports cross-campus/cross-disciplinary research teams to solve some of the greatest challenges of our local, national, and global communities. College of Science faculty among the winning teams included Jon Wang, (biology), Colleen Farmer (biology), John Lin (atmospheric sciences), Jody Reimer (biology & mathematics), Michael Werner (biology) and Qilei Zhu (chemistry).

Bonderman Field Station at Rio Mesa (Photo courtesy of Zachary Lundeen)

The theme of the 2024-2025 program was “The Future of Sustainability.” Sustainability is a foundational goal that cuts across multiple intellectual topic areas (e.g., healthcare, water, energy, wildfire, critical minerals, education, food security) and can be interpreted widely.

At the University of Utah, faculty have engaged sustainability across a wide range of domains, including but not limited to environmental, social, communal, health, economic, technical, and legal.

Some of the topics of winning projects include the impact of air quality on elite athletic performance, study of suicide behaviors, and improving health by linking silos.

“It is exciting to fund so many teams working on sustainability projects,” said Dr. Jakob Jensen, associate vice president for research at the U. “The teams are considering sustainability across a wide range of topics from forest management and urban heat islands to physical therapy and mental health. These seed projects will drive significant innovation and impact communities throughout the region.”

Winning teams with College of Science faculty include the following:

Research Team: John Pearson (medicine) & Jonathan Wang (College of Science — biology)
Application Title: Heat and Healing: The Influence of Urban Heat Islands on Postoperative Outcomes

Research Team: Colleen Farmer (College of Science — biology), Ajla Asksamija (Architecture & Planning), Zach Lundeen (Bonderman Field Station), Jorg Rugemer (Architecture & Planning), Atsushi Yamamoto (Architecture & Planning)

Research Team: John Lin (College of Science — atmospheric sciences) & Tanya Halliday (Health)
Application Title: Impact of Air Quality on Elite Athletic Performance:  from Salt Lake to Beyond

Research Team: Jody Reimer (College of Science — biology and mathematics), Brigham Daniels (Law), Beth Parker (Law), Michael Werner (College of Science — biology)
Application Title: Understanding Great Salt Lake microbialite ecology to inform sustainable water management policy

Research Team: Qilei Zhu (College of Science — chemistry) & Tao Gao (Engineering)
Application Title: Ion-Conductive Membrane-Enabled Sustainable Industrial Electrochemical Production

 

For more information about the 1U4U Seed Grants and a complete list of this year's awardees click here.

Cool Science Radio: Luisa Whittaker-Brooks

cool science on the Nanoscale


September 6, 2024
Above: Luisa Whittaker-Brooks

Our modern society faces many challenges, two of which being alternative energy sources and low cost electronics for daily use.

Solutions for these issues, and many others, can be found in the materials used in the products we create.

Luisa Whittaker-Brooks, assistant professor of chemistry at the University of Utah is on the leading edge of these technologies and developments.

Whittaker-Brooks' research group at the U focuses on the study and manufacture of ultra-thin electronics materials and nanoscale circuits, while she encourages women and minorities to choose careers in STEM disciplines.

Whittaker-Brooks was awarded the L’Oreal-UNESCO For Women in Science Award for her work and was recently feature on KPCW's Cool Science Radio.

Listen to the podcast here.

 

Humans of the U: Nathan Patchen

Humans of The U: Nathan Patchen


August 12, 2024

“Initially, I chose to attend the University of Utah because I heard they had an excellent biology program and many opportunities for pre-medical students. I understood that the U was a top research school, and I knew I wanted to pursue a career in the biological sciences.

In my first year, however, I had some great experiences with the university’s chemistry department and fell in love with chemistry. Since then, I have decided to double major in biochemistry and biology. My goal is to pursue an MD-PhD, so I can do both research and work with patients.

I am passionate about improving the quality of life for patients, allowing them to lead healthier and hopefully more fulfilling lives. I hope to do this by working in the field of genetics/genomics and using gene editing techniques to find new tools to combat diseases that are otherwise untreatable. Additionally, I am interested in understanding why and how we age and improving patient outcomes through this process.

These interests are reflected in the research I have been a part of on campus as an undergraduate. The prestigious research that happens at the U is one of the reasons I was drawn to the school. Though research can be frustrating, time-consuming, and tedious, I have found it to be the most enriching part of my education. The incredible opportunity to participate in the forefront of science has drastically expanded my capabilities not only as a scientist but as a person.

Recently in my lab, the principal investigator (PI) assigned me to learn how to synthesize a compound we use for our experiments in an effort to bring our costs down. It was a difficult process to optimize the protocol for our lab, but through extensive troubleshooting and consulting with other labs, I became an expert on the topic.

After months of running the process over and over again without success, my PI and I discovered the error was occurring in a step I was not in control of. We were so excited to have found the solution After correcting the problem, I was able to successfully produce the desired product. Better yet, the new method dropped the cost of our experiments from $60 per experiment to less than a cent. It is exciting that I could play such a key role in helping my lab achieve a research goal that opens realms of possibility. It feels great to be able to contribute to something larger than myself.

I have recently been recognized as a Goldwater scholar which is exciting because it is a testament to my commitment to pursue science and my desire to make an impact on the world through discovery. To me, receiving this award is a great honor, it tells me that someone believes in me, and is willing to invest in my development. It is my goal to live up to that expectation, whether it be through science, medicine, or some other field, my goal is to serve and improve the lives of others.

—Nathan Patchen, a junior in the Honors College studying biochemistry and biology and a 2024 Goldwater Scholarship recipient 

This story originally appeared in @TheU.

Fueling Utah’s Booming BioTech Sector

Fueling Utah's Booming Biotech Sector


Aug 15, 2024

Over the last few years, opening a newspaper and seeing Utah at the top of the national economic rankings has become commonplace. 

In teaching labs through the Science Research Initiative (SRI) students learn by doing, starting their first year in the College of Science.

There has been a steady stream of articles about billion-dollar valuations for Utah startups and consistently low unemployment. Amid these headlines, there is growing recognition among analysts and policymakers in Utah that the biotechnology and life science sectors are playing a significant role in that growth. A recent report from the Kem C. Gardner Policy Institute found that the industries created $8 billion in GDP in 2022, part of a total statewide economic impact of $21.6 billion. Job growth in the sector has been particularly impressive; Utah’s 5.7% annual job growth rate significantly outpaces the national average of 3.2%. Due to these steady increases, Utah now has the highest share of statewide employment among all states nationally except Massachusetts. These jobs are also high-paying positions. Wages in the sectors average $96,000, which is 48% higher than the $65,000 average in other industries.

The University of Utah and the College of Science play an important role in this booming expansion, helping supply a sizable portion of talented employees and researchers. According to National Center for Education Statistics graduation data, the U awards roughly 37% of life science-related bachelor’s degrees and 95% of graduate degrees given by schools in the Utah System of Higher Education. Graduates from the College account for nearly two-thirds of those undergraduate degrees and over one-third of the PhDs. As they build their careers, alumni have the opportunity to take principles they learn by working with award-winning faculty and then applying them in professional settings.

“Innovation in biotechnology is touching on every aspect of our lives, from climate change and agriculture to health and wellness,” says Fred Adler, professor of mathematics and current director of the School of Biological Sciences (SBS), the largest academic unit in the College. “As discovery and innovation accelerate, so do the links between basic science and applications. In the SBS, faculty are making transformative contributions to drought-resistance crops based on fundamental discoveries in genetics, testing of drug safety based on research of animal behavior, and to neuroscience through new ways of imaging cells at the finest resolution.”

EXCELLENCE IN EDUCATION

In the School of Biological Sciences, faculty are making transformative contributions to drought-resistance crops based on fundamental discoveries in genetics. Credit: Mathew Crawley

The pipeline from the classroom, and the lab, to a successful career is most fruitful when exceptional instructors and researchers provide mentorship and guidance for students. College faculty have been recognized with a range of teaching and research awards, spanning honors like the National Medal of Science (given to three faculty members from the College of Science over the years) and MacArthur Genius Grants (four recipients) to the Rosenblatt Prize, the U’s highest honor for teaching and research (11 recipients). The College has also had 15 members elected to the National Academy of Sciences, 10 of whom are still actively teaching and pursuing research. These individual honors underscore the quality of the researchers’ academic units and are reflected in their national rankings: the SBS graduate program is ranked #13 and the Department of Chemistry comes in at #18 among public universities nationwide by U.S. News & World Report.

Chemistry and biological sciences, which educate a significant number of students that join the biotech and life science sectors, are the top-ranked programs in their fields in Utah and hold top-ten rankings among both public and private schools in the West. The two units also received over $28.4 million in external research funding during fiscal year 2023. These resources provide unique opportunities for students to learn relevant science in hands-on settings and engage in transferable research skills. Considering this impressive track record, it makes sense that life science and biotechnology-related faculty continue to garner recognitions in their fields.

Take, for example, Distinguished Professor and Thatcher President Endowed Chair of Chemistry Cynthia Burrows who won the prestigious Linus Pauling Medal Award. The Burrows Lab hosts organic, biological, analytical and inorganic chemists interested in nucleic acid chemistry, DNA sequencing technology and DNA damage. The team focuses on chemical processes that result in the formation of mutations which could lead to diseases such as cancer. Studying site-specifically modified DNA and RNA strands and DNA-protein cross-linking, Burrows and her group are widely known for expanding studies on nanopore technology to detect DNA damage. Burrows’ research in altering nucleic acid composition can provide valuable information in genetic diseases as well as manipulating the function of DNA and RNA in cells.

The Caron Lab studies the mushroom body of the Drosophila (fruit fly) to better understand how brains are developed to learn.

Another U chemist, Aaron Puri, has also drawn national attention as one of five recipients of the Simons Early Career Investigator Award in Aquatic Microbial Ecology and Evolution. The award will provide $810,000 to the Puri Lab over the next three years and, according to Puri, “will enable our research group to work at the interface of biology and chemistry to decipher the molecular details of interactions in methane-oxidizing bacterial communities.” His research looks at the molecular details of interactions in these communities, aiming to solve big problems with microscopic solutions. “These communities provide a biotic sink for the potent greenhouse gas methane,” he continues, “and are a useful system for understanding how bacteria interact with each other and their environment while performing critical ecosystem functions.”

Nearby, in the Skaggs Biology Building, is the lab of Ofer Rog, who recently won an Early Career Medal from the Genetics Society of America. Rog was recognized for work visualizing meiotic exchange between “sisters,” exploring synaptonemal complex proteins and tracking single molecules. Building on this work, the Rog Lab published a study in the Proceedings of the National Academy of Sciences in December that outlined a groundbreaking way to study the synaptonemal complex. Rog explains of the complex, “You can think of it like a zipper. The axes of the chromosomes are like the two sides of your shirt. The synaptonemal complex (SC) is kind of like the teeth of the zippers that lock onto each other and can pull and align the two sides of the shirt correctly.” Rog’s team was the first to pinpoint the exact position where the SC interacts with itself to facilitate genetic exchanges. Looking forward, unlocking the SC’s role in meiosis may lead to a stronger understanding of fertility in humans.

Another esteemed faculty member in biology is Sophie Caron, a U Presidential Scholar, who uses the Drosophila mushroom body — a computational center in the fruit fly brain — as a model system to understand how brains are developed to learn. With work described as “stunning” and “breathtaking,” Caron has built an interdisciplinary research program by drawing on computational models, species-comparative studies and various anatomical and behavioral techniques to elucidate the structural, functional and evolutionary pressures that shape the mushroom body’s learning function. In addition to her research, Caron — who was also awarded an outstanding teaching and mentorship award last year— designed and teaches an extremely popular neurobiology class (BIOL 3240), a course taken by hundreds of students.

FROM THE CLASSROOM TO THE BOARDROOM

Graduates from the College of Science also play crucial roles in Utah’s burgeoning biotechnology community. Equipped with cutting-edge knowledge learned in classrooms and research labs throughout campus, these alumni are at the forefront of research and development, contributing to significant advancements in life science fields. Their expertise not only drives the success of numerous biotech companies but also attracts substantial investment to the state. By bridging academic excellence with industry needs, alumni ensure a steady pipeline of talent that sustains the growth and dynamism of Utah’s biotechnology sector.

Tom Robbins and Amy Davis of bioMérieux.

There are many examples of these types of professional outcomes. Randy Rasmussen (PhD’98 biology) and Kirk Ririe (BS’05 chemistry) were two of three co-founders of BioFire Diagnostics. The company pioneered instruments that shortened DNA analysis techniques from hours to minutes. Using this technology, they created molecular diagnostics that now simultaneously test for multiple infectious agents, allowing healthcare professionals to get quick and accurate results from onsite instruments. In 2013 BioFire was purchased by bioMérieux, a French biotech firm, for over $450 million. The company is now one of Utah’s largest life sciences employers, with over 3,400 employees throughout its six sites. While Rasmussen and Ririe have since moved on to other projects, College of Science graduates like Amy Davis (PhD’03 biology), vice president of molecular biology, and Tom Robbins (PhD’04 mathematics), vice president of software development, continue to play significant roles in the company’s work.

Some College alumni have also found ways to share their experiences with a new generation of students. Ryan Watts (BS’00 biology) discovered a passion for research while an undergraduate. After he finished his degree, he earned a PhD from Stanford University and eventually co-founded the biotech startup Denali Therapeutics, focused on defeating neurodegeneration. The company went public in December 2017, breaking that year’s record for an initial market valuation of a biotech company. Today, Denali has over 400 employees and a market cap of over $3 billion, including a growing presence in Utah. Despite his busy schedule as CEO, Watts taught a winter semester course for five years at the U which tracked the biotechnology industry and introduced biology students to processes around drug discovery, business strategy, programming and portfolio decision-making.

Another alumnus, Berton Earnshaw (PhD’07 mathematics) used his academic experience to join the founding team of Red Brain Labs in 2012. When the machine learning-focused company was acquired by Savvysherpa in 2014, Earnshaw stayed on as a principal and senior scientist. Eventually, Earnshaw became director of data science research at Recursion Pharmaceuticals, a young clinical-stage biotech and drug discovery company based in Salt Lake City. In a succession of senior roles, Earnshaw has helped guide the company’s foundational machine learning and AI development, assisting in the company’s rapid growth to over 500 employees and an international expansion. Earnshaw started teaching courses at the U on machine learning and neural networks beginning in 2018. In 2024, he accepted a role as a senior fellow with the College of Science, in part to provide an industry perspective into the dynamic world of deep learning and AI.

LOOKING FORWARD

Berton Earnshaw, Recursion.

Unwilling to rest on its laurels, the College of Science is devoting significant resources to prepare graduates for what the Utah Department of Workforce Services deems accelerating growth in the rapidly changing fields of biotech and life sciences. The Department of Mathematics, School of Biological Sciences, and Kahlert School of Computing recently announced a new undergraduate degree in bioinformatics. New faculty hires throughout the College have included individuals with expertise in areas like data science, genomics, machine learning, gene editing and next-generation imaging techniques. More undergraduate students are participating in bioscience-related research than ever, either through the celebrated Science Research Initiative or direct placements in labs throughout campus. Together, these investments help ensure that future students will be well-prepared after they enter the workforce.

The notoriety of Utah’s burgeoning biotechnology and life sciences sectors continues to be indelibly linked to the College of Science in a feedback loop that benefits the economy, the community, and the University of Utah.

by Eliot Wilcox
Operating Manager, College of Science, University of Utah

This story is featured in Synthesis, the College of Science's annual magazine.

Two New Interim Department Chairs

Two New Interim Department Chairs


June 24, 2024
Above: Peter Armentrout (Credit: Matt Crawley) and Kip Solomon

 

Peter B. Armentrout has been appointed interim chair of the Department of Chemistry and Kip Solomon has been appointed interim chair of the Department of Geology & Geophysics at the University of Utah.

Peter Armentrout

A Distinguished Professor of Chemistry, Armentrout was appointed the Henry Eyring Presidential Endowed Chair in 2018. He will begin his term on July 1, replacing Matt Sigman.

Earlier, Armentrout served as Department Chair from 2001 to 2007. During that time, he instituted several reforms regarding parental leave and secured funding for the David M. Grant NMR Center (Gaus House) and partial funding for the Thatcher extension to the South Chemistry Building.

Armentrout whose research spans thermochemistry, kinetics and the dynamics of simple and complex chemical reactions, early on invented and constructed the guided ion-beam tandem mass spectrometer which has provided highly accurate thermodynamic measurements on a multitude of chemical species. He says of the appointment to interim department chair, “I am honored to be asked to take the reins of this exceptional department for a couple more years. The research and teaching abilities and collegiality of this faculty are second to none and will enable us to collectively advance and lead within the U. I look forward to working with them as well as our supporters outside the university system in the near term.” 

Peter Trapa, dean of the College of Science, said of the appointment, "In addition to being a world-class chemist with a towering international reputation, Peter is also an exceptional teacher, mentor, and administrator. His appointment as interim chair will continue to advance Utah's Chemistry Department as one of the best in the world. I look forward to working with Peter as we continue to build on the department's strengths.”

Trapa continued, “I'm also deeply grateful to Distinguished Professor Matt Sigman for his outstanding leadership as chair over the past five years. Matt’s contributions to the department, especially his unwavering commitment to excellence, will be felt for many years to come.”

A member of the American Chemical Society, American Physical Society (fellow), American Society for Mass Spectrometry, and the American Association for the Advancement of Science (fellow), Armentrout presently has over 560 research publications that have appeared in the literature. Forty-four students have received their PhDs with Professor Armentrout.

In 2011, he received the prestigious Rosenblatt Prize for Excellence from the U — the university’s highest honor awarded to a faculty member.

Kip Solomon

Solomon holds the Frank Brown Presidential Chair in the Department of Geology & Geophysics and will replace William Johnson as department chair also beginning July 1, 2024.

Solomon has a PhD in Earth Sciences from the University of Waterloo and BS and MS degrees from the U’s Department of Geology and Geophysics. He joined the department in 1993 and served as chair from 2009-2013.

His research includes the use of environmental tracers to evaluate groundwater flow and solute transport processes in local-to regional-scale aquifers. He has developed the use of dissolved gases including helium-3, CFCs and SF6 to evaluate groundwater travel times, location and rates of recharge, and the sustainability of groundwater resources. He constructed and operates one of only a few labs in the world that measures noble gases in groundwater. His research results have been documented in more than 120 journal articles, book chapters, and technical reports.

Outgoing chair Johnson said of his replacement, “Kip will be a steady lead as ... [recent] changes settle and as additional institutional changes occur.”

Solomon thanked his predecessors: “Geology and Geophysics is a great department and has been strengthened considerably by the hard work and dedication of previous chairs Thure Cerling and Bill Johnson. With new hires and academic programs, the future looks very bright.”

In September Solomon will receive the 2024 O.E Meinzer Annual Award by the Geological Society of America.

By David Pace and Ashley Herman

Peter Armentrout Returns as Interim Chemistry Chair

Distinguished Professor Returns to Leadership


June 21, 2024
Above: Peter Armentrout (Credit: Matt Crawley)

 

Distinguished Professor of Chemistry Peter B. Armentrout has been appointed interim chair of the Department of Chemistry at the University of Utah.

Peter Armentrout. Credit: Matt Crawley

His term will commence July 1, 2024, following the completion of Matt Sigman’s term as chair which began in 2019.

Armentrout is a researcher in thermochemistry, kinetics and the dynamics of simple and complex chemical reactions. As a research professor, he invented and constructed the guided ion-beam tandem mass spectrometer, which has provided highly accurate thermodynamic measurements on a multitude of chemical species.

Upon his arrival at the U in 1987 from UC Berkeley, Armentrout was awarded a Camille and Henry Dreyfus Teacher-Scholar Grant, secured tenure the following year and, in 1989, was promoted to full professor. He has since been recognized with the University-wide Distinguished Research Award (1994) and the Buck-Whitney Award from the American Chemical Society Eastern New York Section (1993), and in 1997, the graduate students at the Ohio State University Department of Chemistry selected Professor Armentrout as their Mack Memorial Award Lecturer.

In 1998, Armentrout was promoted to Distinguished Professor of Chemistry and named Cannon Fellow in 2003, and then, in 2018, was appointed the Henry Eyring Presidential Endowed Chair. He received the Biemann Medal from the American Society of Mass Spectrometry in 2001, the Utah Award of Chemistry from the Utah Sections of the American Chemical Society in 2003, the Field and Franklin Award for Outstanding Achievement in Mass Spectrometry from the American Chemical Society in 2009, the Governor's Medal for Science and Technology Award from the State of Utah in 2010 and, the following year, the prestigious Rosenblatt Prize for Excellence from the U — the university’s highest honor awarded to a faculty member.

In 2018, Armentrout received the Ron Hites Award from the American Society of Mass Spectrometry and the John B. Fenn Award for a Distinguished Contribution in Mass Spectrometry from the American Society of Mass Spectrometry.

His teaching was recognized in 1989 with the Outstanding Undergraduate Teaching Award and in 2011 with the R. W. Parry Teaching Award, both given by the Department of Chemistry.

Armentrout has served on the editorial advisory boards of the International Journal of Mass Spectrometry, and formerly of the Journal of the American Society of Mass Spectrometry, Journal of the American Chemical Society, Journal of Physical Chemistry, Journal of Chemical Physics, Organometallics and the Journal of Cluster Science (charter member).

He is a member of the American Chemical Society, American Physical Society (fellow), American Society for Mass Spectrometry, and the American Association for the Advancement of Science (fellow). He presently has over 560 research publications that have appeared in the literature. Forty-four students have received their PhDs with Professor Armentrout.

Earlier, Armentrout served as Department Chair from 2001 to 2007. During that time, Armentrout instituted several reforms regarding parental leave and secured funding for the David M. Grant NMR Center (Gaus House) and partial funding for the Thatcher extension to the South Chemistry Building.

Armentrout says of the appointment: “I am honored to be asked to take the reins of this exceptional department for a couple more years. The research and teaching abilities and collegiality of this faculty are second to none and will enable us to collectively advance and lead within the U. I look forward to working with them as well as our supporters outside the university system in the near term.” 

"In addition to being a world-class chemist with a towering international reputation, Peter is also an exceptional teacher, mentor, and administrator,” said Peter Trapa, dean of the College of Science. “His appointment as interim chair will continue to advance Utah's Chemistry Department as one of the best in the world. I look forward to working with Peter as we continue to build on the department's strengths.”

Trapa continued, “I'm also deeply grateful to Distinguished Professor Matt Sigman for his outstanding leadership as chair over the past five years. Matt’s contributions to the department, especially his unwavering commitment to excellence, will be felt for many years to come.”

You can read a short autobiography of Peter Armentrout and his early career from 2013, here.

By David Pace

Chemist Aaron Puri Receives Simons Foundation Early Career Award

Chemist Aaron Puri Receives Simons Foundation Early Career Award


PURI RECOGNIZED FOR PIONEERING RESEARCH INTO METHANE-MITIGATING MICROBIAL ECOSYSTEMS


“I am honored to receive this award and excited to join the community of researchers supported by the Simons Foundation to answer fundamental questions about microbial ecology and evolution.” says Aaron Puri, Assistant Professor in the Department of Chemistry and the Henry Eyring Center for Cell and Genome Science and one of five awardees for 2024.
The Simons Foundation Early Career Investigator in Aquatic Microbial Ecology and Evolution Award recognizes outstanding researchers in the fields of microbial ecology, microbial biogeochemistry, and microbial evolution in marine or natural freshwater systems. Its purpose is to promote the careers of investigators who contribute to understanding these areas.

Puri joined the College of Science faculty in 2019 after working as a postdoctoral fellow at the University of Washington. He earned his Ph.D. in Chemical and Systems Biology from Stanford University in 2013, and his B.S. from the University of Chicago in 2008. Puri has also received the NIH Maximizing Investigators’ Research Award and the NSF CAREER Award. 

“This award will enable our research group to work at the interface of biology and chemistry to decipher the molecular details of interactions in methane-oxidizing bacterial communities,” says Puri. His research aims to solve big problems with microscopic solutions. “These communities provide a biotic sink for the potent greenhouse gas methane, and are a useful system for understanding how bacteria interact with each other and their environment while performing critical ecosystem functions.” The Simons Award is an indicator that this is only the beginning of Puri’s research successes.

 

by Lauren Wigod

 

Humans of the U: Erik Smith

Humans of the U: Erik Smith


May 1, 2024
Above: Erik Smith, BS'23 in biology

 

Last spring, I graduated with a bachelor’s degree in biology and a minor in chemistry. Now I am a student in the Master of Business Creation program.

 

I started skiing when I was around three years old. My family had a tradition of going skiing together once a year. When I was in middle school, I started getting a season pass each year. Around this time, I also began snowboarding, which I have been doing ever since.

During my senior year of college, I applied to dental school and I made it all the way through interviews. From there, I just had to wait. I didn’t hear anything for about two months. It was a rough time because I just had no idea if I was going to get into school. While I was waiting, I used my downtime to go snowboarding. I wanted to try making my own wax, so I decided to do it for fun.

The wax ended up gaining some traction with others. At the time, I was a TA in a biochemistry lab. Over the course of a few months, I used all the resources I had to create the wax. Some professors in the College of Science and Department of Biochemistry helped me access some more, and I decided to go for it and create my business, Board Budder.

 

Read the rest of Erik's story in his own words in @ The U

Why does ice form at a range of temperatures?

Why does ice form at a range of temperatures?


April 1, 2024
Above: Chemistry professor Valeria Molinero. Credit: Brian Maffly

From abstract-looking cloud formations to roars of snow machines on ski slopes, the transformation of liquid water into solid ice touches many facets of life. Water’s freezing point is generally accepted to be 32 degrees Fahrenheit.

But that is due to ice nucleation—impurities in everyday water raise its freezing point to this temperature. Now, researchers at the University of Utah have unveiled a theoretical model that shows how specific structural details on surfaces can influence water’s freezing point.

A team led by chemistry professor Valeria Molinero presented its results at the spring meeting of the American Chemical Society (ACS). Held virtually and in person in New Orleans, March 17-21, the spring conference featured nearly 12,000 presentations on a range of science topics. Molinero’s study was just one of a handful the society highlighted.

“Ice nucleation is one of the most common phenomena in the atmosphere,” said Molinero, who investigates physical and materials chemistry. “In the 1950s and 1960s, there was a surge of interest in ice nucleation to control weather through cloud seeding and for other military goals. Some studies addressed how small shapes promote ice nucleation, but the theory was undeveloped, and no one has done anything quantitative.”

Read the full article in @TheU.

>> HOME <<