Wilkes Center Climate Prize Winner

Winner of Wilkes Center Climate Prize

 

Lumen Bioscience is the inaugural winner of the $1.5 million Wilkes Center Climate Prize at the University of Utah. The Seattle-based biotech company beat 77 international teams with their proposal to drastically reduce methane emissions from dairy and beef cattle using a patented mixture of enzyme proteins.

Wilkes Center Director William Anderegg (left) and Lumen Bioscience Chief Scientific Officer Jim Roberts

Lumen Bioscience is the inaugural winner of the $1.5 million Wilkes Center Climate Prize at the University of Utah. The Seattle-based biotech company beat 77 international teams with their proposal to drastically reduce methane emissions from dairy and beef cattle using a patented mixture of enzyme proteins. William Anderegg, director of the U-based Wilkes Center for Climate Science & Policy, made the announcement at a press conference on Sept. 22, 2023, at the Natural History Museum of Utah. The Wilkes Climate Prize at the University of Utah is one of the largest university-affiliated climate prizes in the world and aims to push through potential breakthroughs with a one-time, unrestricted cash award.

Seven years ago, Lumen scientists discovered how to genetically engineer the edible algae spirulina, a problem that had vexed researchers for decades. Based on the discovery, they built a drug discovery and biomanufacturing platform mainly for developing new, orally delivered biogenic drugs against gastrointestinal (GI) targets that cause human disease. Their winning Wilkes Climate Prize at the University of Utah project extends the approach to target the methane-producing microorganisms in the rumen, a specialized compartment of the cow’s GI tract.

“Our award-winning proposal is a testament to the culture at Lumen, which encourages broad and creative thinking by our highly talented scientists,” said Jim Roberts, Lumen Bioscience chief scientific officer. “CEO Brian Finrow and I founded Lumen on the idea that dramatically improving the cost and scalability of manufacturing protein therapeutics would allow us to address global challenges that are out of the reach of conventional biomanufacturing technologies. The recognition of the Wilkes Climate Prize at the University of Utah is a new and powerful example of this.”

Read the full story by Lisa Potter in @TheU about the September 22, 2023 announcement.

Read more about this story at the Salt Lake Tribune.

 

UteQuake

‘UteQuake’ seismic exhibit goes live

 

“Although a seismometer’s primary role is to record earthquakes, these very sensitive instruments will detect any ground shaking, regardless of the source, including from rowdy Utes fans in Rice-Eccles Stadium.”

This is how the new webpage of UteQuake introduces itsself as it returns to Rice-Eccles Stadium Saturday when the University of Utah faces No. 22-ranked UCLA for the football teams’ Pac 12 conference opener Saturday, Sept. 22.

During the game, which kicks off at 1:30 p.m., the University of Utah Seismograph Stations’ (UUSS) geoscientists from the Department of Geology & Geophysics will monitor amplitude signals recorded by a seismometer they installed Aug. 30 on the west side of the stadium, then tweet interesting observations during the game.

The idea is to help pump up No. 11-ranked Utes’ game-day excitement, while also promoting the Seismograph Stations’ vital public safety mission to “reduce the risk from earthquakes in Utah through research, education, and public service.” The UUSS operates a regional network of 200 seismographs stretching from the Grand Canyon in Arizona to Yellowstone National Park in Montana.

Tested during the Utes’ season opener against the Florida Gators when record attendance exceeded 53,000, the experiment proved a roaring success. So UteQuake will run for the remainder of the season, according to Jamie Farrell, a research associate professor of geology and geophysics.

During Saturday’s game, Mark Hale, one of the seismic analysts at the UUSS, will be tracking the seismic waveforms in real time, then tweeting analysis of readings at key moments, starting with the Ute players emerging onto the field.

Read the full article by Brian Maffly in @TheU.
Go Utes! 

Photo credit: Utah Athletics

 

Climate-Resilient Western Grid

Gird YOUR Grid

 

The Western Interconnected Grid, commonly known as “the Western Interconnection,” is one of the two major interconnected power grids in North America.

The "Western Interconnection," as it is called, stretches from the northern edge of British Columbia, Canada to the border of Baja, Mexico, and from the California coast to the Rockies, and serves roughly 80 million people over 1.8 million square miles across two Canadian provinces and fourteen western states in the United States.  It is the backbone of one of the largest regional economic engines in the world.

On September 18th it was announced that  through  $5M funding by the U.S. National Science Foundation (NSF) and $3.75M funding by the Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Utah and University of Calgary will establish and co-lead the U.S.-Canada Center on Climate-Resilient Western Interconnected Grid.

Masood Parvania, associate professor of Electrical and Computer Engineering at the University of Utah’s John and Marcia Price College of Engineering will co-lead the center along with Hamid Zareipour, professor of Electrical and Software Engineering at the University of Calgary’s Schulich School Engineering.

“Our center is being established at a critical time when the region is experiencing more frequent and severe extreme weather disturbances such as wildfires, heatwaves, drought, and flooding, the impacts of which not only pose threats to human health and the environment but also affect the ability of the western interconnection to continue powering the communities,” says Parvania.

At the University of Utah, the center involves co-principal investigators Valerio Pascucci, professor at the Scientific Computing and Imaging Institute and Kahlert School of Computing, William Andregg, director of the Wilkes Center for Climate Science and Policy, and Divya Chandrasekhar, associate professor in the Department of City and Metropolitan Planning in the College of Architecture and Planning, among multiple other partners and faculty.

Read the full story from the John & Marcia Price College of Engineering website.

More about this story from Brian Maffly in @TheU

Whale of a project: Library digitizes 50 years of research

Library digitizes 50 years of Patagonia research

 

Each spring, southern right whales congregate off the coast of Patagonia, Argentina. In the protected bays created by PenínsulaValdés, females calve and raise their young during their first three months of life.

Throughout their 60-plus years of life, the females return to this spot about once every three years. Distinct growths on their head called callosities allow researchers to visually identify individual whales and collect data on them over their lifetime.

In 1971, Victoria Rowntree, now a University of Utah biology research professor, joined head researcher Roger Payne on a trip to his newly discovered research site in South America. “I had previously worked for Roger at Rockefeller University and when he and his family went to Argentina for a year, he said ‘hey Vick, you should come down here—it’s incredible,’” Rowntree said. “And so I did. I’ve been working on identifying and following the lives of individual right whales ever since.”

Marriott Library

At that time, most of what was known about large whales had been gained from the whalers that harvested them. As a behaviorist, Payne wanted to observe the whales over their lives and learn about things such as how often they calved and how they interacted with their environment and each other. He realized that the unique patterns of callosities on their heads provided a way to identify them as individuals throughout their lives.

When the Patagonia right whale project began, Payne and his team used a small plane to aerially document the whales with film photography. Initially, this film was developed in a dark room set up at the research camp. A head catalog was created that organized known whales by the number, shape and placement of their markings, to make it easier to determine whether a whale had been previously identified. By the early ’80s, hundreds of individual whales were known and the sheer number of images was becoming unwieldy.

Technological innovations continually changed the work. For example, when digital photography became available, the researchers shifted to that method of documentation in 2005. In the late 1990s, the project switched from researchers having to physically match the whales with those in the head catalog to using a computerized system that suggested likely matches. Creating the digital catalog required only a few of the best images of each known whale, which meant the vast majority of the data collected before 2005 only existed as physical slides.

To read the full story about how Rowntree's research is being digitized by the Marriott Library, read the article by Mattie Mortensen. 

Right Whale Research, Vicky Rowntree

Doing Right By right whaleS

 

More than 50 years ago, Victoria Rowntree, research professor of biology at the University of Utah, was invited by the animal behaviorist Roger Payne to visit his then-new right-whale research project at Península Valdés (PV) in Patagonia, Argentina.

Victoria Rowntree, in the field. Banner photo: Instituto de Conservación de Ballenas

Payne was already famous for discovering (together with his wife Katy Payne) the “Songs of the Humpback Whale” – probably the most famous nature album in history.  A few years later Rowntree joined the right-whale project as a full-time researcher and began a long career during which she played leading roles in shaping, and then sustaining, what has become the most important study of its kind.

Rowntree has always had a passion for animals. Initially she wanted to become a veterinarian, but shifted her focus after Payne, her animal behavior professor at Tufts University, asked if she wouldn’t rather study healthy animals in the wild. After graduating, Rowntree worked with Payne on a barn owl echolocation project at Rockefeller University in New York before returning to Massachusetts and working with C.R. Taylor at Harvard’s Concord Field Station for five years.

At the Museum, Rowntree was responsible for performing experiments in which  various species of animals were run on treadmills while researchers recorded their oxygen consumption and heat balance. The subjects included chimpanzees, lion cubs, cheetahs and even an ostrich. These experiments resulted in landmark animal exercise physiology papers with Rowntree as one of the authors.

Despite her success as a researcher, Rowntree didn’t enjoy the work she was doing, she says, “... because you have to know the extremes… It wasn’t for me.” Instead, she wanted to observe animals in their natural habitats. “It’s just fun watching any animal for a long time, one that’s not in an aquarium, but out in the ocean.”

By this time, Payne was back in the Boston area and the PV right whale project was beginning to take shape.  Rowntree asked Payne whether she could join the small team of researchers who were building a “catalog” of individually recognized whales. He immediately said yes.

Giant Sea Creatures

When the PV right whale project began, little was known about the giant sea creatures which average 43 to 56 feet in length and weigh up to 176,000 pounds. Biologists weren’t sure exactly how often female whales bore calves because any prior knowledge came from whalers studying the placental scars in the wombs of whales they had killed. (Though now contested, right whales were named so because they were the “right” whales to kill.) Inspired by the British ethologist Jane Goodall and other researchers who were closely observing animals in the wild, Payne realized that tracking the lives of individual whales, especially reproducing females in their natural habitat for long periods of time, was likely key to understanding their reproduction, ecology and demographics.

Southern Right Whale. NOAA fisheries

Each year, in the months of July through October, southern right whales (Eubalaena australis) arrive at bays on the shores of PV to calve and raise their young in the safety of the shallow waters. Cliffs along the coast provide excellent locations to observe the whales and photo-identify individuals, the primary method of data collection for this project. “Roger realized that repeated photo-identification of individual whales would allow the population size and birth intervals and other important demographic parameters to be estimated,” says U Emeritus Professor of biology Jon Seger, Rowntree’s husband and frequent research collaborator.

What Rowntree and her colleagues look for are distinctive patterns in the whale’s callosities: rough patches of thickened skin on the whale’s head. Within the circles of callus tissue are sensory hairs that may help the whales find their prey. Callosites appear white against the whale's black skin and are covered with living blankets of light-bodied crustacean passengers or “whale lice."

Using photos of the whale’s heads, Rowntree and her colleagues have identified more than 4,000 individuals to date; many have been seen over spans of two-to-five decades and in many different years, with and without calves.

A half century of data

Hovering drone over a right whale. Instituto de Conservación de Ballenas

As Rowntree and her team were observing the changes in the right whale population in Patagonia, they were constantly improving the technology they used to document the animals. Beginning in 1971, annual photographic surveys were conducted by flying along the perimeter of the Peninsula in a light plane which would circle low over groups of whales while a photographer snapped frames on 35mm black-and-white film. Later the National Geographic Society got involved and provided 35mm color film and processing. Finally, in 2005, the team made a long-anticipated move to digital cameras.

Today, quadcopter drones are primarily used to photograph the whales. With a drone, researchers can hover over the water and wait for whales to surface directly below, as opposed to flying in slow, tight circles over the water, hoping to be above a whale when it finally surfaces to breathe.

The wide range data forms posed a challenge for ongoing work. When Rowntree moved to Utah, she found herself managing five filing cabinets with tens of thousands of 35mm film photos covering the first 34 years of the project. At  risk of fire or other disasters, the collection had limited access, especially for her Argentine colleagues. Now, with the help of a grant from the Committee on Library Information Resources, the U’s Marriott Library, has digitized the irreplaceable foundation of the project’s ever-growing database for scientists worldwide which, among quality-check assignments by scientists will also prove helpful in the development of artificial intelligence software to automate individual whale identification. (Read the story about this digitization project.)

Tourist whale watching

Instituto de Conservación de Ballenas

When the PV right whale project began, there was only one whale watching company at Valdes Peninsula, now there are five. The research project has drawn exponential numbers of tourists worldwide to the area, as there is no other place to predictably see whales up close in their natural habitat. “This study contributes hugely to it [tourism] because of the added value for the tourists going out on a boat,” Seger says.“There’s a naturalist [on board] who knows all this stuff.”

News about the right whales is a source of pride and joy for Argentines. Media regularly contact the research team and ask for stories about the whales to share broadly. Rowntree adds, “...we have these whale nights with the whale-watch operators in a room not big enough to hold it, and people are all sitting around on the edge. The captains report what they've seen and what the researchers have learned and what science has gone on… .” These packed community presentations are fueled by empanadas and extend well into the early morning hours.

At its core, the PV right whale project is a labor of love from local students. “Vicky saw early on,” says Seger, “that these wonderful young college-age volunteers who would show up to work for a few weeks should be raising their sights and thinking about getting Ph.D.s and starting their own research projects. Now," continues Seger,  “… five or six have come to the States for graduate study with Vicky's encouragement and help in finding labs."

Two of these students earned their Ph.D.s at the U, and most are now faculty at different Argentine universities. They and their volunteers and students are now responsible for most of the front-line research work and represent the PV right whales nationally and internationally. The project is now directed by the Instituto de Conservación de Ballenas, an Argentine non-profit founded in the 1990s, in collaboration with the American non-profit Ocean Alliance, which was founded by Payne in the 1970s.

A living legacy

With the digitization the project’s analog photos and supporting data, Seger stresses that “this isn’t just a historical archive of some wonderful study that’s now fading back into the mists of history. It’s an ongoing research project that we all want to go on for another 50 years, at least.” As data accumulate each year, they show more and more clearly how the PV right whale population has continued to grow, despite serious ecological challenges.

The involvement and education of local students are crucial for the longevity of the project because, Rowntree says, “... [T]hey’re the ones that can affect the conservation of the right whales… .” In addition to keeping the research project running, these young advocates  represent their population at International Whaling Commission meetings and influence policy changes that will conserve whales and their marine habitats.

This living body of right whale research  grows year-to-year and will continue to illuminate a wide variety of basic scientific and urgent practical issues such as the effects of climate change and increasing commercial boat traffic.  Far from a relic, the research gets its power directly from its continuity, which has been sustained in large part by Victoria Rowntree’s unflagging curiosity and dedication over half a century.

By Lauren Wigod
Science Writer Intern

Andy Thliveris: Remember the Undergrads

Andy Thliveris: 'Remember the Undergrads'

 

In December 2022, Andrew Thliveris BS’83 made a special trip to Salt Lake City with his wife Lauren. They joined the School of Biological Sciences in a belated (due to the pandemic) remembrance of K. Gordon Lark who had passed away more than two-and-a-half years earlier in April 2020.

Vice Chair and Ophthalmology Residency Training Program Director at the University of Wisconsin-Madison’s Department of Ophthalmology and Visual Sciences, Thliveris, until his retirement in September, was also Chief of Ophthalmology at the W.S. Middleton VA and holds the rank of Professor at the School of Medicine in Madison. At the event “Andy” remembered that as an undergraduate he worked in the Lark lab for five years and that Lark had a profound impact on him. “He changed my life,” reported Thliveris whose main message to the faculty and friends who had gathered was “Remember the undergraduate students.”

Thliveris also surprised many by announcing that through his affiliation with the Carl Berg Foundation he had arranged to fully fund the Lark Endowed Chair with a check for $430,000. The Lark fund was established in 2017, followed in July 2022 with a campaign to “re-boot.” The ambition was to achieve the level of endowed professorship through an anonymous, matching donation of $250,000. But with Thliveris’ brokered gift—added to many others from generous individual donors—the K. Gordon Lark Endowment was elevated to the more prestigious level of endowed chair.

'Get this guy under control'

K. Gordon Lark. Credit: Ben Okun

With his characteristic humor, Thliveris was eager to recall his time in Lark’s lab.  He confessed to being that “pesky nerdy undergrad, high-maintenance, known to call Gordon at 11 pm on several occasions, [until] finally, Gordon, then speaking to his post-doc Paul Keim, [said], ‘You’ve got to get this guy under control because I have no idea what the hell I told him last night.’”

Lark wasn’t the only one who mentored, managed and otherwise inspired that “pesky” undergrad. Addressing Nobel laureate and Lark colleague Mario Capecchi who was at the event as well, Thliveris remembered how “you spent many hours with me in your office when you taught biochemistry. I was always in there.” He also recalled Baldomero “Toto” Olivera and his amazing cone snails which would later prove critical in the advance of alternatives to opioid pain relievers, as well as the late Naomi Franklin who helped bring sequencing to Lark’s lab and its occupants.

Regarding Martin “Marty” Rechsteiner, now in the U’s  Spencer Fox Eccles School of Medicine, Thliveris recounted his professor “who on the first day of his class of trembling undergrads told us that if we memorized every word out of this mouth then we might just pass his class.”

Clearly, Thiliveris’ sojourn at the U as an undergraduate where he majored in biology and geology & geophysics, and later attended the U’s medical school where he earned his MD, prepared him well. Following his ophthalmology residency at Wisconsin in 1998, he was a postdoctoral research fellow as a launch to his auspicious 28-year career. After joining the faculty in 2000, he took on the position of Veterans Affairs Hospital service chief and later, in 2014, vice chair of resident education and residency director  — roles he held until his retirement and during which time he trained countless physicians, including many of the department’s own faculty.

'Ball of energy'

At the announcement of his retirement, Thilveris said, “Our residents are beyond amazing, and the dedication from the faculty to our program has made short work for our education team. We have a very proud tradition here and are poised to continue for generations to come.” In hearing the news, many in Wisconsin responded with memories of his meticulous teaching, patience, wisdom, and, of course, his delightful sense of humor.

“I am beyond grateful to Andy for his role in my own training and in my recruitment back to UW-Madison,” said Evan Warner, MD. “His kindness, openness, and genuine concern for each and every colleague, trainee, and staff member has been foundational to our department culture, and it is such a privilege to be a part of it. As residency program director, he has been a ball of energy with so many ideas and such passion for seeking feedback and making things better for the residents.”

Phaco Course Directors Andrew Thliveris, MD, PhD, Sarah Nehls, MD, and Daniel Knoch, MD. (Photo © Andy Manis)

Thliveris will also be remembered for his work as director of the department’s cataract extraction phacoemulsification course. In this three-year progressive course, medical and veterinary ophthalmology residents, UW and visiting medical students, and pre-residency fellows from around the country learn the latest cataract surgical techniques. Daniel Knoch, MD who will assume the role of veterans affairs service chief following Thliveris' retirement recalled how “There are dozens of residents, numerous faculty, and thousands of patients that Andy has helped through his after-hours videos, toolbox approach to surgical teaching, probing questions, and high standards.” Anna Momont, MD who has assumed the role of ophthalmology residency training program director acknowledged that because of Thliveris’ “unwavering dedication to our residents and their training,” is leaving the department nationally recognized and a “highly sought-after residency program.”

'Full steam ahead'

To recognize Thliveris’ lasting legacy, the department dedicated its new Surgical Skills Training Facility in his honor. The new space, which expands the department’s training capacity by providing 10 training pods, each outfitted with state-of-the art equipment, will be instrumental in training the next generation of eyecare specialists. “While the decision to retire was a very emotional one,” says Thliveris, it comforts me greatly to know that I am leaving things in such capable hands. Full steam ahead.”

Whatever Gordon Lark said during those 11 pm phone calls to Andrew Thliveris must have been spectacular. And now with the K. Gordon Lark Endowed Chair poised to announce its first recipient soon, the undergraduate has made sure the legacy of founder of the School of Biological Sciences will continue.

By David Pace

Read more about Dr. Thliveris' retirement at UW-Madison website from which some of this article and photos were taken.

A warming climate could make cities even less hospitable to wild mammals

urban wildlife In a Warming Climate

 

Human-driven climate change could worsen the effects of urbanization on native wildlife, suggests new research based on analyses of data recorded by 725  trail cameras set up in and around 20 North America cities, including Utah’s urban areas along the Wasatch Front.

 

Austin Green, Postdoctoral Fellow in the Science Research Initiative. Camera trap photo above credit: Austin Green.

The main finding was that urbanization’s negative effects on wildlife are tougher on larger-bodied animals and are worse in the less vegetated cities in drier regions, such as Phoenix and Salt Lake City, according to University of Utah wildlife biologist Austin Green, one of the study’s many coauthors.

“Those cities that don’t have as much rainfall have higher average temperatures, the effects that they had on wildlife were greater than in cooler and wetter cities,” Green says.

These findings are based on thousands of photos of wild animals, namely 37 species of native mammals that live in or near cities, ranging from squirrels to black bears. The images were recorded by motion-triggered camera traps operating in the summer of 2019 in places used for outdoor recreation within cities and up to two kilometers beyond the urbanized boundary. To ensure privacy, images of people were automatically deleted by the program that uploaded the photos, according to Green who is aa postdoctoral fellow in the College of Sciences' Science Research Initiative.

Led by Arizona State University biologist Jeffrey Haight, the study published Monday in the journal Nature Ecology & Evolution.

Haight and collaborators from around the country analyzed data from 725 camera traps to assess the composition of native mammal communities and the relative occupancy of each species. In partnership with the Urban Wildlife Information Network, the team covered Salt Lake City, Chicago, Los Angeles, San Francisco Bay Area, Atlanta and Austin and Edmonton in Canada and 13 other cities in the course of some 20,000 camera days.

Read the full article by Brian Maffly in @TheU.

More about this research from the New York Times.

Why Scientists Haven’t Solved the Mystery of the OMG Particle

Solving The Mystery Of The 'OMG Particle'

 

Below the snow-covered peaks of the Andes Mountains, among scattered rocks and the scrub of prairie bushes, there sits at this very moment a 12-ton polyethylene tank holding 3,000 gallons of pure water.

 

All around it, spread out in every direction over an area nearly the size of Rhode Island, are 1,599 more such tanks, each identical to the first. These lonely sentinels have their eyes on the sky, patiently observing what human eyes cannot in the hopes of solving a mystery that began on another continent and more than three decades prior — a mystery that started with the Oh-My-God event.

It was the night of October 15, 1991. The University of Utah had set up an experimental observatory called the Fly's Eye in the isolation of Dugway Proving Ground, a sprawling 800,000-acre tract of land used by the U.S. Army to test biological and chemical weapons since the 1940s. On that night the Fly's Eye detected something called an air shower, a miles-long explosion of streaming particles invisible to the human eye and caused by high-energy interactions in the upper atmosphere. Each of the telescope’s detectors were designed to point at a different part of the field of view, in a similar way to insects’ compound eyes. It was this that earned the telescope its name. “We were hoping we might pick up something really unusual,” says David Kieda at the University of Utah, who worked on the telescope at the time. (Read more about the Fly's Eye Array here.)

Scientists looked at the data they'd collected and worked backward to deduce the properties of the space-borne particle that led to the air shower. The results weren't just shocking — they were thought to be impossible. They called their discovery the Oh-My-God particle.

While the Oh-My-God particle still remains the most energetic cosmic ray ever detected, a handful of others in the off-the-scales range have been observed in the years since, confirming that it wasn't a miscalculation or instrumentation failure, but in fact a real event. This is why 1,600 giant water-filled tanks have been installed in a grid formation across 3,000 square kilometers of the arid Mendoza region of Argentina. These are the specialized detectors of the Pierre Auger Observatory, forming an array designed to capture evidence of other extremely high-energy cosmic rays. "The quest for identifying the sources of the most energetic particles in the Universe continues," says Carsten Rott, chair of the Department of Physics & Astronomy at the U. "[But] not only at the Auger detector in Argentina, but also right here in Utah with the Telescope Array experiment."

 

Read the full story by DAVID ROSSIAKY in Slash Gear.

Volcanism That Drove Ancient Global Warming

Volcanism that Drove ANCIENT Global Warming

Geological evidence extracted from the floor of the Atlantic Ocean affirms a long-standing theory that greenhouse gas emissions associated with volcanism drove catastrophic climate change 56 million years ago.

A new study by an international team of scientists—including University of Utah geologists—examined hundreds of core samples in search of clues to what drove rapid warming that triggered the deep sea die-off marking the transition from the Paleocene to the Eocene epoch. A paper published this month concludes that large volumes of methane—a potent greenhouse gas—escaped from hydrothermal vents on the ocean floor during a period of intense volcanic activity.

Around the time the Americas and Europe started spreading apart to form the North Atlantic, Earth’s temperatures spiked by 5 degree Celsius and ocean chemistry changed during a 200,000-year period known as the Paleocene-Eocene Thermal Maximum, or PETM. This resulted in a major extinction event that wiped out a lot of deep marine life and accelerated evolution among terrestrial creatures, with mammal species becoming more diverse.

Ancient analogue for today’s climate change

“This article provides evidence for hydrothermal venting playing a major role in the global warming event that happened during the PETM by showing vents in the North Atlantic erupted in very shallow water and coincided with the onset of the PETM,” said Sarah Lambart, a U professor of geology and geophysics. “While their origins are different, the PETM presents similarities with global warming today in that the sediments that were heated were very rich in hydrocarbons. So this event can be used as a natural analogue for how the Earth system responds to the rapid burning of fossil fuels.”

She noted that today’s anthropogenic climate change is 100 times faster than what transpired at the end of the Paleocene.

Scientists have long believed the PETM was triggered by rapid and massive releases of carbon dioxide (CO2) and methane (CH4) into the atmosphere from geological sources.

Methane is a far more powerful greenhouse gas than carbon dioxide, although it eventually breaks down in the atmosphere. Over short time frames, methane could have a major impact on the climate, and the scientific team thinks that might be the case with the PETM, which coincided with the volcanic-driven continental breakup that created the Atlantic.

 

To read the full story by Brian Maffly in @TheU.

Loudest Stadium … according to science

Geoscience and football meet at Rice-Eccles

 

U geoscientists are now measuring the actual seismic impact of Big Time college football on the Salt Lake City campus and live tweeting the measurements during games, starting with Thursday’s Florida-Utah matchup.

Ahead of the Utes’ season opener, seismologist and Utah season ticket holder Jamie Farrell installed the seismometer in the Rice-Eccles Stadium to measure and record Earth shaking associated with fans’ response to on-field action during the Utes’ home games.

“We’re going to try to convert the amount of energy that gets released either over an entire game or if there’s a big event, where it shakes a lot, and try to convert that into equivalent magnitude, how much energy is put into the ground,” Farrell said. “But if not, we can compare different things, like when the team ran into the stadium, when we scored our first touchdown or this was a third-down stomp.”

Farrell is an associate research professor in the Department of Geology and Geophysics, where he helps oversee the U of U Seismograph Stations, or UUSS. He is an expert in the use of seismic waves to characterize the Earth’s crust, with a particular focus on the volcanism under Yellostone Park.

 

Find out the results and read the rest of the story by Brian Maffly in @theU.
Read more coverage of this story at KSL-TV.