How special is the Milky Way Galaxy?  

How special is the Milky Way Galaxy?


September 25, 2024

Above: A mosaic of the satellite galaxies across the Milky Way-like systems that the SAGA team has surveyed. The images are sorted by their luminosity from left to right. Credit: Yao-Yuan Mao (Utah), with images from the DESI Legacy Surveys Sky Viewer

A 'saga' about 101 galaxies like the Milky Way and their companions

Is our home galaxy, the Milky Way Galaxy, a special place? A team of scientists started a journey to answer this question more than a decade ago. Commenced in 2013, the Satellites Around Galactic Analogs (SAGA) Survey studies galaxy systems like the Milky Way. Now, the SAGA Survey just published three new research articles that provide us with new insights into the uniqueness of our own Milky Way Galaxy after completing the census of 101 satellite systems similar to the Milky Way’s.   

These “satellites” are smaller galaxies in both mass and size which orbit a larger galaxy, usually called the host galaxy. Just as with smaller satellites that orbit the Earth, these satellite galaxies are captured by the gravitational pull of the massive host galaxy and its surrounding dark matter. The Milky Way Galaxy is the host galaxy of several satellite galaxies, of which the two largest are the Large and Small Magellanic Clouds (LMC and SMC). While LMC and SMC are visible to the naked eye from the Southern Hemisphere, there are many other fainter satellite galaxies orbiting around the Milky Way Galaxy that can only be observed with a large telescope.  

The goal of the SAGA Survey is to characterize satellite systems around other host galaxies that have similar stellar masses as the Milky Way Galaxy. Yao-Yuan Mao, a University of Utah faculty member in the Department of Physics and Astronomy, is co-leading the SAGA Survey with Marla Geha at Yale University and Risa Wechsler at Stanford University. Mao is the lead author of the first article in the series of three that have all been accepted by the Astrophysical Journal. This series of articles reports on the SAGA Survey’s latest findings and makes the survey data available to other researchers worldwide.  

 An outlier galaxy? 

An image of a Milky Way-like galaxy and its system of satellite galaxies. The SAGA survey identified six small satellite galaxies in orbit around this Milky Way analog. Credit: Yasmeen Asali (Yale), with images from the DESI Legacy Surveys Sky Viewer https://www.legacysurvey.org/acknowledgment/

 In the first study led by Mao, the researchers highlighted 378 satellite galaxies identified across 101 Milky Way-mass systems. The number of confirmed satellites per system ranged from zero to 13 — compared to four satellites for the Milky Way. While the number of satellite galaxies in the Milky Way system is on par with the other Milky Way-mass systems, “the Milky Way appears to host fewer satellites if you consider the existence of the LMC,” Mao said. The SAGA Survey has found that systems with a massive satellite like the LMC tend to have a higher total number of satellites, and our Milky Way seems to be an outlier in this regard. 

An explanation for this apparent difference between the Milky Way and the SAGA systems is the fact that the Milky Way has only acquired the LMC and SMC quite recently, compared with the age of the universe). The SAGA article explains that if the Milky Way Galaxy is an older, slightly less massive host with the recently added LMC and SMC, one would then expect a lower number of satellites in the Milky Way system not counting other smaller satellites that LMC/SMC might have brought in.  

This result demonstrates the importance of understanding the interaction between the host galaxy and the satellite galaxies, especially when interpreting what we learn from observing the Milky Way. Ekta Patel, a NASA Hubble Postdoctoral Fellow at the U but not part of the SAGA team, studies the orbital histories of Milky Way satellites. After learning about the SAGA results, Patel said, “Though we cannot yet study the orbital histories of satellites around SAGA hosts, the latest SAGA data release includes a factor of ten more Milky Way-like systems that host an LMC-like companion than previously known. This huge advancement provides more than 30 galaxy ecosystems to compare with our own, and will be especially useful in understanding the impact of a massive satellite analogous to the LMC on the systems they reside in.”  

Why do galaxies stop forming stars? 

The second SAGA study of the series is led by Geha, and it explores whether these satellite galaxies are still forming stars. Understanding the mechanisms that would stop the star formation in these small galaxies is an important question in the field

Yao-Yuan Mao

of galaxy evolution. The researchers found, for example, that satellite galaxies located closer to their host galaxy were more likely to have their star formation “quenched,” or suppressed. This suggests that environmental factors help shape the life cycle of small satellite galaxies.  

The third new study is led by Yunchong (Richie) Wang, who obtained his PhD with Wechsler. This study uses the SAGA Survey results to improve existing theoretical models of galaxy formation. Based on the number of quenched satellites in these Milky Way-mass systems, this model predicts quenched galaxies should also exist in more isolated environments — a prediction that should be possible to test in the coming years with other astronomical surveys such as the Dark Energy Spectroscopic Instrument Survey.  

Gift to the astronomy community 

In addition to these exciting results that will enhance our understanding of galaxy evolution, the SAGA Survey team also brings a gift to the astronomy community. As part of this series of studies, the SAGA Survey team published new distance measurements, or redshifts, for about 46,000 galaxies. “Finding these satellite galaxies is like finding needles in a haystack. We had to measure the redshifts for hundreds of galaxies to just identify one satellite galaxy,” Mao said. “These new galaxy redshifts will enable the astronomy community to study a wide range of topics beyond the satellite galaxies.”  

The SAGA Survey was supported in part by the National Science Foundation and the Heising-Simons Foundation. Other authors of these three SAGA studies include Yasmeen Asali, Erin Kado-Fong, Nitya Kallivayalil, Ethan Nadler, Erik Tollerud, Benjamin Weiner, Mia de los Reyes, John F. Wu, Tom Abel, and Peter Behroozi. 

By David Pace

The Art and Science of Innovation: Catmull’s Story

The Art and Science of Innovation: Catmull’s Story


Sep 16, 2024
Above : Edwin Catmull, co-founder of Pixar. | Pixar

Ed Catmull doesn’t have the intense presence one might expect from a man with his resume.

Not only has Catmull [BS’69, physics] won five Academy Awards, he’s also received an ACM A.M. Turing Award — considered the Nobel Prize of computing — has rubbed shoulders with George Lucas and Steve Jobs, co-founded Pixar and co-created the first computer-animated film (and the technology that made it possible).

Catmull is the 2024 winner of The Leonardo Award, an award that seeks to honor individuals who have made “contributions (that) exemplify the blend of art and science,” per The Leonardo.

To receive his Leonardo Award, Catmull returned to Salt Lake City — the very place his impressive career started.

“(Catmull) credits the atmosphere and the work that he did at the University of Utah with some of his early success,” Virginia Pearce, director of the Utah Film Commission, said during Thursday night’s ceremony. “We are so proud about your start in Utah and the deeply grateful for the mark that you’ve made on (the film industry) industry and beyond.”

‘It was amazing’: How the University of Utah shaped Catmull’s career

As a kid, Catmull balanced his interests in both art and science. He never saw the subjects as being inharmonious.

“Growing up, I didn’t know that (science and art) were considered to be not compatible with each other. Nobody told me that,” Catmull said Thursday night at The Leonardo Museum. Animation fascinated him, but there was no college for it. So when he started his Bachelor’s degree at University of Utah, he fell back on science.

“There were no tools for it, for animation, so I switched over into physics when I went to college,” Catmull said. This revelation prompted laughter from the audience — how can the man who co-founded Pixar be a physicist?

Read the full article by Margaret Darby in DeseretNews.

LEDs just got a whole lot smarter

LED's just got a whole lot smarter


Sep 05, 2024

Traditional electronics use semiconductors to transmit data through bursts of charged carriers (electrons or holes) to convey messages in “1s” and “0s.”

Spintronic devices can process an order of magnitude more information by assigning binary code to the orientation of electrons’ magnetic poles, a property known as spin— an “up” spin is a 1, a “down” is a 0.

A major barrier to commercial spintronics is setting and maintaining the electron spin orientation. Most devices tune spin-orientation using ferromagnets and magnetic fields, a burdensome and unreliable process. Decades of research has shown that carriers lose their spin orientation moving from materials with high-conductivity to low-conductivity—for example, from metallic ferromagnets to undoped silicon and conjugated polymer materials that make up most modern semiconductors.

Valy Vardeny ( Distinguished Professor)

For the first time, scientists transformed existing optoelectronic devices into ones that can control electron spin at room temperature, without a ferromagnet or magnetic field.

Most optoelectronic devices, such as LEDs, only control charge and light but not the spin of the electrons. In the new study led by the University of Utah physicists and researchers at the National Renewable Energy Laboratory (NREL), replaced the electrodes of store-bought LEDs with a patented spin filter, made from hybrid organic-inorganic halide perovskite material.

“It’s a miracle. For decades, we’ve been unable to efficiently inject spin-aligned electrons into semiconductors because of the mismatch of metallic ferromagnets and non-magnetic semiconductors,” said Valy Vardeny, Distinguished Professor in the Department of Physics & Astronomy at the U and co-author of the paper. “All kinds of devices that use spin and optoelectronics, like spin-LEDs or magnetic memory, will be thrilled by this discovery.

The study was published in the journal Nature on June 19, 2024.

Spin filters

In 2021, the same collaborators developed the technology that acts as an active spin filter made of two successive layers of material, called chiral hybrid organic-inorganic halide perovskites. Chirality describes molecule’s symmetry, where its mirror image cannot be superimposed on itself. Human hands are the classic example; hold yours out, palms facing away. The right and left hands are arranged as mirrors of one another—you can flip your right hand 180° to match the silhouette, but now the right palm is facing you while the left palm faces away. They’re not the same.

Some molecules, such as DNA, sugar and layers of chiral hybrid organic-halide perovskites, have their atoms arranged in chiral symmetry. The filter works by using a “left-handed” oriented chiral layer to allow electrons with “up” spins to pass, but block electrons with “down” spins, and vice versa. At the time, the scientists claimed the discovery could be used to transform conventional optoelectronics into spintronic devices simply by incorporating the chiral spin filter. The new study did just that.

Read the full article by Lisa Potter in @TheU.

U Physics Alumna Heads to Paris Olympics

PHysics of Olympic Pistol Shooting


July 29, 2024
Above: Alexis Lauren Lagan, BS'17

With a pistol program desperate for success, Alexis (Lexi) Lauren Lagan BS'17 physics represents the next generation of athletes ready to take her sport to a new level. This month she heads to Paris. Her second Olympics.

Despite a degree in physics and a law degree in the works, Lexi can’t shake an Olympic dream so enticing she’s put her career on hold to represent her country in Paris this summer.

Lexi started shooting with her dad at a young age and enjoyed going to the range with her family as a bonding activity. While pursuing her bachelor’s degree in Pre-Law Physics, she began shooting international pistol at the University of Utah. At the collegiate level, she won a handful of national titles in women’s, mixed team events, and earned her spot on several All-American Teams.

Lexi participated in pistol for fun and to make friends in college, but as the Rio Games approached, she realized she wanted to pursue her interest in international shooting sports. She won the Olympic Alternate seat in Women’s Air Pistol in 2016, narrowly missing the opportunity to join Team USA in Rio. This only fueled her passion into the Tokyo 2020 Games and now Paris 2024.

In addition to visiting the range with her family, Lexi grew up dancing and singing. At 14, She received a medal and certificate from the White House for singing the National Anthem at more than 150 performances. She enjoys camping and hiking, and has a corgi named Guinevere who is frequently featured on her Instagram.

Read more about the sport.

Read more about U-affiliated athletes at the Games.

The Hidden Space Race and Vardeny’s Spintronic Revolution

The Hidden Space Race and Vardeny's Spintronic Revolution


July 19, 2024
Above: Valy Vardeny, Distinguished Professor of Physics & Astronomy, Photo Credit: Dung Hoang

Vardeny was a pioneer of organic spin waves known as “Spintronics.” Spin waves transfer information much faster with far less heat.

When Neil Armstrong and Buzz Aldrin landed on the moon fifty years ago, Zeev Valentine Vardeny was a young man living in Israel. The “space race” was palpable at the time. The “race” for ever-increasing technological innovation is profoundly felt in Israel. Putting brain power to work to maintain Israel’s safety is nothing short of a national mission.

Distinguished Professor of Physics & Astronomy Zeev Valentine Vardeny at the University of Utah in is certainly an All-Star of physics. While most Utahns have never heard of him, Vardeny opened up an entirely new branch of physics. He has helped innovate significant advances leading to OLED (organic LEDs), organic spin-wave and technology. If these aren’t familiar then next time you look at your organic LED flat-screen TVs or put your 96 gig flash memory card in your computer, just know that Vardeny and his work are a key part of that technology.

His field of Solid State Physics refers to how electrons behave when traveling through materials. Electrons flow through all of our electrical devices to provide them power. Computers transmit information and energy, but they also produce heat.

Vardeny says, " Using spintronic technology will help pave the way for vast changes in computer abilities that are known as quantum computers. First off. In regular computers the bits of regular computers are either a one or a zero. But if you have a quantum computer the bits can have infinite possibilities. There is an infinite number of numbers between zero and one.”

The Department of Defense is spending a lot of money is in using quantum computers and spin waves to create an entirely new form of communication.

You can read more about Vardeny and his research at the U in Utah Stories , Science Direct and Mirage News.

A once-in-a-career discovery: the black hole at Omega Centauri’s core

A once-in-a-career discovery: the black hole at Omega Centauri’s core


July 11, 2024
Above: The likely position of Omega Centauri star cluster’s intermediate black hole. Closest panel zooms to the system.
PHOTO CREDIT: ESA/HUBBLE & NASA, M. HÄBERLE (MPIA)

Omega Centauri is a spectacular collection of 10 million stars, visible as a smudge in the night sky from Southern latitudes.

Through a small telescope, it looks no different from other so-called globular clusters; a spherical stellar collection so dense towards the center that it becomes impossible to distinguish individual stars. But a new study, led by researchers from the University of Utah and the Max Planck Institute for Astronomy, confirms what astronomers had argued about for over a decade: Omega Centauri contains a central black hole.The black hole appears to be the missing link between its stellar and supermassive kin—stuck in an intermediate stage of evolution, it is considerably less massive than typical black holes in the centers of galaxies. Omega Centauri seems to be the core of a small, separate galaxy whose evolution was cut short when it was swallowed by the Milky Way.

“This is a once-in-a-career kind of finding. I’ve been excited about it for nine straight months. Every time I think about it, I have a hard time sleeping,” said Anil Seth, associate professor of astronomy at the U and co-principal investigator (PI) of the study. “I think that extraordinary claims require extraordinary evidence. This is really, truly extraordinary evidence.” A clear detection of this black hole had eluded astronomers until now. The overall motions of the stars in the cluster showed that there was likely some unseen mass near its center, but it was unclear if this was an intermediate-mass black hole or just a collection of the stellar black holes. Maybe there was no central black hole at all.

A medium Level panel zoom of the Omega Centauri star cluster’s intermediate black hole likely position. PHOTO CREDIT: ESA/HUBBLE & NASA, M. HÄBERLE (MPIA)

“Previous studies had prompted critical questions of ‘So where are the high-speed stars?’ We now have an answer to that, and the confirmation that Omega Centauri contains an intermediate-mass black hole. At about 18,000 light-years, this is the closest known example for a massive black hole,” said Nadine Neumayer, a group leader at the Max Planck Institute and PI of the study. For comparison, the supermassive black hole in the center of the Milky Way is about 27,000 light-years away.

A range of black hole masses

In astronomy, black holes come in different mass ranges. Stellar black holes, between one and a few dozen solar masses, are well known, as are the supermassive black holes with masses of millions or even billions of suns. Our current picture of galaxy evolution suggests that the earliest galaxies should have had intermediate-sized central black holes that would have grown over time, gobbling up smaller galaxies done or merging with larger galaxies.

Such medium-sized black holes are notoriously hard to find. Although there are promising candidates, there has been no definite detection of such an intermediate-mass black hole—until now.

“There are black holes a little heavier than our sun that are like ants or spiders—they’re hard to spot, but kind of everywhere throughout the universe. Then you’ve got supermassive black holes that are like Godzilla in the centers of galaxies tearing things up, and we can see them easily,” said Matthew Whittaker, an undergraduate student at the U and co-author of the study. “Then these intermediate-mass black holes are kind of on the level of Bigfoot. Spotting them is like finding the first evidence for Bigfoot—people are going to freak out.”

Read more about the Discovery @TheU.

Read more about the story at NASA, Deseret News, ABC4 Utah and ESA/Hubble releases.

Neutrino Oscillation Research Advances

Neutrino Oscillation Research Advances


July 9, 2024
Above: A Layout of IceCube Lab depth compared to the height of the Eiffel Tower.

In the world of particle physics, electrical charges define the terms. While electrons have a negative charge, the appropriately named “positron" has a positive charge. But then there are neutrinos which have no charge at all.

Neutrinos are also incredibly small and light. They have some mass, but not much and they rarely interact with other matter. They come in three types or "flavors": electron, muon, and tau.

Cosmic rays travel through space then crash into the earth's atmosphere and produce  air showers that Include neutrinos and many other types of particles. When neutrinos are produced and start traveling, they can change from one flavor to another. The atmospheric neutrinos are then detected by DeepCore, a denser array of sensors in the center of the IceCube detector at the South Pole.This process is called neutrino oscillation and the IceCube Detector, a massive neutrino detector buried deep in the ice at the South Pole, has a special area called DeepCore that can detect lower-energy neutrinos.

Scientists at the IceCube Neutrino Observatory in Antarctica have made a breakthrough in measuring neutrinos. Using advanced computer techniques, they've achieved the most precise measurements to date of how these particles change as they travel through space, helping us understand fundamental properties of the universe that could lead to new discoveries in physics.

Shiqi Yu

Shiqi Yu, a research assistant professor in the Department of Physics & Astronomy at the University of Utah and others who published their findings recently in Physical Review Letters analyzed data from over 150,000 neutrino events collected over nine years (2012-2021). They used advanced computer programs called convolutional neural networks (CNNs) to process this data. The team made the most precise measurements ever of two important properties related to neutrino oscillation: Delta m²₃₂ and sin²(θ₂₃). These numbers help describe how neutrinos change as they travel.

“We also carefully studied the systematic uncertainties that arise from our imperfect knowledge of our models and chose some to use as free nuisance parameters that fit together with the physics parameters for our data,” says Yu.

Using CNNs, which use three-dimensional data for image classification, Yu and co-lead of the study Jessie Micallef first developed use cases for the CNNs to focus on the DeepCore region and trained them to reconstruct different properties of particle interactions in the detector. They then used the CNN reconstructions to select qualified neutrino interactions that happened in or near the DeepCore region to produce a neutrino-dominated dataset with well-reconstructed energies and zenith angles.

Jessie Micallef

Yu notes that the CNN-reconstructed analysis-level dataset is already being used for other neutrino oscillation analyses, such as determining the neutrino mass ordering and non-standard neutrino interactions and for atmospheric tau neutrino appearance analyses.

“The atmospheric neutrino dataset from DeepCore exhibits relatively high energies in the oscillation analyses, which is unique compared to existing accelerator-based experiments,” says Yu. “Given our dataset and independent analysis, it is interesting to see agreement and consistency in physics parameter measurements.”

This research helps confirm and refine our understanding of how neutrinos — fundamental particles that can tell us a lot about the universe — behave. The techniques developed here, animated by machine learning, can be used in future studies to learn even more about neutrinos and the universe. Those future studies will be informed by IceCube which is planning an upgrade in 2025-2026 that will allow for even more detailed measurements of neutrinos.

By studying neutrino detection and the phenomenon of neutrino oscillation, scientists like Shiqi Yu hope to answer big questions about the nature of matter, energy and the cosmos.

Read the May 2024

Tony Hawk : The Intuitive Physicist of Vert Skating

The Intuitive Physicist of Vert Skating


June 13, 2024
Above: Tony Hawk executing an impressive aerial maneuver on his skateboard.

'Would you consider Tony Hawk a physicist?'

'I would consider Tony Hawk a physicist. If nothing else, he’s an intuitive scientist, right?'

Before you go, watch Kevin Davenport, assistant lecture professor in the Department of Physics & Astronomy at the U, break down the physics that allows vert skaters to huck themselves into the stratosphere—learn why he calls Tony Hawk an intuitive scientist.

Read the rest of the story by Lisa Potter at @The U. 

 

L.S. Skaggs Applied Science Building Named at the U

L.S. SKAGGS APPLIED SCIENCE BUILDING NAMED AT THE U


May 28, 2024
Above:  Rendering of the new L.S. Skaggs Applied Science Building

The ALSAM Foundation has made a substantial gift toward the latest addition to the science campus at the University of Utah: the L.S. Skaggs Applied Science Building.

The 100,000-square-foot building will include modern classrooms and instruction spaces, cutting-edge physics and atmospheric science research laboratories, and faculty and student spaces. Scientists in the new building will address urgent issues, including energy, air quality, climate change, and drought. The building’s naming honors L.S. “Sam” Skaggs, the philanthropist and businessman whose retail footprint spread across the Mountain West and the U.S.

Building Construction -  April 30, 2024

Expressing profound gratitude for the transformative gift, Peter Trapa, Dean of the College of Science, shared, “We deeply appreciate The ASLAM Foundation’s extraordinary generosity. This gift is a testament to the value the organization places on higher education and its transformational impact on students and communities. It continues the Skaggs family's legacy in Utah and at our state’s flagship university. The new L.S. Skaggs Applied Science Building, a beacon of scientific innovation, will play an essential role in educating students in STEM programs throughout the University of Utah. This much-needed building allows the U to expand its STEM capacity and continue to serve our region’s expanding workforce needs.”

The construction of the L.S. Skaggs Applied Science Building is part of the Applied Science Project, which also includes the renovation of the historical William Stewart Building. The overall project is scheduled to be completed by next summer. Combined with the Crocker Science Center and a new outdoor plaza abutting the historic Cottam’s Gulch, the three buildings and outdoor space will comprise the Crocker Science Complex named for Gary and Ann Crocker.

The Skaggs family has a long history of supporting universities through The ALSAM Foundation, including the University of Utah. Other ALSAM Foundation-supported projects at the U include the L.S. Skaggs Pharmacy Research Institute, housed in the Skaggs Pharmacy Building, and the Aline S. Skaggs Biology Building, named after Mr. Skaggs’s wife.

The ALSAM Foundation issued the following statement, “The ALSAM Foundation and the members of the Skaggs family are pleased to continue the legacy of Mr. Skaggs at the University of Utah.  The Applied Science Project will benefit STEM education which was one of the goals of Mr. Skaggs.”

 

 

Outstanding Undergrad Research Awards 2024

Outstanding Undergrad Research Awards 2024


April, 2024
Above: Student recipients at the 2024 OUR Awards Ceremony

The University of Utah is one of the top research academic institutions in the Intermountain West, and it’s thanks in major part to the U’s undergraduate student researchers and the faculty who advise and mentor them.

Some of the university’s up-and-coming researchers and mentors were honored at the 2024 Office of Undergraduate Research (OUR) Awards, held virtually on April 1.

Every year, OUR recognizes one undergraduate student researcher from each college/school with the Outstanding Undergraduate Researcher Award, according to the office’s website. Partnering colleges and schools are responsible for selecting the awardee.

This year, 18 undergraduate researchers were honored with the Outstanding Undergraduate Researcher Award, two of them from the College of Science / College of Mines & Earth Sciences:

Autumn Hartley (Mentor: Professor Sarah Lambart)

Dua Azhar (Mentor: Professor Sophie Caron)

Autumn Hartley

Autumn Hartley (she/they) is also a College of Science ambassador and has a passion for science and learning as geology and geophysics major. Originally from Midway, Utah, she moved to Salt Lake City when she started school at the U where she became involved in many different organizations including oSTEM, which connects LGBTQ+ students in STEM. Outside of academia, she loves all things artistic. “I’m a writer, graphic designer, and a character designer when I’m not in the lab!” she says.

Dua Azhar

Born and raised a Utahn in Draper, Dua Azhar (she/her) is an honors physics student with a biomedical emphasis. During her undergraduate years here at the U, she says, “I intend to tie my education and research together towards an MD/PhD, in order to specialize in neurology.” Along with the sciences, she love the arts, especially film and photography. “So if you don’t see me in the lab, you’ll most likely see me making something with a camera!”

Opening remarks at the event were made by Associate Dean Annie Fukushima, followed by Provost Mitzi Montoya and VP Research Erin Rothwell. They were followed by the presentation of Undergraduate Research Scholarship recipients which included the 2023 – 2024 recipients of the Francis Family Fund Scholarships, Dee Scholarship, and Parent Fund Scholarship.

The Monson Essay Prize winner, Pablo Cruz-Ayala, was then acknowledged followed by the 18 OUR & Research Mentor Awards by college.

At the ceremony event, award recipients were able to thank their mentors, family and others for their support.

More information and criteria for both awards can be found on the OUR’s website Watch video of OUR awards 2024 program below: