Utah FORGE Receives $80 million from DOE

Utah FORGE ReceIves $80 million from DOE


October 3, 2024
Above: Milford, UT. Through new drilling techniques, FORGE aims to make geothermal power accessible in a wider range of terrains.

 

An agreement has been signed between the U.S. Department of Energy and the Utah Frontier Observatory for Research in Geothermal Energy (informally known as Utah FORGE) to continue the project through 2028. The agreement includes an additional $80 million in funding over the next four years.

Managing Principal Investigator Joseph Moore, professor in the U’s department of Geology and Geophysics, says that “this next phase allows us to build on our important achievements and to further develop and de-risk the tools and technologies necessary to unlock the potential of next-generation geothermal power.”

Utah FORGE is managed by a team at the Energy & Geoscience Institute, part of the University of Utah’s John and Marcia Price College of Engineering.

Kris Pankow

Earlier this year, in April, Utah FORGE achieved a critical breakthrough after hydraulically stimulating and circulating water through heated rock formations a mile and a half beneath its drill site in the Utah desert and bringing hot water to the surface. The test results are seen as an important step forward in the search for new ways to use Earth’s subsurface heat to produce hot water for generating emissions-free electricity. The successful well stimulations and a nine-hour circulation test were the fruits of years of planning and data analysis at the Utah FORGE facility near Milford, 175 miles southwest of Salt Lake City.

More than two-thirds of the water that was injected underground and pushed through the fractured formation — acquiring heat on the way — was extracted from a second well, offering proof that enhanced geothermal systems (EGS) technology could be viable, according to John McLennan, a co-principal investigator on the project formally at Utah FORGE.

“Nine hours is enough to prove that you have a connection and that you’re producing heat,” said McLennan, a U professor of chemical engineering. “It really is a Eureka moment. It’s been 60 years coming, and so this actually is significant.”

Equally promising was the absence of any noticeable ground shaking associated with the stimulations and circulation test. U seismologists led by geology professor Kris Pankow, associate director of the U of U Seismograph Stations, are overseeing an extensive network of seismometers to document ground movement associated with the project.

 

Learn more about the critical breakthrough earlier this year when FORGE team members hydraulically stimulated and circulated water through heated rock formations a mile and a half beneath its drill site and bringing hot water to the surface. Read the story by Brian Maffly in @TheU.

 

New models shed light on sea ice dynamics

New models shed light on sea ice dynamics


Oct 1, 2024
Above: An upside-down sea ice slab showcasing brine channels that facilitate the drainage of liquid brine and support convection along the interface. CREDIT: Ken Golden, University of Utah.

Polar sea ice is ever-changing. It shrinks, expands, moves, breaks apart, reforms in response to changing seasons, and rapid climate change.

It is far from a homogenous layer of frozen water on the ocean’s surface, but rather a dynamic mix of water and ice, as well as minute pockets of air and brine encased in the ice.

New research led by University of Utah mathematicians and climate scientists is generating fresh models for understanding two critical processes in the sea ice system that have profound influences on global climate: the flux of heat through sea ice, thermally linking the ocean and atmosphere, and the dynamics of the marginal ice zone, or MIZ, a serpentine region of the Arctic sea ice cover that separates dense pack ice from open ocean.

In the last four decades since satellite imagery became widely available, the width of the MIZ has grown by 40% and its northern edge has migrated 1,600 kilometers northward, according to Court Strong, a professor of atmospheric sciences.

A tale of two studies, one north and one south

Ice covering both polar regions has sharply receded in recent decades thanks to human-driven global warming. Its disappearance is also driving a feed-back loop where more of the sun energy’s is absorbed by the open ocean, rather than getting reflected back to space by ice cover.

Utah mathematics professors Elena Cherkaev and Ken Golden, a leading sea ice researcher, are authors on both studies. The Arctic study led by Strong examines the macrostructures of sea ice, while the Antarctic study, led by former Utah postdoctoral researcher Noa Kraitzman, gets into its micro-scale aspects.

Read the full article by Brian Maffly in @TheU.

ACCESS Scholar: Kate Anderson

ACCESS Scholar, Kate Anderson


October 1, 2024
Above: Kate Anderson

Undergraduate Kate Anderson has her sights set far, another planet to be exact. After a year of research in the ACCESS Scholars program, she is one step closer to her dream of becoming a NASA astronaut. 

Anderson grew up in Las Vegas, Nevada, and had a passion for science, astronomy specifically, from a young age. She says that ACCESS was what initially drew her to the U, and ultimately what made her decide to major in physics and chemistry. The ACCESS scholarship is designed to advance belonging in STEM by engaging first-year students with research and helping them develop a community within the college.

Like many alumni of the program, ACCESS strongly shaped Anderson’s first year experience. She contributed to a project in Assistant Professor Yao-Yuan Mao’s astrophysics lab. Anderson gathered data with code to locate isolated, low-mass galaxies near the Milky Way that might provide clues to the origin of our universe. 

“Some of these galaxies are so isolated from the Milky Way that they have had little to no interaction with other galaxies since their creation. Because of that, they still have a lot of the properties of the very early universe. I was just trying to find the precursor to the bigger question” explains Anderson. 

This hands-on research experience through ACCESS helped Anderson earn a NASA Space Grant Consortium Scholarship, an additional boost on her path to becoming an astronaut. 

Anderson’s dream of voyaging to another planet to do true astrophysics “fieldwork” is supported by a plan that has been in the works since well before she stepped foot on campus. “I decided I wanted to be an astronaut and worked backwards,” she says. 

NASA astronauts either have a science or military background. Anderson thought “why not both?”. This motivated her to join the Air Force ROTC in addition to her academic obligations with the hope of becoming a pilot. This way, she can command the spaceship as well as handle the science. 

“NASA actually posted applications for astronauts a couple months ago. I was devastated that I couldn't apply now,” says Anderson. Though the journey ahead is long, this budding scientist and future space traveler has a lot to look forward to in her next few years at the U. Anderson is excited about starting  new research projects, taking observational astronomy, and spending time with her friends, many of whom she met through ACCESS. 

By Lauren Wigod