Bonneville Salt Flats

Bonneville Salt Flats


Jeremiah Bernau

The race to save Bonneville Salt Flats.

In the Utah desert, a treeless expanse of pristine white salt crystals has long lured daredevil speed racers, filmmakers and social media-obsessed tourists. It's so flat that on certain days, visitors swear they can see the curvature of the earth.

The glistening white terrain of the Bonneville Salt Flats, a remnant of a prehistoric lakebed that is one of the American West's many other-worldly landscapes, serves as a racetrack for land speed world records and backdrop for movies like "Independence Day" and "The World's Fastest Indian."

But it's growing thinner and thinner as those who cherish it clamor for changes to save it.

Research has time and again shown that the briny water in the aquifer below the flats is depleting faster than nature can replenish it. As nearby groundwater replaces the mineral-rich brine, evaporation yields less salt than historic cycles of flooding and evaporation left on the landscape.

It's thinned by roughly one-third in the last 60 years. The overall footprint has shrunk to about half of its peak size in 1994. The crust keeps tires cool at high speeds and provides an ideal surface for racing — unless seasonal flooding fails to recede or leaves behind an unstable layer of salt. Racers struggle to find a track long enough to reach record speeds with only 8 miles of track compared to 13 miles several decades ago.

Scientists largely agree that years of aquifer overdraws by nearby potash mining have driven the problem, yet insist that there's no hard evidence that simply paying the mining company to return water to the area will solve it amid detrimental human activity like extracting minerals or driving racecars.

Potash is potassium-based salt primarily used throughout the world as a fertilizer for crops such as corn, soy, rice and wheat. It's extracted in more than a dozen countries throughout the world, mainly from prehistoric lakebeds like Bonneville's.

It's mined from other iconic salt flats, including in Chile, where the thickness is not shrinking in a similar manner.

Collecting water samples near Wendover, Utah, Sept. 13, 2022. (AP Photo/Rick Bowmer)

In Utah, after three decades of studies examining the salt flats, nothing has slowed the deterioration. But officials are funding a new study as they try to find a solution. Researchers are seeking to pinpoint why the salt is fading and what can be done to stop it. Under a $1 million research project spearheaded by the Utah Geological Survey, scientists are gathering data to understand the effects climate change, racing, repaving the salt and operating the mine on leased federal land have on preserving the Salt Flats.

The salt is thinning as climate change drags the West into its third decade of drought, yet it's unclear how that affects the seasonal flood patterns the landscape relies on to maintain its size and footprint.

Frustration is boiling over for Dennis Sullivan, a car-builder and racer who set a land speed record in his 1927 Model T street roadster. His organization, the Salt Flats Racing Association, is convinced the potash mining company that extracts minerals from the flats is the primary reason that the aquifer is being depleted. But rather than point fingers that direction, he and other racers blame the U.S. Bureau of Land Management, which oversees the area and is required by federal law to balance multiple uses and preserve it now and into the future.

The Blue Flame at Bonneville Salt Flats on Nov. 4, 1970.

To save the landscape, Sullivan says, the U.S. government needs to find $50 million over 10 years to pay Intrepid Potash, the mining company, to pour briny water it's drawn from the land back on to the flats. He bristles at seeing more time and money spent on research when to him the solution is clear.

"In the world I came from, you study something, you figure out what changes you need to make, you make the changes and then you go back and study it again to see if your changes had an effect on it," said Sullivan. "It's ludicrous to just keep studying it until you do something."

The fragile landscape has become less reliable for racers, who had to cancel "Speed Week" events scheduled for this fall after the salt flats flooded and left them without enough space to drive on.

Though racers insist the answer is obvious, scientists contend that there's no hard evidence that simply returning briny water will reverse the effects of extraction and maintain the salt flats.

Sullivan doesn't blame Intrepid Potash; it has a leasing agreement with the federal government. He says land managers haven't invested in preserving the landscape or replenishing the salt taken off of it.

Intrepid Potash did not respond to questions from The Associated Press.

Jeremiah Bernau, a geologist working on the study with the Utah Geological Survey, said the mining company has already been pouring salt and it's unclear if that's the answer.

A 2016 study found that the areas most susceptible to thinning were places where races are organized. In simple terms, it changes how water can flow through the crust, Bernau said.

"Every use is going to have some sort of impact upon it. It's just trying to rank those, understand how much that impact is and what we can do to mitigate or understand it," Bernau said on a recent tour of the area, where reporters accompanied him as he measured the thickness of the salt and depth of the aquifer.

"My work is trying to understand how is that working and what are the actions that we can do in terms of helping to preserve this landscape," he said.

Backers of the study currently underway hope, if successful, the federal government will consider returning more salt in order to preempt conflict and allow the racers and miners to continue as they have been.

If the study shows salt laydown is effective, Utah state geologist Bill Keach said he expects racers will use the information to push for federal funding to keep up the project.

In 2019, when Utah lawmakers greenlit the initiative, they allocated $5 million, on the condition that the federal government would also provide funding, to return the briny water needed to preserve the salt crust.

Rep. Steve Handy, a Republican who spearheaded the effort, said the racers' lobbyists initially suggested the federal government would meet Utah's investment with an additional $45 million, giving the program the $50 million that Sullivan and other racers say is needed to maintain the status quo.

U.S. Rep Chris Stewart, who represents the area, assured Handy his office was working to secure the funds. Without hard evidence the salt laydown would restore the crust, the $45 million hasn't materialized but Stewart said in a statement that he "remains absolutely committed to finding science-based solutions" to save the crust.

Utah clawed back the majority of the funding after it got no matching federal funds.

"They're doing what they can with $1 million, which has not spread nearly far enough," Handy said, noting that it was ultimately the job of the federal government, not Utah, to manage the land.

But while solutions and the extent to which different parties are responsible is debatable, nobody disagrees that the landscape is a jewel worth preserving. Kneeling down, the crust of fused crystals looks like popcorn. From afar, the surface is moon-like, and draws hundreds of visitors daily, some coming in brightly colored dresses at sunset in search of the perfect picture.

"The fact that you can go out here and see this vast, white expanse with such a beautiful texture on the crust. It unleashes something, maybe more primal in yourself," Bernau said, looking off into the distance.

 

by Sam Metz and Brady McCombs, first published @ KSL.com.

David T. Chuljian

Describing himself as one of the world’s few “quantum dentists,” David T. Chuljian, PhD’84 in Chemistry, has an unusual perspective on dental decay rates, and particle-hole interactions.

Chuljian grew up in Port Townsend, Washington, until age 14. His father, G. T. “Chuck” Chuljian, had settled there in 1947 and opened a dental practice near the Keystone Ferry Terminal.

“Port Townsend was a very sleepy town in the 1960s. During summer, our day would be chores in the morning, then off on our bicycles and returning for dinner after spending the day with friends,” says Chuljian.

“We owned a small beach cabin on Discovery Bay, so many of our bike rides ended there to go fishing, swimming, or beach walking. Grade school was mostly at a one-room private school, with teachers of varying quality.”

“I had a couple of good teachers in elementary school, one of which was extremely varied in his knowledge and interests and he taught us a wild mix of things for science class – how airplanes work, astronomy, ecology, you name it. Math and science were fun for me after that,” says Chuljian.

“Like many dentists, my dad hoped at least one of us would go into dentistry, and it was assumed that all five of us kids would go on to college,” says Chuljian.

“But the local high school was not very academic – kids in town expected to work at the paper mill after graduation – so my parents sent us to a church-run high school, Auburn Academy, near Tacoma.”

After high school, Chuljian enrolled in Walla Walla College, a private Adventist school in College Place, Washington. He earned a bachelor’s degree in chemistry in 1978. During his senior year at Walla Walla he applied to medical school and to various graduate schools around the country.

“At the time, the chairman of our chem department, Barton Rippon, was collaborating with some folks doing bioengineering type stuff, and he encouraged me to apply at Utah,” says Chuljian.

Remarkably, Chuljian did not actually apply to the chemistry department for graduate school.

“In fact, I applied to Utah’s bioengineering program. But my application packet somehow wound up at the chemistry department, where Jack Simons saw it before forwarding it to bioengineering,” says Chuljian.

“Jack then called me and asked if I was interested in interviewing in Chemistry as well as Bioengineering, and said they’d pay for my plane ticket. This seemed like a great deal, so I wound up doing both interviews on the same trip,” says Chuljian.

“As it turned out, Jack’s theoretical chemistry work was extremely interesting, close to physics which I also enjoyed. So, in the end, I went with the chemistry department.” Jack Simons later served as Chuljian’s research advisor.

However, after two years of graduate school, Chuljian’s research wasn’t progressing as he wanted and tenure-track jobs around the country were extremely limited in number.

“I’m reasonably intelligent, but not Einstein, and I could tell I wasn’t really cut out for an academic position in theoretical chemistry,” says Chuljian.

So, in 1980, he applied to dental school at the University of Washington in Seattle and started that program in fall semester 1981.

“Since I already had more than three years towards my chemistry doctorate, I worked on both degrees in parallel, coming back to Utah during summers and Christmas vacations, and working remotely, mostly finishing up papers. Of course, this was all pre-Internet so there were some real challenges.”

“I remember most of my Utah research group: Ajit Banerjee, Deb Mukherjee, Judy Ozment, Gina Frey, Jim Jenkins, Ron Shephard, Rick Kendall, and Hugh Jenkins. I haven’t seen most of them since graduating, although in 2005 Jack had a reunion in Park City and I saw several of them there,” says Chuljian.

Chuljian took a sabbatical during his senior year in dental school to finish up and defend his doctorate thesis in December 1984, then returned to Washington and finished up his clinical requirements and dental licensing exam in August 1985.

That same year, Chuljian moved back to Port Townsend and began working with his father as an associate in the dental practice. He later purchased the office in 1987 and his father retired in 1990.

Chuljian with one of many parrots he has rescued

“It was a standard small-town practice, doing everything including orthodontics and surgery since no specialists were available nearby. When I retired in 2017, I sold the practice which represented 70 years of family-owned dentistry, the oldest business in town I think,” says Chuljian.

Chuljian stays busy with a range of activities and interests, including forestry, flying, and rescue care of birds, in particular parrots. Over the years, Chuljian has rescued and cared for two African Grays, a couple of Amazons, several conures, and three Pionus species of parrots.

Today, Chuljian still resides in Port Townsend, which is no longer a sleepy bywater but has a vibrant arts and boating community. His typical day might include several hours working in his forest tracts, irrigating newly planted trees or removing invasive species, or milling lumber for the local animal shelter’s building projects. Or it could be a 10-hour day drilling and filling at the local public health dental clinic. He enjoys mountain biking, but when he qualified for Medicare he upgraded to an eBike!

 

 

Todd B. Alder

Todd Alder


Todd B. Alder contracted COVID-19 early on in the pandemic and today still suffers from residual effects. But being just a “long hauler” as opposed to the alternative is what he calls being “lucky.” Says Alder, “Like many of us (I am guessing), this virus has disrupted my life with family and friends, my law practice, and my ability to travel. But on the plus side, I am really enjoying the Zoom calls where I am wearing a dress shirt and tie on top and something very questionable on the bottom.”

It's a scenario of late that many of us find ourselves experiencing (working on Zoom, not necessarily being pant-less), but the light touch that this biologist-turned-patent-attorney has towards not only the pandemic but work and life itself is evident. And so is his generosity. In April Alder was a featured alum in the School of Biological Sciences’ BioLuminaries speaker series (on Zoom, of course). As a registered patent attorney and partner at Thorpe North and Western (TNW) in Sandy, Alder illuminated the circuitous path one can take as a biology student toward fulfillment and job security… not to mention the love of chihuahuas.

More on that later.

The Road Less Traveled

Alder points to his PhD advisor, SBS’s Gary Rose, as the mentor who gave him “great direction over the years, particularly when I was stuck.” At the time Rose’s lab primarily focused on the neurophysiology of electrosensory systems in electric fish. Alder took an alternate path to study neuronal mechanisms underlying temporal processing in the auditory midbrain, a subject related to Rose’s PhD dissertation from a decade earlier. It was Rose’s broad way of thinking about science, research and the labyrinth that is life and career that still benefits Alder today.

“My dissertation was very broad over some fairly diverse scientific disciplines. This would not have been possible without Gary's early influence in teaching that young graduate student to not only see the world in a different way, but to approach problems and question them in a different way as well. I will always be grateful to Gary for helping me to see that there are no isolated questions or problems in science, but that everything has a much broader context and, as Robert Frost wrote, ‘that has made all the difference.’"

That difference played out while Alder was at the U in a remarkably refreshing and surprising way. “I was recording from a neuron in the midbrain of an anuran amphibian,” he explains, “and I thought of a test to further understand how these particular neurons worked.” Normally, neurons are not held in a stable state long enough for the kind of procedure Alder was planning. “But I stopped the program that was making the frog calls and quickly wrote a section of code so the program could do the test.”

It was that recompiling of the code—and a few crossed fingers—that led to a startling discovery. Once he turned the equipment back on the neuron in question was still there. From that test Alder showed that the generally accepted theory explaining how a neuron differentiates between high and low pulse rates was wrong. It turns out that neurons do not accomplish this differentiation though energy integration. Instead, Alder found that neurons were actually counting the number of pulses that occur within the range of pulse rates to which the neuron is tuned.

“That was one of the most exciting days of my life,” Alder says, “and I have always been amazed that those very complex questions were answered with [a] test performed on one neuron (it was repeated of course).” Alder graduated from SBS with his PhD in 2000.

Tripping the Patent Fantastic

Over the course of seven years, the mixture of biology, neurophysiology, molecular biology, etc. actually led to a degree in law which in turn opened up many opportunities for Alder to work with some very diverse and fascinating technologies. Enter his work in patent law following a clerkship at TNW beginning in 2002.

A Utah native, Alder hasn’t moved far geographically (he still lives in Utah and received all three of his degrees, including his law degree, from the U). But career-wise and developmentally it has been a galactic trip. For this reason he is quick to remind up-and-coming biologists at the U that education is not, and should never have been, about getting a job. “If you really contemplate the principles you are learning and integrate them into your life, it will change you and the way you think. To me, that is worth so much more than what type of job your degree can get you.”

About dogs … and a bear

Perhaps because of his wide-ranging academic, research and now patent career, Alder’s interests, like his dissertation, are broad and diverse. He loves to rock hound, watch horror movies, study theoretical physics and philosophy, collect old books, and “seriously mess with door-to-door sales people.” (Hopefully, while masked.) “Oh, and I once goosed a black bear in the wild, which made him terribly grumpy. But that is a story for a different day... .”

Which brings us to another enduring interest of Todd Alder’s and that is his love of chihuahuas. One advantage of working from home non-stop, quarantined from everyone else, is that your pets become a fixture, a pain and, if cuddly enough, a kind of accessory for that dress shirt above that questionable garment immediately below.

You can watch a recording of the BioLuminaries lecture by Todd Alder and co-presenter Heng Xie (PhD’04) on SBS’s YouTube Channel here.

 

By David Pace

Are you a Science Alumni? Connect with us today!

Ace Madsen

Ace Madsen, MD


The Uinta Basin in the northeast corner of Utah can seem like a ways “out there” near the border of Colorado and one of the most famous dinosaur quarries in the world. In fact as of last month, says  Vernal-based Ace Arthur C. Madsen, BS’79, “it took six months for the pandemic to reach my corner of the state. Now I have two to three patients a week developing Covid-19 or succumbing to it. I believe the mask and hand sanitizer culture is here to stay.”

It’s a sobering reality for a rural and oil-industry region of the state next to some of the most beautiful and remote landscapes in the state, including Flaming Gorge and the Green River drainage as it flows toward its confluence with the Colorado to the south near Moab. But it is home for Dr. Madsen who has raised his family there and is now grandfather to a whopping fifteen grandchildren.

The University of Utah was the place for Madsen to chase his dream of becoming a doctor. Today he is in private practice in internal medicine. As an undergraduate he recalls Richard Van Norman who taught Botany as one of his favorite professors.“He was friendly, liked to spend one-on-one time with his students and seemed to really care about what we thought and our future plans.”

“My background in basic biological science, biochemistry and molecular biology provided me with a solid background and was invaluable to me in my research activities and medical school.” The Department of Biology, now the School of Biological Sciences, was a bit of a boot camp for him and other pre-med students.

“I am very grateful for the no nonsense approach” of many mentors, he says, including the late Gordon Lark, the late James L. Lords, and emeritus professors William R. Gray and Bob Vickery. Once Madsen had graduated in biology, the rigors of his training continued with the late Dr. Frank Moody and as a research assistant at the U’s Medical School in the departments of Pediatric Neurology with Drs. PF Bray and JT Wu as well as the Department of Surgery with Dr. Layton F. Rikkers, now an emeritus professor of surgery at the University of Wisconsin.

In 1981 Madsen graduated with his MD, receiving the Outstanding Research Award. During that time he secured eight publications and 10 abstracts, predominantly on oncofetal antigens such as carcino embryonic antigen (CEA) and alpha-fetoprotein (AFP). Following his graduation from the U Medical School he completed his residency in 1984 in Internal Medicine at Duke University.

Madsen isn’t the only alumnus in his family from the University of Utah. His wife Zoe graduated in mathematics with a minor in chemistry in 1975, and his son Adam earned his BS in biology in 2006 before following his father’s footsteps to medical school. While at the U, Adam, who quarterbacked for the Utes, was named Scholar-Athlete in the Mountain West Athletic Conference in 2004 and was part of the undefeated and Nationally-ranked Tostito’s Fiesta Bowl Champions football team in 2005.

Father (right, in photo above) and son both practice in Vernal.

In addition to his medical practice and his grandfathering, Madsen works in wood and stained glass as hobbies. When asked what advice he would give to current students in the School of Biological Sciences, he is succinct and quick to number what he thinks future graduates from the U should do. 1. “Study hard. It is difficult to get anywhere without good grades. 2. Get involved with research. 3. Get married--best move I made in life.”

 

By David Pace

Are you a Science Alumni? Connect with us today!

Ed Groenhout

ED groenhout


Ed Groenhout, BS’85 in Biology, has developed a deep love for travel and for the people of the world. He and his family have visited five continents and dozens of countries, and they plan to visit Australia and China soon, to complete a trip to all seven continents. 

That same budding spirit of adventure led Groenhout to the University of Utah in 1980 to begin his undergraduate education.

I grew up in a small town in Montana (Bozeman, Pop. 20,000 in 1980) and wanted to experience something different and more diverse, says Groenhout. We had family who lived in Salt Lake City at the time, so my mother felt comfortable sending me far from home. 

It was a pivotal moment in his life. 

Groenhout embraced the opportunity. When he arrived on campus, as an out-of-state student, he lived in the dorms including two years in Van Cott Hall and two years in Austin Hall. (The three original dormitories – Van Cott Hall, Austin Hall, and Ballif Hall – were constructed in the late 1960s and could accommodate 1,200 students.)

Many of my best University memories revolve around dorm life, especially the intramural sports. I also worked for the U’s National Championship Women’s Gymnastics team in the early 1980s. We moved all the equipment from their practice facility to the Huntsman Center for competitions and then back again, says Groenhout.

My education at the U, especially in Biology, started everything for me, says Groenhout. It ignited a passion for learning that continues to this day. I became very interested in molecular biology and that interest translated into my first job working in a lab at the U. 

I must also mention Dr. David Stillman in the Molecular Biology department at the Universitys School of Medicine. He was a great mentor to me and helped me tremendously, and I never would have worked in a lab in New Mexico if he hadn’t taught me everything I knew, says Groenhout. 

At the U, Groenhout’s favorite teacher was biology professor John Roth. Roth had a significant impact on my education. I learned so much in his classes and also got hands-on experience performing his simple but elegant experiments with bacteria and mutations, says Groenhout. 

Upon graduation in 1985, with his Bachelor’s degree, Groenhout experienced another pivotal moment in his life. He was told that he would never get into medical school. 

That was all the motivation I needed, and I have since had an amazing career in medicine, says Groenhout.  In fact, my career has included bench research, academic medicine, the Veteran’s Administration, private practice in a rural location caring for predominantly Medicare and Medicaid patients, and now Public Health.

To get his medical degree, he worked tirelessly and was admitted to the University of New Mexico in Albuquerque. He conducted research in Dr. Richard Dorn’s endocrinology lab for four years and his work resulted in a publication in the journal Molecular and Cellular Endocrinology. He was also elected to Alpha Omega Alpha, the medical school honor society. He earned an M.D. degree in 1992. 

Groenhout then completed his medical residency and internship at the University of Michigan, Ann Arbor, from 1992 to 1995, and worked as a clinical instructor on the faculty of the University of Michigan for two additional years.

But I always wanted to get back West, to the open spaces and rugged beauty, says Groenhout. So, in 1997, he accepted a position as an Assistant Professor at the University of Nevada, Las Vegas, School of Medicine. He worked at UNLV for seven years and was promoted to program director of the Internal Medicine Residency Program there. 

Groenhout met his wife, Yvonne, an ICU nurse, at UNLV. We met at the Med Center and bonded over our mutual love of Diet Coke! They were married in 2003. 

That same year, Groenhout began his private medical practice at the Grants Pass Clinic in Grants Pass, Oregon. He specialized in primary care Internal Medicine there until 2020, when he and his family relocated to Salem, Oregon to work with the Indian Health Services in the Chemawa Clinic. 

It was another pivotal moment in his life. 

My wife Yvonne and I had talked for years about the next step in my career and we both wanted to continue to give back to underserved populations in the U.S., says Groenhout.   Having grown up in Montana I was aware of the healthcare disparities in Native areas of the U.S. and the Covid-19 pandemic only amplified those disparities.

The Chemawa clinic, located about 40 miles south of Portland, is unique because it is one of only four clinics in the U.S. not associated with a Native American Reservation and so Groenhout can provide care to a wider spectrum of patients. Chemawa is also a federally-assisted clinic so medical providers have access to greater resources than many smaller tribal clinics. In fact, the Chemawa clinic serves tribal members from over 100 tribes.

I see about 50 patients each week from predominantly Oregon and Washington states, says Groenhout. There is a high demand for quality medical care in these small communities like Chemawa and Salem where indigenous populations have unique medical needs.

Back: Ed, Yvonne. Front: Kaylee, Sara

As a front-line medical provider, I can say Covid-19 has had an immeasurable impact on my professional life but I am confident that we will emerge stronger and better equipped as a result. It has changed healthcare delivery and opened up new and more creative avenues for interacting with patients, says Groenhout. 

I hope the pandemic improves our trust in science and ignites an interest in science and healthcare in our youth.

I’d also like to recognize my wife, Yvonne, who – during the height of the Covid-19 pandemic – volunteered her ICU nursing skills and traveled to Chicago and the Virgin Islands for two separate two-week shifts. From this experience, she now plans to continue volunteer work both nationally and internationally, says Groenhout. 

In their continuing travels, Groenhout and his family visit Utah on a regular basis, especially for recreation in Bryce National Park and Zion National Park.

To current students, Groenhout says, Things may seem bleak right now, but we will get through this and life will get better and back to normal. Keep focused and determined and don’t let anything stop you!

Are you a Science Alumni? Connect with us today!

Adam Madsen

Adam Madsen


Adam Madsen, BA’06 in Biology, was the quintessential student-athlete.

To be a student-athlete requires extraordinary talent on the field and in the classroom. This is particularly true with science degrees due to the rigorous curriculum.

Madsen grew up in the Uinta Basin area, living in both Roosevelt and Vernal, two small farming towns in northeastern Utah.

He graduated Valedictorian from Uintah High School, in Vernal, and excelled not just in academics but also in athletics. He was named Academic All-State in football, baseball, and basketball. In baseball, he was named Utah 3A State MVP, Region X MVP, and USA TODAY– Honorable Mention All-American. In football, he made All-State as quarterback, Region X MVP, National Football Foundation and College Hall of Fame Scholar-Athlete Award, and was USA TODAY– Honorable Mention All-American.

After high school, Madsen went to Dixie State University in St. George with athletic scholarships to play football and baseball. At Dixie State he was named NJCAA Football Distinguished Academic All-American, team captain, two-time Dixie Rotary Bowl Champion, and three-time Western States Football League Conference Champion.

He earned an Associate of Science degree at Dixie, then transferred to the University of Utah to play quarterback for coach Urban Meyer and the Utah Utes. At Utah, he was named Scholar-Athlete in the Mountain West Athletic Conference in 2004 and was part of the undefeated and Nationally-ranked Tostito’s Fiesta Bowl Champions football team in 2005.

“I was a Pre-Med student at the time and in considering options, Utah was the best place to further my medical career pursuit and play football,” says Madsen. “The U had a strong reputation in my family, having grown up in Utah and having my mother and father both graduate from the College of Science in the 1970s,” says Madsen.

Left to right, Ty 10; Ally 7; Matt 5; Mya 12; and wife Marci

(Madsen’s mother, Zoe Madsen, earned a B.S. degree in mathematics and a minor in chemistry in 1975, and his father, Arthur Ace Madsen, completed a B.S. degree in Biology in 1976.)

“Being a student-athlete had several challenges. Football was basically a full-time job as far as hours per week it consumed,” says Madsen. “Weekends were mostly focused on football time as well. It wasn’t easy to juggle classes and make ends meet with football’s schedule.”

For Madsen to enroll in some upper-division biochemistry classes, he had to get special permission from team coaches, including Urban Meyer, since he would miss parts of team meetings during the week.

“On a typical day, I would have classes in the morning then have football practice from about 1 o’clock to 7 o’clock, then go directly to the Marriott library where I would stay until 11 o’clock or midnight,” says Madsen. “However, I would not trade my experience of playing football for anything! I learned so many valuable life lessons and made so many life friendships with players and coaches.”

At the U, Madsen’s favorite professor was Charles “Chuck” Grissom, a chemistry teacher who taught many of the upper-division biochemistry classes. “Grissom was available to discuss and answer questions, even with huge class sizes. Also, he showed he cared about students on an individual level,” says Madsen.

“I remember the Monday in class just after our Utah football team got the Fiesta Bowl bid, he brought bags of Tostito’s chips and let me help throw them out to the class. This was a small and simple thing but helped keep us engaged in his teaching.”

After graduating from the U, Madsen attended medical school at Des Moines University College of Osteopathic Medicine, in Iowa, and completed an Orthopedic Surgery Internship and Residency at Ohio University Doctors Hospital, in Columbus, Ohio.

Today, Madsen is an orthopedic surgeon in his hometown, Vernal, Utah. He practices general orthopedics including diagnosing and treating operative and non-operative injuries. He specializes in fractures, arthritis, partial knee replacement, sports medicine, ACL and ligament reconstruction, arthroscopic surgery, and foot and ankle conditions.

“My primary goal is to provide excellent orthopedic patient care to the people of this small-town community.” says Madsen.

His patients often include young student-athletes – much like himself at that age – who are striving to excel in the classroom and on the field.

Madsen and his wife, Marci, have four children: Mya, 12; Ty, 10; Ally, 7; and Matt, 5.

Are you a Science Alumni? Connect with us today!

Lee Roberts

 

LEE K. ROberts

Last year the College of Science celebrated its 50-year anniversary. When the College was formed, in 1970, Lee K. Roberts, BS’72, had nearly completed his bachelor’s degree in Biology.

“My undergraduate training at the U gave me a strong background in science in general and biology in particular. It helped motivate me to pursue an advanced degree,” says Roberts.

“Dr. Stephen Durrant taught two evolution courses that really excited me,” says Roberts. “First, was a course on comparative anatomy. The course was part lecture but mostly dissection of representative animal classes from worms to mammals. The second class was the evolution of man; which, in addition to examining various hominid skulls and bones, was my first exposure to reading research papers to supplement the textbook. My first look at how science is done.”

Roberts remembers many of his biology professors, including Fred Evans, Gordon Lark, James Lords, and current emeritus professor Robert Vickery. The early 1970s was an exciting time in the biology department. Gordon Lark was the chairman, and he was building a world-class faculty at the U.

“I took a protozoology course from Dr. Fred Evans. As an extra credit option, I did a little research project to characterize a protozoan he’d found in the crook of a tree. It was my first experience in conducting experiments to solve a problem,” recalls Roberts.

As an undergraduate, Roberts worked part-time at the Radiobiology Lab in the University's School of Medicine. After graduating in 1972 with his biology degree, he joined the Radiobiology Lab as a full-time technician performing clinical chemistry analyses and assisting the lab’s veterinarians with surgeries and autopsies.

“In 1975 I started graduate school in the Department of Anatomy, University of Utah School of Medicine, working toward a Ph.D. degree. Early in my graduate training I attended a seminar on tumor immunology, and I was hooked by the mystery of the immune system,” says Roberts.

Roberts was able to complete his doctorate degree in 1980 in anatomy and published a dissertation on how the cellular immune response influences the emergence and growth of skin cancers.

For the next two years Roberts worked as a postdoctoral fellow at the Immunobiology Laboratory at the University of New Mexico School of Medicine, in Albuquerque. He focused on gaining technical expertise in flow cytometry, monoclonal antibody techniques, and T-cell cloning.

“In 1982 I returned to the University of Utah School of Medicine as a faculty member in the Department of Dermatology,” says Roberts. “I also became the Director of the Flow Cytometry and Monoclonal Antibody Core Facility of the Utah Regional Cancer Center.” His research group was focused on immunobiology of the skin, immunological mechanisms associated with photo carcinogenesis, and characterization of cloned regulatory T-cells involved in the immune response to skin cancer.

In 1989, Dr. Roberts exited his academic appointment at the U to pursue a 30-year career in pharmaceutical and biotechnology R&D and management.  “I was lucky to work on several cutting-edge vaccine and immunotherapy technologies.”  He is currently retired in Memphis, TN; but continues with some biotech consulting.

“My best advice for students is to pursue your passion, no matter what barriers you face. Be tenacious in what you want to accomplish and you’ll find a way to get there,” says Roberts. “Find a good mentor. Better yet, find a group of mentors!”

Lee and his wife Dawn are dedicated Utah fans. “We try to get to at least one Utah football game during the season, as well as their end of season bowl game,” he says. “When I get back to Salt Lake I always include a visit to the campus. I love the sights, sounds, smells, and feel of the campus and the academic research environment.

“Living in Memphis limits our access to live Utah sports, so we purchased the PAC-12 channel so we can watch all the Utah football and basketball games during the season. And of course I own a full collection of Utah-branded shirts, pants, sweatshirts and jackets!”

When asked about the Covid-19 pandemic, Roberts had the following to say:

Snowbird, UT, with wife Dawn (B.S., Education '71) and grandsons Dillon and Judah.

“I’ve been very interested in following the scientific and medical research into the description of the SARS-CoV-2 virus and Covid-19 disease. Reminds me of when I was a postdoc in 1981 and the early days of the discovery of HIV and AIDS. The exception being that contemporary gene sequencing technology has greatly accelerated the identification of SARS-CoV-2 and characterization of the spike protein antigen.

“Given my vaccine research and development background I’ve also followed with great interest the development, clinical testing and regulatory approval of the Pfizer-BioNTech and Moderna mRNA based anti-SARS-CoV-2 vaccines.”

“I’m heartened that science worked! In real time it demonstrated the global effort of public health officials and scientists working through the scientific process to understand and discover effective clinical responses to curb the Covid-19 pandemic.”

“Conversely, I’m disappointed by the general public and political pushback against scientific facts, scientists and public health initiatives to address the Covid-19 pandemic. I hope that in the future we, the community of scientists, are able to improve the public and political trust in the scientific process, scientific facts and the scientific enterprise.”

 

In 1985 a scholarship was established in the School of Biological Sciences in honor of Stephen D. Durrant, referenced above, to support students studying mammalogy. You can find a listing of established endowments and scholarships that alumni regularly donate to here

 
by James DeGooyer
 

Nancy Parry

Nancy parry

When Dr. Nancy Parry, BS’63, was eight years old, she talked her mother into taking her to a fortune teller in Ogden. On the way there her mother asked her what she wanted to do for a career. “I want to be a doctor,” she replied with some embarrassment, believing her mother would find the notion preposterous.

“Well. That’s nice,” said her mother.

The tarot card reader who was wearing the garb of a gypsy dealt her four cards while Nancy’s mother took notes. “Oh, you’re going to be a doctor,” the card reader announced. Her mother was floored.

Eventually, Parry, who grew up in Salt Lake City, attended the University of  Utah for her bachelor’s where she recalls in particular the late anatomy professor John Legler as having a formative influence on her. But with the tarot reader’s other-worldly endorsement, thought Parry, “I didn’t study real hard. I mean, I was going to be doctor,” as if it were a done deal.

Confident in the outcome, and further inspired by a boy she was dating who also wanted a medical career, Parry eventually applied to medical school on the east coast. She was declined. “So I jumped into the car and went back to the fortune teller. ‘You told me I was going to be a doctor, and I didn’t get into medical school,’” Parry exclaimed. The fortune teller dealt the four cards again. “You applied to the wrong coast,” she said.

Parry was soon selected as an alternative candidate at the University of California, Irvine and was given two days to get to the west coast. “I went to the anatomy class and it was hot and this guy fainted from the heat and the strong formaldehyde odor, so when he dropped out of med school, I replaced him.”

She was “in.”

In the 1960s, female medical students were a rarity. It was a stigma that Parry had to fight for the rest of her life, even during her training. “I was going with this guy during medical school,” she remembers, “and he said to me one time--made a fatal mistake--he said when we get done with our training we’ll open up a practice and you can assist me. That was the end of that relationship.”

With her signature determination, Parry set up a solo medical practice with her sister, Janet Parry, R.N. (BS'66), and located in Anaheim where she was a general practitioner for thirty years. Parry looked young at the time because, at 28 years old, she was. At work in a 24-bed hospital she remembers arriving during visiting hours. A nurse tried to stop her, telling her visiting hours were over.  “I’m the doctor” Parry told her and proceeded, only to hear behind her back, “You’ve got to be kidding.”

It was a different time in more ways than the fact that women were rarely doctors. During a visit with a patient regularly brought to the office by her son, Parry determined that the woman was unfortunately going to require a hysterectomy. “So I brought in her son.” says Parry.

“Your mother has cancer of the cervix,” she explained.

“Wait a minute,” said the man.

“Don’t worry she’ll be fine…”

“No, wait a minute,” he said again. “I’m not her son, I’m her taxi driver!”

Needless to say, it was the era before HIPPA laws.

Eventually, the two sisters would form Parry Development Company with Nancy's lifelong friend, also a U alumna, Susan Flandro, (BS'63 & JD'68). Together they built a three-story medical office building and then a six-story building with offices for 70 physicians. The company also built a five-operating-room outpatient surgery center in Anaheim.  At one point Nancy had to put her home  up for collateral for the bank loan.

Following their stint in Southern California, the two sisters set up shop in Ketchum, the ski town adjacent to Sun Valley, Idaho, where they opened a small medical office.  Before that, however, Parry needed to advance her provisional ER privileges at the hospital to active status, and commuted to Salmon for months to get her hours logged.

Parry eventually expanded her interests to hyperbarics, a type of treatment that employs a pressurized HBOT chamber used to help wounded warriors with TBI and PTSD and to speed up healing of tissues starved for oxygen. She also trained on a BEMER P.EM.F. device that increases oxygen and nutrient delivery at the cellular level be 30% and potentially decreases the body's inflammation by the same percentage.

In research she has worked on telomeres, the repetitive nucleotide sequences at each end of a chromosome. Activation of telomeres lengthens the shortened chromosome ends for the prevention and repair of the neurodegenerative changes of aging. Additionally, she has addressed topics to the medical sector on the P53 gene and its relationship to bio-identical progesterone. Up-regulating the p53 turns out to be a tumor suppressor gene that in humans is encoded by another gene that may protect patients from breast, uterine, cervix, ovary, prostate and colon cancers.

Through the ups and downs of breaking the “glass ceiling”—which was more of a recurring rather than singular event—Parry developed Parkinson’s and in 2020 she retired from her medical career of 50+ years. Passing the baton, this doctor who helped pioneer women in medicine arranged to have another female physician take over her practice, hard-won, and well-earned.

The pandemic has given Parry more time to read. She also continues advising her friends and fellow doctors and researchers remotely by phone. Her advice to students today is simple: “Don’t give up!”

At her retirement party in August, she had the audience in stitches, regaling them with hilarious stories about her time in the medical field.

Nancy Parry’s acerbic humor and willingness to laugh at herself have endeared her to friends and rivals, whether it’s about fortune tellers or that time she donated a vasectomy procedure to the fireman’s ball auction, only to have to make good on it months later.

“We raised $750 for a good cause,” she says with a smile.

 

The Legler Endowed Lectureship in Human Anatomy, currently held by Mark Nielsen, supports the full cadaver lab for pre-med students at the School of Biological Sciences. 

You can support the legacy of Legler and Nielsen through a donation to the endowment here.

 
by David Pace
 

Edward Meenen

Edward Meenen

Ed Meenen (seated) talking to Gordon Lark at the Lark Endowment Dinner, 2019

Shortly after the COVID-19 pandemic began last spring, the School of Biological Sciences checked in with our alumni across the country and beyond to see how they were managing. The self-isolating Edward Meenen (BS’86) responded from his ancestral family community in Clay Center, Kansas. My “morning decision,” he quipped, “is what to put on to go to the living room!”

Though not the most philosophical response, Ed’s humor was well appreciated at a time when lock downs, quarantining and sheltering at home became the new, hopefully temporary, “normal.”

Ed worked with the late K. Gordon Lark,  founder of the Department of Biology, now SBS, at Kansas State University and decided to follow him to the U as Lark’s lab technician before moving to the labs of Ray Gesteland (now an SBS emeritus faculty member) and finally Robert Weiss. Ed's understanding of micro environments increased exponentially at a time when Lark was establishing and rapidly growing micro and cell biology at the U. The Kansas native recalls his introduction to the Mountain/Southwest through skiing and a field trip to Southern Utah, both of which were particularly memorable. So too was his work in Baldomero “Toto” Olivera’s lab researching conotoxins, ion channels, neurobiology ad molecular biodiversity using the subject model of venomous marine snails.

Earlier, Ed was drafted into the Army where he trained as a veterinary technician. There he spent most of his time at Walter Reed Medical Center stationed at Forest Glen in the research section. The veterinarians and their technicians were attached to the research group to provide veterinary support for the research groups. “People do not believe my military stories,” he says with his signature wry humor. “So I don’t often tell them (even my parents were not sure of my tales).”

Currently, Ed manages the two Kansas family farms, one of which he grew up on. Both are mainly for grain production:  wheat, corn and soybeans. “The farms are rented out on shares,” he explains, “which means that a portion of each crop belongs to the family (my sister, my sister-in-law and myself). The crops are delivered to the grain elevators. I then take over and market the grain.”

The farms require extraordinary administrative skill: “I must pay the bills as the family is responsible for their share of fertilizers, spraying for weed and fungus control,” he explains. Ed is also responsible to see that all the paper work is complete at the Farm Service Agency and that the crop insurance paper work is complete.

“I am responsible for all the bookkeeping and accounting reports that are given to the certified public accountant who prepares the IRS papers.” Finally, he cuts the checks to family members for their regular distributions.

In October 2019, Ed made the trip by pickup to honor his mentor Gordon Lark at a special dinner that included Lark’s wife Antje and, among many other colleagues hired and mentored by Lark during his tenure, Nobel laureate Mario Capecchi. The former Department Chair was visibly delighted to see his friend Ed Meenen as the two of them reminisced on days of yore doing cutting edge research together at the School of Biological Sciences.

 

The K. Gordon Lark Endowment is currently on its way to becoming fully funded.
You can join Mr. Meenen, Mario Capecchi and others who have made a donation to honor the legacy of SBS’s founder here.

 
by David Pace
 

Michele Lefebvre

Michele Lefebvre

Michele Lefebvre, PhD’05, knows exactly what graduate students in the School of Biological Sciences need to know about their academic careers at the University of Utah.

“What you learn here,” she advises them, “will apply to any career path you choose. The abilities to critically read, analyze, and write will serve you well on whatever profession you pursue.” It’s the kind of advice that has proven true for her as she navigates the pandemic as an environmental scientist based in Hilo on Hawaii's Big Island.

It hasn’t been without its challenges. “Living on an island in the middle of the Pacific, away from family, has been isolating and hard. Working a full-time, professionally challenging job with two elementary school-aged children at home has also been hard.” But her training and persistence have paid off, and even during an unprecedented pandemic she understands the opportunity in this time of global loss and grief. “I hope our individual searches for what’s important during this time, turn into decisions that improve our lives moving forward.”

The perspective she currently has undoubtedly stems at least in part from her time at the U, in particular in the lab of Don Feener. Following her graduation with a BA in biology from Boston University, Lefebvre realized she wanted to continue conducting research, and Feener was very well respected in the field as a researcher and mentor. “I’m grateful for his patience and the great example he set, which gave me the confidence to tackle the challenges in the program.” The training, which she calls "rigorous," requiring that she develop a skill for attention to detail, translated “directly to the work I currently do,” she says. A Florida native, Lefebvre also has fond memories of learning how to ski while in Utah.

“I started working in environmental consulting after I graduated,” she explains further. “At first, I learned how to conduct biological surveys and write biological reports and impact analysis.” Lefebvre later transitioned to preparing and managing documents that comply with the National Environmental Policy Act (NEPA).

Currently, Lefebvre is employed as an environmental impact assessment specialist and project manager for Stantec, an international professional services company in the design and consulting industry. There she conducts impact analyses on resources as a result of a given proposed project. This involves coordinating baseline surveys including biological and cultural inventories. She also assists with stakeholder coordination, which underscores the company's tagline:  "We design with community in mind."

Outside of work Lefebvre loves going to the beach with her two daughters, watching (and sometimes swimming with) turtles, snorkeling, and playing in the sand. She also enjoys gardening—her family grows sweet potatoes, bananas, and papaya in their yard and they have a small herb garden. To top it off, Michele loves staying active and runs the Big Island half marathon every year.

It's the culmination of a life of inquiry, passion and hard work, qualities that other graduate students in the School of Biological Sciences are poised to emulate … even during these difficult times when uncertainty reigns.

 
by David Pace