Todd B. Alder

Todd Alder

Todd B. Alder contracted COVID-19 early on in the pandemic and today still suffers from residual effects. But being just a “long hauler” as opposed to the alternative is what he calls being “lucky.” Says Alder, “Like many of us (I am guessing), this virus has disrupted my life with family and friends, my law practice, and my ability to travel. But on the plus side, I am really enjoying the Zoom calls where I am wearing a dress shirt and tie on top and something very questionable on the bottom.”

It's a scenario of late that many of us find ourselves experiencing (working on Zoom, not necessarily being pant-less), but the light touch that this biologist-turned-patent-attorney has towards not only the pandemic but work and life itself is evident. And so is his generosity. In April Alder was a featured alum in the School of Biological Sciences’ BioLuminaries speaker series (on Zoom, of course). As a registered patent attorney and partner at Thorpe North and Western (TNW) in Sandy, Alder illuminated the circuitous path one can take as a biology student toward fulfillment and job security… not to mention the love of chihuahuas.

More on that later.

The Road Less Traveled

Alder points to his PhD advisor, SBS’s Gary Rose, as the mentor who gave him “great direction over the years, particularly when I was stuck.” At the time Rose’s lab primarily focused on the neurophysiology of electrosensory systems in electric fish. Alder took an alternate path to study neuronal mechanisms underlying temporal processing in the auditory midbrain, a subject related to Rose’s PhD dissertation from a decade earlier. It was Rose’s broad way of thinking about science, research and the labyrinth that is life and career that still benefits Alder today.

“My dissertation was very broad over some fairly diverse scientific disciplines. This would not have been possible without Gary's early influence in teaching that young graduate student to not only see the world in a different way, but to approach problems and question them in a different way as well. I will always be grateful to Gary for helping me to see that there are no isolated questions or problems in science, but that everything has a much broader context and, as Robert Frost wrote, ‘that has made all the difference.’"

That difference played out while Alder was at the U in a remarkably refreshing and surprising way. “I was recording from a neuron in the midbrain of an anuran amphibian,” he explains, “and I thought of a test to further understand how these particular neurons worked.” Normally, neurons are not held in a stable state long enough for the kind of procedure Alder was planning. “But I stopped the program that was making the frog calls and quickly wrote a section of code so the program could do the test.”

It was that recompiling of the code—and a few crossed fingers—that led to a startling discovery. Once he turned the equipment back on the neuron in question was still there. From that test Alder showed that the generally accepted theory explaining how a neuron differentiates between high and low pulse rates was wrong. It turns out that neurons do not accomplish this differentiation though energy integration. Instead, Alder found that neurons were actually counting the number of pulses that occur within the range of pulse rates to which the neuron is tuned.

“That was one of the most exciting days of my life,” Alder says, “and I have always been amazed that those very complex questions were answered with [a] test performed on one neuron (it was repeated of course).” Alder graduated from SBS with his PhD in 2000.

Tripping the Patent Fantastic

Over the course of seven years, the mixture of biology, neurophysiology, molecular biology, etc. actually led to a degree in law which in turn opened up many opportunities for Alder to work with some very diverse and fascinating technologies. Enter his work in patent law following a clerkship at TNW beginning in 2002.

A Utah native, Alder hasn’t moved far geographically (he still lives in Utah and received all three of his degrees, including his law degree, from the U). But career-wise and developmentally it has been a galactic trip. For this reason he is quick to remind up-and-coming biologists at the U that education is not, and should never have been, about getting a job. “If you really contemplate the principles you are learning and integrate them into your life, it will change you and the way you think. To me, that is worth so much more than what type of job your degree can get you.”

About dogs … and a bear

Perhaps because of his wide-ranging academic, research and now patent career, Alder’s interests, like his dissertation, are broad and diverse. He loves to rock hound, watch horror movies, study theoretical physics and philosophy, collect old books, and “seriously mess with door-to-door sales people.” (Hopefully, while masked.) “Oh, and I once goosed a black bear in the wild, which made him terribly grumpy. But that is a story for a different day... .”

Which brings us to another enduring interest of Todd Alder’s and that is his love of chihuahuas. One advantage of working from home non-stop, quarantined from everyone else, is that your pets become a fixture, a pain and, if cuddly enough, a kind of accessory for that dress shirt above that questionable garment immediately below.

You can watch a recording of the BioLuminaries lecture by Todd Alder and co-presenter Heng Xie (PhD’04) on SBS’s YouTube Channel here.


By David Pace

Are you a Science Alumni? Connect with us today!

Nikhil Bhayani, BS’98

Nikhil Bhayani

“Every time I come to the U with my kids,” says Nikhil K. Bhayani, MD, FIDSA (BS’98), “I take them on a reality tour. I [recently] told my youngest son, ‘Let’s retrace my footsteps when I used to go from one of the lecture halls at Presidents Circle, to the Student Union. This is the way my day was like.’”

They ended up at the Pie Pizzeria Underground, a decades-long favorite haunt of students and faculty just west of main campus on 2nd South, famous as much for its densely graffitied walls as its provocatively named specialties like “Hawaii Pie-O” and “Holy Shittake.” “It really feels like a college campus,” says Bhayani of the U. “My son tells me that he wants to get pizza here [at the Pie] every day.”

Though born in Virginia, Bhayani considers Salt Lake City, where he was raised, home. His parents, both originally from India, married in New York City after Bhayani’s father had finished graduate studies at the University of Rhode Island.

“I always wanted to go to medical school,” says Bhayani who graduated in 1998 with a biology major and a chemistry minor. (His brother Mihir also graduated from the University of Utah with a degree in chemistry in 2000 and is also a medical doctor.) While an undergraduate he worked in a bioengineering lab run by Richard Normann, and later in one of the labs at the Moran Eye Center. He recalls fondly some of his fellow Indians, in particular Rajesh, Monica and Leena Gandhi, a few years older than he, but also graduates in biology who went onto medical careers in infectious diseases and cancer.

Bhayani later attended Ross University School of Medicine in Portsmouth, Dominica, and was awarded his medical degree in 2003. In 2006 he completed medical residency training at Mercy Hospital and Medical Center in Chicago where his brother currently lives.

Nikhil and his family now live in Texas where he practices medicine at Dallas-Fort Worth Infectious Diseases, an integrated health care network comprised of physicians, hospitals, case managers, community clinics, and managed care partners.

There he also enlisted as an Infectious Diseases and Epidemiology Physician Advisor at Texas Health Resources in Arlington. In 2016, Bhayani was named Physician of the Year by the Texas Health Arlington Memorial Hospital. Not one to rest on his laurels, he was hired earlier this year as an Assistant Professor in the Department of Internal Medicine, at Texas Christian University and the University of North Texas School of Medicine where he brings his undergrad U experience full-circle by teaching pre-med-students. Especially gratifying recently was when a graduating senior, also interested in infectious diseases, came to him to ask if he could “shadow” him for four weeks for one of the student’s electives.

In clinical practice, says Bhayani, who works long-term with patients who live with HIV and other infectious diseases, “the research is always changing what we do. You have to keep up with developing trends… . We get patients who are insured, who have steady jobs and who are a little more educated, so when they read about new medications they want to make sure they're getting the latest. In private practice you want to be at the top of your educated game. This motivates me to stay on top too."

In his administrative role as physician advisor, Bhayani oversees all infectious disease policy-making—like the use of antibiotics, what lab teams are going to be doing—at fifteen acute care hospitals under the umbrella of the Texas Health Resources system. With a large African immigrant population Dallas/Ft. Worth, also home to a major international airport, experiences emerging infectious diseases and thus needs intense anti-microbial stewardship, including CDC protocols and cooperation with the local health department. Bhayani is at the center of these various sector components.

As you grow up and become successful, always look back and reflect how you got there and give back to the community you were nurtured in.”

It’s an intense but meaningful career, and sometimes Bhayani considers what it would be like to return more to teaching and mentoring, the kind that he feels he got at the University of Utah’s School of Biological Sciences. “My dad always said, ‘As you grow up and become successful, always look back and reflect how you got there and give back to the community you were nurtured in,” says Bhayani. Even so, he never wants entirely to give up his clinical experience at what amounts to the largest nonprofit based healthcare group in the country, second only to Intermountain Healthcare based in Salt Lake City.

“As I reflect, who I am today is thanks to my parents and the University of Utah for giving me motivation and an opportunity to pursue higher education,” says Bhayani who with his wife of eighteen years, also originally from India where her parents still live, is busy raising two sons. This while trying to keep up with following the NBA, NFL and, of course, the Utes, which he loves.

“Most of the work is done by my wife,” Bhayani concedes. He refers to her as the “pillar of the house, that “she keeps everything going. Left to me it would be like college all over again.”

Pizza anyone?

In May 2021, after months of battling the COVID-19 pandemic, Bhayani was selected as Top Physician of the Year by the International Association of Top Professionals (IAOTP) for his outstanding leadership and commitment to the healthcare industry.


by David Pace

Are you a Science Alumni? Connect with us today!

Diana Montgomery, BS’87

Diana Montgomery

“Perhaps my favorite experience at the University of Utah is when I started working in a biology lab for the first time and realizing I fit in and enjoyed the work and the people there,” says Diana Montgomery, BS’87 in Biology. “It certainly helped to solidify my career choice.”

While at the U, Diana worked in Allen Edmundson’s crystallography lab on Wakara Way. In addition to learning practical skills, Diana was included in the research publication, titled “A mild method for the preparation of disulfide-linked hybrids of immunoglobulin light chains” in 1987. The journal was Molecular Immunology. (Read the paper here.)

Shortly thereafter, Diana graduated from the U and moved to Baltimore, Maryland, to begin graduate school at Johns Hopkins University. Her advisor was Ernesto Freire, a well-known expert in biological thermodynamics. Diana completed a doctorate degree in Biology/Biophysics from Johns Hopkins in 1994 and conducted postdoctoral work at Northwestern University in the lab of Richard Morimoto and at the University of Massachusetts in the lab of Lila Gierasch.

Diana is now a Principal Scientist in the department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism at Merck, in Pennsylvania. She focuses on developing therapeutic proteins as new drugs, two of which are now FDA-approved products, tildrakizumab and bezlotoxumab.

Tildrakizumab (brand name Ilumya) is approved for the treatment of adult patients with moderate-to-severe plaque psoriasis in the United States and Europe. Tildrakizumab is a monoclonal antibody that selectively binds to the p19 subunit of IL-23 and inhibits its interaction with the IL-23 receptor. IL-23 is a naturally occurring cytokine that is involved in inflammatory and immune responses.

Bezlotoxumab (brand name Zinplava) is a monoclonal antibody designed for the prevention of recurrence of Clostridium difficile infections, which can be life-threatening. Bezlotoxumab works by binding to a specific toxin produced by the Clostridium difficile bacteria and neutralizes the toxin’s effects.

Merck is a multinational company and one of the largest pharmaceutical companies in the world, employing some 74,000 people. In 2020 alone, Merck invested $13.6 billion in drug research and development.

Diana has 24 research publications with nearly 1,400 citations to her credit. Her recent work has focused on describing the effects of immunogenicity on therapeutic proteins. One liability of protein-based therapeutics is their tendency to elicit an unwanted immune response against themselves. One of the manifestations of such an immune response is the activation of B cells, which produce anti-drug antibodies that bind to therapeutic protein drugs and can reduce a drug’s therapeutic effects or be associated with safety issues. Therefore, an important part of therapeutic protein drug development is to characterize the tendency of a drug to elicit anti-drug antibodies and any potential effects on clinical pharmacokinetics, efficacy, and safety.

Reflecting back to her childhood, Diana recalls several key moments that motivated her to study science.

“My father was a mining engineer. He did some geology education while we were hiking, like what type of rocks were on the trail and how to recognize fool’s gold,” says Diana. “When we went camping, he’d explain the Pythagorean theorem with the triangles of the tent. It made math and science familiar to me.”

In high school, Diana developed an interest in molecular biology and biochemistry. She then chose to attend the University of Utah because it was a reputable research university which was close to home. (Diana grew up in Tooele, Utah, about 30 miles from the U.) Diana received an Honors at Entrance scholarship to begin her studies at the U, based on her achievements in high school.

“At the U, several classes in the Department of Biology (now School of Biological Sciences) were designed to encourage students to make and test hypotheses. This form of experimental-based learning was both effective and highly enjoyable,” said Diana.

“Professors like Gordon Lark and John Roth were fantastic. They made their lectures interesting and taught us how to think like a scientist and how to do science in the laboratory. I was lucky to be a part of that, but at the time didn’t realize it was so rare. I believe it is important for students to get a feel for doing science in introductory classes like these, rather than being exposed to it for the first time in graduate school. By the end of my undergraduate years, I was hooked on the scientific paradigm of hypothesis, design, experiment, and interpret. I have the U to thank for that.”

Diana and her husband, Hwa-ping (Ed) Feng have two children, Ellen and Nathan. Diana particularly enjoys gardening and reading. She also volunteers at a local food pantry and at animal-adoption clinics.

The College of Science and its four academic departments – Biological Sciences, Chemistry, Mathematics, Physics & Astronomy – now graduate more than 650 students each year. We are proud of our many alumni who live and work all around the world. Please share your stories with us!

Are you a Science Alumni? Connect with us today!

T. Mitchell Aide, PhD’89

T. Mitchell Aide

Distinguished Alumnus, Biology

Following his graduation with a bachelor’s from University of Texas - San Antonio, California native T. Mitchell (Mitch) Aide ended up in Utah … but via Panama. It was in Central America where he first met School of Biological Sciences (SBS) professors Lissy Coley and Tom Kursar doing tropical forest research. Aide would eventually become Coley’s first graduate student at the University of Utah. Lissy and Tom were “different than some other advisors,” says Aide. “They showed how high-quality research did not have to exclude enjoying life.”

The relationship proved to be a productive one. Aide graduated from U with a PhD in 1989 and continued in his career as a researcher and professor. Recently he was presented the School of Biological Sciences 2021 Distinguished Alumni Award.

During his sojourn at the U (1982-1990) Aide says that the cohort of professors there “created an environment of high-quality research and education

Stand-up guy on Stand up paddleboard (SUP)

without being aggressively competitive.” He remembers the personal and financial support of the department staff when a house he lived in with other graduate students burned down. His graduate work included a single-authored publication in Nature in 1988, demonstrating that the synchrony of production of young leaves for a community of tropical trees may have evolved as an adaptation to reduce herbivory by insects.

Since then he has published more than 140 peer-reviewed articles. And, after Smithsonian and Fulbright postdoctoral fellowships in Panama and Colombia, respectively, he took a position at the University of Puerto Rico - Río Piedras in 1992, where he is now a full professor.

His research interests cover a diversity of topics related to tropical forest ecology, including plant/animal interactions, forest dynamics, population dynamics, restoration ecology, land change, community ecology, conservation, ecological informatics, and ecoacoustics. Presently, his research focuses on land-use change and its implication for biodiversity conservation.

“In addition to Mitch’s own scientific contributions,” wrote Coley in the nomination letter for the alumni award, Aide “has mentored an enormous number of students, most from Latin America. These include 18 Master’s students, 11 PhD students, over 50 undergraduates and eight postdoctoral fellows. His mentorship of the next generation of scientists has had profound impacts on education and conservation in Latin America.”

Aide has also started a company to monitor biodiversity. “This was motivated by his concern for the alarming loss of species in nature,” says Coley, before explaining that her former student’s innovation was to deploy many low-cost acoustic recorders in nature and then analyze the sounds to quantify changes in the community or to track individual species of interest.

“His company developed the sophisticated but user-friendly Automated Remote Biodiversity Monitoring Network (ARBIMON) platform so researchers can analyze these recordings for their own research,” continues Coley. “His goal is to have permanent acoustic biodiversity monitoring stations in thousands of sites throughout the world, including eco-tourism sites, research stations, protected areas, and threatened areas.”

A consummate researcher, academic and now founder of a company, Aide enjoys water sports, including surfing and snorkeling. After more than 40 years publishing on tropical ecology and conservation, and “seeing our poor progress in conserving tropical biodiversity,” he says with some rue, “I will try a different approach—write a novel.”

During this time of pandemic, personal and societal reflection is the order of the day. Aide expects that there will be substantial changes to higher education. Even so, he advises today’s students to “identify what you are good at and what you enjoy and dedicate 110%” to it.

As a 2021 SBS distinguished alumnus, Mitch Aide is an excellent model for dedication and hard work—even when pivoting late in an esteemed career towards fiction writing to further the cause of and raising consciousness about the critical need for conservation.

by David Pace

Ace Madsen

Ace Madsen, MD

The Uinta Basin in the northeast corner of Utah can seem like a ways “out there” near the border of Colorado and one of the most famous dinosaur quarries in the world. In fact as of last month, says  Vernal-based Ace Arthur C. Madsen, BS’79, “it took six months for the pandemic to reach my corner of the state. Now I have two to three patients a week developing Covid-19 or succumbing to it. I believe the mask and hand sanitizer culture is here to stay.”

It’s a sobering reality for a rural and oil-industry region of the state next to some of the most beautiful and remote landscapes in the state, including Flaming Gorge and the Green River drainage as it flows toward its confluence with the Colorado to the south near Moab. But it is home for Dr. Madsen who has raised his family there and is now grandfather to a whopping fifteen grandchildren.

The University of Utah was the place for Madsen to chase his dream of becoming a doctor. Today he is in private practice in internal medicine. As an undergraduate he recalls Richard Van Norman who taught Botany as one of his favorite professors.“He was friendly, liked to spend one-on-one time with his students and seemed to really care about what we thought and our future plans.”

“My background in basic biological science, biochemistry and molecular biology provided me with a solid background and was invaluable to me in my research activities and medical school.” The Department of Biology, now the School of Biological Sciences, was a bit of a boot camp for him and other pre-med students.

“I am very grateful for the no nonsense approach” of many mentors, he says, including the late Gordon Lark, the late James L. Lords, and emeritus professors William R. Gray and Bob Vickery. Once Madsen had graduated in biology, the rigors of his training continued with the late Dr. Frank Moody and as a research assistant at the U’s Medical School in the departments of Pediatric Neurology with Drs. PF Bray and JT Wu as well as the Department of Surgery with Dr. Layton F. Rikkers, now an emeritus professor of surgery at the University of Wisconsin.

In 1981 Madsen graduated with his MD, receiving the Outstanding Research Award. During that time he secured eight publications and 10 abstracts, predominantly on oncofetal antigens such as carcino embryonic antigen (CEA) and alpha-fetoprotein (AFP). Following his graduation from the U Medical School he completed his residency in 1984 in Internal Medicine at Duke University.

Madsen isn’t the only alumnus in his family from the University of Utah. His wife Zoe graduated in mathematics with a minor in chemistry in 1975, and his son Adam earned his BS in biology in 2006 before following his father’s footsteps to medical school. While at the U, Adam, who quarterbacked for the Utes, was named Scholar-Athlete in the Mountain West Athletic Conference in 2004 and was part of the undefeated and Nationally-ranked Tostito’s Fiesta Bowl Champions football team in 2005.

Father (right, in photo above) and son both practice in Vernal.

In addition to his medical practice and his grandfathering, Madsen works in wood and stained glass as hobbies. When asked what advice he would give to current students in the School of Biological Sciences, he is succinct and quick to number what he thinks future graduates from the U should do. 1. “Study hard. It is difficult to get anywhere without good grades. 2. Get involved with research. 3. Get married--best move I made in life.”


By David Pace

Are you a Science Alumni? Connect with us today!

Ed Groenhout, BS’85

ED groenhout

Ed Groenhout, BS’85 in Biology, has developed a deep love for travel and for the people of the world. He and his family have visited five continents and dozens of countries, and they plan to visit Australia and China soon, to complete a trip to all seven continents. 

That same budding spirit of adventure led Groenhout to the University of Utah in 1980 to begin his undergraduate education.

I grew up in a small town in Montana (Bozeman, Pop. 20,000 in 1980) and wanted to experience something different and more diverse, says Groenhout. We had family who lived in Salt Lake City at the time, so my mother felt comfortable sending me far from home. 

It was a pivotal moment in his life. 

Groenhout embraced the opportunity. When he arrived on campus, as an out-of-state student, he lived in the dorms including two years in Van Cott Hall and two years in Austin Hall. (The three original dormitories – Van Cott Hall, Austin Hall, and Ballif Hall – were constructed in the late 1960s and could accommodate 1,200 students.)

Many of my best University memories revolve around dorm life, especially the intramural sports. I also worked for the U’s National Championship Women’s Gymnastics team in the early 1980s. We moved all the equipment from their practice facility to the Huntsman Center for competitions and then back again, says Groenhout.

My education at the U, especially in Biology, started everything for me, says Groenhout. It ignited a passion for learning that continues to this day. I became very interested in molecular biology and that interest translated into my first job working in a lab at the U. 

I must also mention Dr. David Stillman in the Molecular Biology department at the Universitys School of Medicine. He was a great mentor to me and helped me tremendously, and I never would have worked in a lab in New Mexico if he hadn’t taught me everything I knew, says Groenhout. 

At the U, Groenhout’s favorite teacher was biology professor John Roth. Roth had a significant impact on my education. I learned so much in his classes and also got hands-on experience performing his simple but elegant experiments with bacteria and mutations, says Groenhout. 

Upon graduation in 1985, with his Bachelor’s degree, Groenhout experienced another pivotal moment in his life. He was told that he would never get into medical school. 

That was all the motivation I needed, and I have since had an amazing career in medicine, says Groenhout.  In fact, my career has included bench research, academic medicine, the Veteran’s Administration, private practice in a rural location caring for predominantly Medicare and Medicaid patients, and now Public Health.

To get his medical degree, he worked tirelessly and was admitted to the University of New Mexico in Albuquerque. He conducted research in Dr. Richard Dorn’s endocrinology lab for four years and his work resulted in a publication in the journal Molecular and Cellular Endocrinology. He was also elected to Alpha Omega Alpha, the medical school honor society. He earned an M.D. degree in 1992. 

Groenhout then completed his medical residency and internship at the University of Michigan, Ann Arbor, from 1992 to 1995, and worked as a clinical instructor on the faculty of the University of Michigan for two additional years.

But I always wanted to get back West, to the open spaces and rugged beauty, says Groenhout. So, in 1997, he accepted a position as an Assistant Professor at the University of Nevada, Las Vegas, School of Medicine. He worked at UNLV for seven years and was promoted to program director of the Internal Medicine Residency Program there. 

Groenhout met his wife, Yvonne, an ICU nurse, at UNLV. We met at the Med Center and bonded over our mutual love of Diet Coke! They were married in 2003. 

That same year, Groenhout began his private medical practice at the Grants Pass Clinic in Grants Pass, Oregon. He specialized in primary care Internal Medicine there until 2020, when he and his family relocated to Salem, Oregon to work with the Indian Health Services in the Chemawa Clinic. 

It was another pivotal moment in his life. 

My wife Yvonne and I had talked for years about the next step in my career and we both wanted to continue to give back to underserved populations in the U.S., says Groenhout.   Having grown up in Montana I was aware of the healthcare disparities in Native areas of the U.S. and the Covid-19 pandemic only amplified those disparities.

The Chemawa clinic, located about 40 miles south of Portland, is unique because it is one of only four clinics in the U.S. not associated with a Native American Reservation and so Groenhout can provide care to a wider spectrum of patients. Chemawa is also a federally-assisted clinic so medical providers have access to greater resources than many smaller tribal clinics. In fact, the Chemawa clinic serves tribal members from over 100 tribes.

I see about 50 patients each week from predominantly Oregon and Washington states, says Groenhout. There is a high demand for quality medical care in these small communities like Chemawa and Salem where indigenous populations have unique medical needs.

Back: Ed, Yvonne. Front: Kaylee, Sara

As a front-line medical provider, I can say Covid-19 has had an immeasurable impact on my professional life but I am confident that we will emerge stronger and better equipped as a result. It has changed healthcare delivery and opened up new and more creative avenues for interacting with patients, says Groenhout. 

I hope the pandemic improves our trust in science and ignites an interest in science and healthcare in our youth.

I’d also like to recognize my wife, Yvonne, who – during the height of the Covid-19 pandemic – volunteered her ICU nursing skills and traveled to Chicago and the Virgin Islands for two separate two-week shifts. From this experience, she now plans to continue volunteer work both nationally and internationally, says Groenhout. 

In their continuing travels, Groenhout and his family visit Utah on a regular basis, especially for recreation in Bryce National Park and Zion National Park.

To current students, Groenhout says, Things may seem bleak right now, but we will get through this and life will get better and back to normal. Keep focused and determined and don’t let anything stop you!

Are you a Science Alumni? Connect with us today!

Adam Madsen, BA’06

Adam Madsen

Adam Madsen, BA’06 in Biology, was the quintessential student-athlete.

To be a student-athlete requires extraordinary talent on the field and in the classroom. This is particularly true with science degrees due to the rigorous curriculum.

Madsen grew up in the Uinta Basin area, living in both Roosevelt and Vernal, two small farming towns in northeastern Utah.

He graduated Valedictorian from Uintah High School, in Vernal, and excelled not just in academics but also in athletics. He was named Academic All-State in football, baseball, and basketball. In baseball, he was named Utah 3A State MVP, Region X MVP, and USA TODAY– Honorable Mention All-American. In football, he made All-State as quarterback, Region X MVP, National Football Foundation and College Hall of Fame Scholar-Athlete Award, and was USA TODAY– Honorable Mention All-American.

After high school, Madsen went to Dixie State University in St. George with athletic scholarships to play football and baseball. At Dixie State he was named NJCAA Football Distinguished Academic All-American, team captain, two-time Dixie Rotary Bowl Champion, and three-time Western States Football League Conference Champion.

He earned an Associate of Science degree at Dixie, then transferred to the University of Utah to play quarterback for coach Urban Meyer and the Utah Utes. At Utah, he was named Scholar-Athlete in the Mountain West Athletic Conference in 2004 and was part of the undefeated and Nationally-ranked Tostito’s Fiesta Bowl Champions football team in 2005.

“I was a Pre-Med student at the time and in considering options, Utah was the best place to further my medical career pursuit and play football,” says Madsen. “The U had a strong reputation in my family, having grown up in Utah and having my mother and father both graduate from the College of Science in the 1970s,” says Madsen.

Left to right, Ty 10; Ally 7; Matt 5; Mya 12; and wife Marci

(Madsen’s mother, Zoe Madsen, earned a B.S. degree in mathematics and a minor in chemistry in 1975, and his father, Arthur Ace Madsen, completed a B.S. degree in Biology in 1976.)

“Being a student-athlete had several challenges. Football was basically a full-time job as far as hours per week it consumed,” says Madsen. “Weekends were mostly focused on football time as well. It wasn’t easy to juggle classes and make ends meet with football’s schedule.”

For Madsen to enroll in some upper-division biochemistry classes, he had to get special permission from team coaches, including Urban Meyer, since he would miss parts of team meetings during the week.

“On a typical day, I would have classes in the morning then have football practice from about 1 o’clock to 7 o’clock, then go directly to the Marriott library where I would stay until 11 o’clock or midnight,” says Madsen. “However, I would not trade my experience of playing football for anything! I learned so many valuable life lessons and made so many life friendships with players and coaches.”

At the U, Madsen’s favorite professor was Charles “Chuck” Grissom, a chemistry teacher who taught many of the upper-division biochemistry classes. “Grissom was available to discuss and answer questions, even with huge class sizes. Also, he showed he cared about students on an individual level,” says Madsen.

“I remember the Monday in class just after our Utah football team got the Fiesta Bowl bid, he brought bags of Tostito’s chips and let me help throw them out to the class. This was a small and simple thing but helped keep us engaged in his teaching.”

After graduating from the U, Madsen attended medical school at Des Moines University College of Osteopathic Medicine, in Iowa, and completed an Orthopedic Surgery Internship and Residency at Ohio University Doctors Hospital, in Columbus, Ohio.

Today, Madsen is an orthopedic surgeon in his hometown, Vernal, Utah. He practices general orthopedics including diagnosing and treating operative and non-operative injuries. He specializes in fractures, arthritis, partial knee replacement, sports medicine, ACL and ligament reconstruction, arthroscopic surgery, and foot and ankle conditions.

“My primary goal is to provide excellent orthopedic patient care to the people of this small-town community.” says Madsen.

His patients often include young student-athletes – much like himself at that age – who are striving to excel in the classroom and on the field.

Madsen and his wife, Marci, have four children: Mya, 12; Ty, 10; Ally, 7; and Matt, 5.

Are you a Science Alumni? Connect with us today!

Cameron Soelberg

Cameron Soelberg

Cameron Soelberg, HBS’00

Honors science graduate, Cameron Soelberg, HBS’00, forged an adventurous—and rigorous—path as a student at the U. He continues to travel on a pioneering trail to this day.

Soelberg recently climbed to the summit of the highest point in Utah—Kings Peak at 13,528 feet—and has also lived and worked in Colorado, Illinois, New Hampshire, and New York.

“I think my personal history is a good example that your education and career don't need to necessarily move in a straight line from point A to point B, because your goals might change as you gain experience and that could launch you on a completely new path from what you had in mind originally,” said Soelberg.

When Soelberg first enrolled at the U in 1994, his intention was to pursue a Ph.D. and become a college professor.

After he completed his honors degrees in mathematics and physics, he stayed on campus to complete a Master’s Degree in Mathematics. While in graduate school, he was supported with a teaching assistantship in the Math Department and taught one or two courses each semester.

"After finishing the Master’s Degree, I felt like I needed some time away from school and decided to pursue an opportunity with a startup company in Colorado Springs. There I was involved in prototyping projects for the U.S. Special Forces, which was fascinating work,” said Soelberg.

In 2006, Soelberg took a job as a systems engineer with Lockheed Martin in Salt Lake City, developing biometric tagging and identification algorithms. “I enjoyed engineering and appreciated the quick learning curve and exposure to cutting-edge technology, but I wanted to broaden my horizons in the direction of business management, so after a year at Lockheed, I chose to leave Utah again to pursue an MBA at Dartmouth College,” he said.

While at Dartmouth, Soelberg became interested in investment banking. He completed an internship with Deutsche Bank in New York in the summer of 2008, between his first and second years of business school.

“The timing couldn’t have been worse as that was the start of the global financial crisis but witnessing it firsthand was an invaluable experience, and I was fortunate to receive a full-time offer to join the firm in Chicago after graduation,” said Soelberg. (He earned an MBA at the Tuck School of Business at Dartmouth College in 2009.)

The first few years following the financial crisis were tough for investment banking, as regulatory changes impacted the industry, but Soelberg worked hard and was promoted to vice president and then to director and managing director. He spent a total of nine years at Deutsche Bank. In 2018, he joined the Global Industries Group at UBS Investment Bank and now splits his time between Chicago and Salt Lake City.

“My current position involves a lot of numbers and a keen understanding of the capital markets and valuation,” said Soelberg. “It’s not sophisticated or complex in the way that algebraic topology or particle physics may be, but it does require critical thinking and a high degree of accuracy. The most important contribution my University of Utah education has made is the rigorous way I was taught to analyze and attack problems. The scientific method (and mathematical proof, similarly) is a disciplined framework for progressing from a hypothesis or question to a well-reasoned and logical conclusion. I use this every day in my job, and I’m grateful for how well my learning at the U prepared me to succeed.”

Soelberg recalls many people and experiences from his undergraduate years on campus.

“Lab work in chemistry and physics especially stands out, mostly because I was so impatient that I could never do the experiments quite right, but I had good lab partners who kept me on track,” he said.

“In the Math Department, Jerry Davey really had an impact on me as a student. I took a couple of undergraduate courses from him and helped with an accelerated calculus series one summer as a TA,” said Soelberg. “He was a kind person and a great teacher. He also lived an interesting life that spanned multiple dimensions in mathematics, the military, engineering, and private industry. I’ve always thought of his career path as a role model for my own.”

“Within the Physics Department, I’d be remiss if I didn’t recognize Charlie Jui for all that he taught me in the pre-professional physics program as a freshman. I wasn’t always the most present or attentive student, but his love of physics and wry sense of humor has stuck with me, and I still enjoy seeing him on campus,” said Soelberg.

Soelberg also remembers studying in the Fletcher building (Physics) and the Cowles building (Math) after it was renovated. He was active in many organizations on campus, including a fraternity, and he held offices in student government and the Alumni Association.

“I think there are a couple of lessons I’ve kept in mind that could prove useful for current students. The first is that there will always be challenges, obstacles, and setbacks to overcome, no matter how or when you start out in life. Adversity creates opportunity. Being adaptable is one of the most important keys to success (and happiness),” said Soelberg.

“Second, I would say that no matter how difficult things may become, you are not alone in the struggle. There are many other people, both historically and in different parts of society today, who have faced grave difficulties and found ways to rise above their circumstances. Take comfort and inspiration in that realization and use it as a model for yourself,” he said.

Soelberg is already planning his next adventure—to run the Chicago marathon. “There’s always another mountain to climb,” said Soelberg. “Life’s challenges, and rewards, can be found anew each day.”

A solid educational foundation in mathematics and physics, and the Honors College, is an exceptional “base camp” from which to operate.

Connor, Annabelle, Hayden, Charlotte, Cameron, and partner, Amanda.

Soelberg has four children: Hayden (19), Annabelle (16), Connor (13), and Charlotte (10). Hayden is a freshman at the U, studying computer science. He’s enrolled in the Honors College and lives on campus at Kahlert Village.


Are you a Science Alumni? Connect with us today!

More Alumni

Arie Sitthichai Mobley, BS’00

Lynn Miller, BS’63

Ed Groenhout, BS’85

Jason Allen, BS’01

Griffin Chure, BS’13

Ryan Watts, BS’00

Nancy Parry, BS’63

McKay Hyde, BS’97

Ace Madsen

Edward Meenen, BS’86

Diana Hulboy, BS’89

Diana Hulboy


Diana Hulboy, BS’89, has lived science from the outside in … and back. The Utah native graduated from the University of Utah in biology with a minor in chemistry before tackling graduate school, a post-doctoral fellowship and a career in the biotech industry, most recently as Director of Technical Business Development at MED Chem 101, a research reagents manufacturer.

But it was when she came down with cancer herself that the arc of her life seemed to come full circle. It has been a journey not unlike the bicycle races and rides she participates in—the inner/outer cyclical game that’s not actually a game, but life itself.

Fresh out of Alta High School in Sandy, Hulboy was offered not one but two scholarships from the UofU. As an undergraduate, she recalls a large group of friends hiking with her to the top Mt. Olympus, then running down and not being able to walk the following day. During her freshman year in the dorms she hung out with new friends (rather than studying) and remembers the Challenger space shuttle exploding as they all gathered in the commons area in shock.

Hulboy studied under Professor Joe Dickinson, dissecting transgenic Drosophila melanogaster larvae and adults to examine aldehyde oxidase activity. Later she was employed as a technician in the lab of Ryk Ward where she participated in DNA extraction and RFLP analysis of blood from patients with familial hypercholesterolemia and rheumatoid arthritis.

Armed with her degree in biology and a minor in chemistry, Hulboy headed off to graduate school at the University of Texas Health Science Center, MD Anderson Cancer Center in Houston where she continued her studies in molecular biology between 1989 and 1995 in the lab of Guillermina Lozano.

How SBS alumni make the transition from academia to industry is often a study in serendipity. Such was the class with Hulboy. Her research as a post doc at Vanderbilt University in Tennessee was elevated further in her studies of matrix metalloproteinase (MMP) expression and activity in normal and tumor model systems, and it was in her last year there, she says, that she attended the annual conference of the American Association for Cancer Research (AACR).

“In the exhibit hall I chatted with the co-owner of a small company, BIOMOL Research Labs, that manufactured assay kits and reagents for researchers,” she recalls. “They were looking for a protease expert to round out their product line, so my postdoctoral work with MMPs was a good fit.”

In 2000 Hulboy joined BIOMOL, located outside of Philadelphia. Rob Zipkin, Ph.D., a medicinal chemist and the company’s founder, became her mentor for working in biotech. “It was my dream job for a decade,” she admits. During that time, BIOMOL expanded to a multimillion-dollar company that was sold to Enzo Life Sciences.

Eventually Hulboy would rejoin Zipkin at his new company Med Chem 101, LLC. Similar to BIOMOL’s ethos, she explains, “we follow the scientific literature to identify key reagents that would be useful for researchers.” In the case of Med Chem 101, the reagents are bioactive small molecule chemicals, peptides, and lipids that act as inhibitors, agonists, etc. “Many of them are drugs, but we sell them for research use only.”

It turns out that researchers use these compounds as tools to tease apart the signaling pathway they are studying. “What happens when they block one step of the pathway with an inhibitor?” Hulboy asks rhetorically. “Or what happens when they activate another step? This tells them about the components of each pathway, and how they are all related to each other. If only I’d known about these types of reagents during my academic research days! They would have made my projects much better.”

This work constituted a time in her life when the biology of the body was theoretical and lab-based, filled with hours and hours at the bench and then writing up results in academic journals eventually resulting in her PhD. But while science had always been a key part of her life and personality, it remained, appropriately, academic … until it wasn’t.

And so it goes with the applications of basic science in the “real world” and in health sciences in particular.

And so it goes, sometimes, when the researcher becomes the subject matter of that research. After being diagnosed with stage II/III breast cancer in June 2017, Hulboy underwent six months of chemotherapy, multiple surgeries including mastectomy, and two months of radiation therapy. She started writing a blog about her experiences:

My PhD and postdoctoral work (11 years) was all about cancer, and one of

my projects was on breast cancer (in mice). Although I know the subject of

cancer well, it's from a cellular and molecular perspective, not clinical, so

I've much to learn. It's both good and bad to have some knowledge: good

because the more I understand what's going on, but better I feel, even if

it's bad news; bad because I can go down rabbit holes of thought that I

otherwise wouldn't.

September 2017 at the top of Stickle Ghyll in England's Lake District in the midst of chemo and after a grueling but exhilarating hike.

 As with science, cycling has shaped who Hulboy is. And now dealing with COVID-19, cycling and other exercise have proven even more important. To avoid crowds, she has been riding and walking in a nearby historical cemetery that doubles as an arboretum, “and this in turn has inspired me to take up nature photography. Staying in touch with my friends through the sport app Strava has been wonderful.”

“My life partner, Liz Feeney, was amazing,” says Hulboy, returning to the subject of her recovery from cancer, “and being healthy (thanks to cycling), an optimist, and a scientist got me through it. It was terrifying, but the more I understood what was going on, the better I felt, so I learned about everything that was going on, and being in clinical trials and research studies throughout my treatment also helped."

Even as the subject of cancer research, Hulboy never lost her fascination with the scientific method and the ethic of empirical and peer-reviewed research. She says she was fortunate to be part of an I-SPY2 multi-institutional clinical trial which comprised three study 'arms': standard chemotherapy; standard chemotherapy plus Keytruda; and standard chemotherapy plus a PARP inhibitor, talazoparib. As part of that trial she was eligible for more frequent scans and bloodwork, “which was good because it meant more frequent analysis in case something went sideways.”

It’s been almost three years since Hulboy’s intense part of cancer treatment was completed. Since then she has been on tamoxifen, which interferes with the binding of estrogen to its receptors, the latter of which are abundant on her cancer cells. “I am healing all the time, though I do have some permanent side effects that limit my ability to exercise intensely, at least for now. I am determined to overcome them, and in the meantime, I can at least still ride my bike!”

Rigorous training, begun at the School of Biological Sciences, and personal adversity through her bout with cancer have given Diana Hulboy perspective as well as strength and optimism. And she is quick to share that optimism and perspective with current students at the U who may be struggling through this unprecedented time of pandemic: “Don't give up on going to the U--it is so much more than 'just' an education.”

by David Pace

Thomas Stucky, BS’15

Thomas Stucky

On Feb. 18, the world held its breath as NASA’s multibillion-dollar Perseverance Rover landed successfully on Mars to look for signs of life—and to prepare for future human explorers. The robotic rover traveled 300 million miles in six months, a massive effort that all came down to “seven minutes of terror,” named for the hair-raising descent that happens too quickly for radio signals to transmit from Mars to mission control—in other words, the rover is on its own. The car-sized craft crashed through the Martian atmosphere at 1,000 mph enduring temperatures as high as 3,800°F. Its heat shield dropped, plunging the rover into a free fall before a “sky crane” lowered Perseverance into the 28-mile-wide Jezero Crater on Mars (illustration shown in the header image).

U alum Thomas Stucky (B.S. ’15) was one of the millions of people glued to NASA’s live stream of the harrowing landing. Stucky is a KBRWyle engineer at NASA’s Ames Research Center where he wrote software for robotic drill arms similar to the ones on Perseverance, then tested them on extreme Earth locations that resemble the Martian landscape. Now, Stucky works on a computer simulation of the landscape of Europa, a moon of Jupiter, that acts as a testbed for Europa lander autonomy. He sat down with @theU to talk about Perseverance Rover, NASA’s most ambitious mission in decades.

What was going through your mind as you watched Perseverance Rover’s entry into Mars?

Rendering of Perseverance Rover's Mars landing.

What went through my mind was my experience of the last time a rover landed on Mars: the Curiosity Rover in 2012. I was here at the University of Utah as an undergraduate, volunteering at a public watch party in the College of Science. I remember the dead silence that fell over an entire auditorium of people in wait of the heartbeat signal that indicated a safe landing. A silence that was punctuated with a ruckus of celebration moments later when mission control received the signal and confirmed Curiosity was safely on the ground. To see a room full of strangers all uniting and cheering for the accomplishments of a robotic explorer, and therefore the accomplishments of those who worked on it, was moving. It opened my eyes to the impact that space exploration can have on everyone.

Nearly a decade later, and several years of firsthand NASA experience under my belt, I watched this familiar sequence of events, but now with a new appreciation for the blood, sweat and tears that thousands of individuals from all around the globe had to contribute to make a mission like Perseverance a reality. Blood, sweat and tears that could all go poof at the slightest miscalculation.

What is Perseverance Rover’s mission on Mars?

Perseverance’s primary mission is to search for signs of ancient life that may once have thrived on a warmer Mars billions of years in the past. This is why it’s landing in the Jezero Crater at the site of an ancient river delta, which scientists think may have once flowed with liquid water. Due to the harsh radiation environment on the surface, it is unlikely that we’ll find current life without digging more than a meter underground. This ancient river delta may have deposited and preserved biosignatures in the form of organic molecules that we know are synthesized by life here on Earth. The landing site is also home to a number of steep cliffs, sand dunes, and boulder fields that will teach us more about Mars’ geological past. In astrobiology, biosignatures alone are not enough to prove life existed—the geological context that they are found in is needed to make conclusive statements about what sort of life may have once thrived there. For that reason, Perseverance is also equipped with a suite of scientific instruments to learn about Mars’ past climate and geologic history.

As if searching for ancients traces of Martian life and characterizing the geologic history of a planet wasn’t enough, Perseverance has a third objective as well; to conduct studies that will prepare for human exploration of Mars. There is an experiment on board that sounds right out of the movie, “The Martian.” It’s called MOXIE, or Mars Oxygen In-Situ Resource Utilization Experiment. It’s a device that absorbs carbon dioxide from the Martian atmosphere and synthesizes it into oxygen, which is a crucial technology for future Mars explorers to produce both breathable air and rocket fuel. Perseverance also carries the Mars Environmental Dynamics Analyzer to characterize Mars weather and gain a better understanding of the dangers that will face future human and robotic explorers alike.

The rover will drill into Mars’ surface to collect and store soil and rock samples. What can these tell us about life on Mars?

Lots of things! Rocks contain within them the chemical history of a world. They hold the key to understanding Mars’ past. Perseverance is equipped with a suite of instruments that will measure both the organic and geological chemical makeup of Mars rocks and their morphologies to answer questions like: “How warm was Mars?” “How wet was Mars?”; “How briny were its ancient rivers?” and the big one, “Did Mars’ ever harbor life?”

Inside NASA's Mission Control at in Southern California.

The instrument that may shed the most light on the question of life on Mars, is SHERLOC, or Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals. SHERLOC is designed to tell us what minerals and organic molecules are present in a drilled sample of rock. Not all organic molecules are considered biosignatures, but SHERLOC is able to show us the distribution of different molecules within a sample. For instance, a high concentration of organics in a particular region of a sample might suggest that an ancient microbial community once thrived there. Further analysis will have to be done to confirm definitively if SHERLOC detects biosignatures, which is why Perseverance’s robotic arm will be capable of caching promising samples for retrieval by another NASA mission down the line. These candidate samples that Perseverance will collect and store on board may very well contain conclusive evidence of life on Mars, but we will still have to wait and find out.

You develop software for robotic drills and test those drilling capabilities on Mars-like surfaces here on Earth. What are some challenges in remote drilling on another planet?

Drilling is all about paying attention to how the material affects the drill and adjusting accordingly. If you’ve ever used a hand drill on a piece of lumber, you know that you could encounter a change in the wood grain that jams the drill bit. If you get your drill bit stuck in a piece of wood here on Earth, no big deal. Just walk to the local hardware store and buy another, or pry it out of the wood. If the drill bit attached to your rover gets stuck while on Mars, then the whole mission is a bust.

The drill assembly on the end of Perseverance’s robotic arm holds nine drill bits, and among them is a coring bit that can extract half-inch diameter cylinders of Martian rock up to 2.4 inches deep. By acquiring a sample at this depth, Perseverance will be able to assess it for biosignatures of extinct life; however, future missions might need to dig even deeper into Mars in order to find life that may presently thrive meters under the surface protected from harmful radiation. The difficulty of drilling exponentially increases with drilling depth, which means tackling these problems is crucial to finding extant life on Mars.

How does testing technology on Earth help identify and address these issues?

It’s important that the rover’s own systems are able to monitor the drilling telemetry and make decisions in real-time on its own. A human operator on Earth could control the drill through sensors that read the motor torque and weight, but Mars is so far away that even light-speed communication is too slow for real-time control. Any drill telemetry that the operator sees are already 20 minutes old, and any fault they attempt to avoid has likely already caused damage to the system or resulted in a stuck bit. A stuck bit… on another planet… with no hardware stores… it’s every DIYers worst nightmare.

That is what my work at NASA has been about. I worked on a 1-meter-long robotic drill, which we tested on a variety of rocks at locales all around the globe that have landscapes similar to Mars. I learn about all the possible ways that a drill can fail, and how to teach the rover to recover any drill failure by using only the feedback and controls that a robotic explorer would have access to.

How did your time at the U influence your career path?

I started my journey at the U only being sure that I wanted to study physics. By the end of my undergraduate career, thanks largely in part to the wonderful faculty in the Department of Physics & Astronomy, what I gained was a newfound passion for space research. When I was a student, I volunteered at the Wednesday night star parties held at the South Physics Observatory on the roof of the physics building. I saw how stargazing changes a person’s perception of their world and their place inside of it. Sure it may make us feel small in size, but that’s important in a way. Like we have something to offer this great big universe: an understanding of itself. Although we all collectively inhabit a pale blue dot, our true, long-lasting imprint will not be in how far we expand or how tall we build, it will be in the lessons, both scientific and cultural, that we learn along the way.

by Lisa Potter first published in @THEU