EXCELLENCE IN EDUCATION
In the School of Biological Sciences, faculty are making transformative contributions to drought-resistance crops based on fundamental discoveries in genetics. Credit: Mathew Crawley
The pipeline from the classroom, and the lab, to a successful career is most fruitful when exceptional instructors and researchers provide mentorship and guidance for students. College faculty have been recognized with a range of teaching and research awards, spanning honors like the National Medal of Science (given to three faculty members from the College of Science over the years) and MacArthur Genius Grants (four recipients) to the Rosenblatt Prize, the U’s highest honor for teaching and research (11 recipients). The College has also had 15 members elected to the National Academy of Sciences, 10 of whom are still actively teaching and pursuing research. These individual honors underscore the quality of the researchers’ academic units and are reflected in their national rankings: the SBS graduate program is ranked #13 and the Department of Chemistry comes in at #18 among public universities nationwide by U.S. News & World Report.
Chemistry and biological sciences, which educate a significant number of students that join the biotech and life science sectors, are the top-ranked programs in their fields in Utah and hold top-ten rankings among both public and private schools in the West. The two units also received over $28.4 million in external research funding during fiscal year 2023. These resources provide unique opportunities for students to learn relevant science in hands-on settings and engage in transferable research skills. Considering this impressive track record, it makes sense that life science and biotechnology-related faculty continue to garner recognitions in their fields.
Take, for example, Distinguished Professor and Thatcher President Endowed Chair of Chemistry Cynthia Burrows who won the prestigious Linus Pauling Medal Award. The Burrows Lab hosts organic, biological, analytical and inorganic chemists interested in nucleic acid chemistry, DNA sequencing technology and DNA damage. The team focuses on chemical processes that result in the formation of mutations which could lead to diseases such as cancer. Studying site-specifically modified DNA and RNA strands and DNA-protein cross-linking, Burrows and her group are widely known for expanding studies on nanopore technology to detect DNA damage. Burrows’ research in altering nucleic acid composition can provide valuable information in genetic diseases as well as manipulating the function of DNA and RNA in cells.
The Caron Lab studies the mushroom body of the Drosophila (fruit fly) to better understand how brains are developed to learn.
Another U chemist, Aaron Puri, has also drawn national attention as one of five recipients of the Simons Early Career Investigator Award in Aquatic Microbial Ecology and Evolution. The award will provide $810,000 to the Puri Lab over the next three years and, according to Puri, “will enable our research group to work at the interface of biology and chemistry to decipher the molecular details of interactions in methane-oxidizing bacterial communities.” His research looks at the molecular details of interactions in these communities, aiming to solve big problems with microscopic solutions. “These communities provide a biotic sink for the potent greenhouse gas methane,” he continues, “and are a useful system for understanding how bacteria interact with each other and their environment while performing critical ecosystem functions.”
Nearby, in the Skaggs Biology Building, is the lab of Ofer Rog, who recently won an Early Career Medal from the Genetics Society of America. Rog was recognized for work visualizing meiotic exchange between “sisters,” exploring synaptonemal complex proteins and tracking single molecules. Building on this work, the Rog Lab published a study in the Proceedings of the National Academy of Sciences in December that outlined a groundbreaking way to study the synaptonemal complex. Rog explains of the complex, “You can think of it like a zipper. The axes of the chromosomes are like the two sides of your shirt. The synaptonemal complex (SC) is kind of like the teeth of the zippers that lock onto each other and can pull and align the two sides of the shirt correctly.” Rog’s team was the first to pinpoint the exact position where the SC interacts with itself to facilitate genetic exchanges. Looking forward, unlocking the SC’s role in meiosis may lead to a stronger understanding of fertility in humans.
Another esteemed faculty member in biology is Sophie Caron, a U Presidential Scholar, who uses the Drosophila mushroom body — a computational center in the fruit fly brain — as a model system to understand how brains are developed to learn. With work described as “stunning” and “breathtaking,” Caron has built an interdisciplinary research program by drawing on computational models, species-comparative studies and various anatomical and behavioral techniques to elucidate the structural, functional and evolutionary pressures that shape the mushroom body’s learning function. In addition to her research, Caron — who was also awarded an outstanding teaching and mentorship award last year— designed and teaches an extremely popular neurobiology class (BIOL 3240), a course taken by hundreds of students.