Great Salt Lake’s mystery islands

Great Salt Lake's mystery islands


July 10, 2025
Above: Great Salt Lake

 

U geologists are investigating phragmites-covered mounds that reveal spots where ancient groundwater reaches daylight.

A helicopter lifts off from Antelope Island carrying electromagnetic survey equipment for a geophysical data-gathering mission over Farmington Bay in February 2025. Photo credit: Brian Maffly.

As Great Salt Lake’s levels continue to sag, yet another strange phenomenon has surfaced, offering Utah scientists more opportunities to plumb the vast saline lake’s secrets.

Phragmites-covered mounds in recent years have appeared on the drying playa off the lake’s southeast shore. After several years of scratching their heads, University of Utah geoscientists, deploying a network of piezometers and aerial electromagnetic surveys, are now finding out what’s going on under the lakebed that is creating these reed-choked oases.

Bill Johnson, a professor in the Department of Geology & Geophysics, suspects the circular mounds have formed at spots where a subsurface plumbing system delivers fresh groundwater under pressure into the lake and its surrounding wetlands.

“Water in the lake has spent a significant time underground on its way to the lake. But where that happened, we don’t know,” said Johnson during a recent visit to one of the mounds, a research site known as Round Spot 9. “Did that happen somewhere in the uplands where the water spent time in the ground and emerged in the stream before going to the lake? Or was it transmitted directly to the lake?”

On this day, Johnson and graduate student Ebenezer Adomako-Mensah were checking piezometers they had installed there last year to record underground water pressures at various depths and locations around the island.

In February 2025, Johnson hired a Canadian firm, Expert Geophysics, to conduct airborne electromagnetic surveys over Farmington Bay using a circular device hanging under a helicopter. The pilot flew a grid pattern over the bay, collecting data that will help locate freshwater deposits lurking under the lakebed.

The equipment generates current in the loop, which transmits a frequency deep into the lakebed below. A receiver suspended in a ball at the center of the hoop records the electromagnetic signals bouncing back.

“It’ll give you a spectrum, basically, of magnetic fields, and we’ll use that data to create a 3D image of what’s under the earth,” said Jeff Sanderson, a crew leader with Expert Geophysics.

As low lake levels persist, the lakebed will increasingly serve as a source of wind-blown dust affecting Utah’s population centers. Ongoing research by U atmospheric scientists suggests that the disturbed lakebed crusts that keep sediments in place can be regenerated when they are submerged.

One goal of Johnson’s research is to determine whether the groundwater can be tapped to restore broken lakebed crusts, thereby reducing dust pollution.

“It looks like it’s a from a water resource that could be useful in the future, but we need to understand it and not overexploit it to the detriment of the wetlands,” said Johnson, who has served on the Great Salt Lake Strike Team, the university-state agency partnership exploring ways to reverse the lake’s decline.

Armed with new data, Johnson secured preliminary funding from the Utah Department of Natural Resources to investigate to characterize this underground water resource. The research team, which includes other senior geology faculty, including  Kip SolomonMike Thorne and Michael Zhdanov, is seeking to discover the breadth and depth of the freshwater under the lake.

For example, Solomon’s lab is using isotope analysis to determine the age of the groundwater and its recharge elevation, or where it originated in the mountains. Thorne is constructing on-ground resistivity profiles. And Zhdanov and Michael Jorgensen are processing the electromagnetic data gathered in the airborne geophysical surveys to construct a 3D image of the subsurface beneath the lake.

“We hope to map out the boundary between fresh water and salt water, and find the location of freshwater springs that are discharging groundwater into the lake,” said Solomon, who is scheduled to present preliminary findings this week at the Geochemical Society’s 2025 Goldschmidt conference in the Czech Republic.

For Johnson, the groundwater mystery began several years ago when he was traveling Great Salt Lake’s North Arm by airboat and observed something strange. Water and gas were roiling the surface in a circle about twice the size of the airboat, suggesting that groundwater was rushing under pressure into the lake at that spot.

Johnson dropped a 30-foot depth gauge into the swirl, but it failed to hit the bottom of the shallow lake.

Read the full story by Brian Maffly in @ The U

College of Science Welcomes New Associate Deans

COLLEGE OF SCIENCE WELCOMES NEW ASSOCIATE DEANS


July 2, 2025
Above:  Crocker Science Center at night. Credit: Matt Crawley. Photo credits below: Todd Anderson

Lauren Birgenheier, Akil Narayan and Matthew S. Sigman are tapped as associate deans by Interim Dean Pearl Sandick

The College of Science welcomes Lauren Birgenheier as associate dean for faculty affairs, Akil Narayan as associate dean for undergraduate and graduate studies and Matthew S. Sigman as associate dean for research. Their appointments began July 1, 2025.

Lauren Birgenheier

Lauren Birgenheier earned a Ph.D. in Geoscience from the University of Nebraska-Lincoln and completed postdoctoral work there and at the University of Utah before joining the faculty in 2010. She is a sedimentary geologist and geochemist whose research focuses on fluvial, marine and lacustrine systems with implications for energy development, critical mineral exploration, carbon storage and paleoclimate construction. Earlier this year, she received the Outstanding Faculty Research Award in her department. During the 2024-25 academic year, Birgenheier served as one of the inaugural Faculty Fellows in the College of Science. Prior to this role, she served as Associate Chair and Director of Graduate Studies in the Department of Geology & Geophysics.

Akil Narayan

 

Akil Narayan earned a Ph.D. from Brown University in Applied Mathematics in 2009. He held a postdoctoral appointment at Purdue University and subsequently joined the University of Massachusetts Dartmouth as an Assistant Professor in Mathematics in 2012. In 2015, he joined the U and is currently a professor in the Department of Mathematics and a member of the Scientific Computing and Imaging (SCI) Institute. Narayan’s research focuses on numerical analysis and scientific computing. During the 2024-25 academic year, he served as one of the inaugural Faculty Fellows in the College of Science.

 

 

Matthew Sigman

Matthew Sigman, earned his Ph.D. in chemistry from Washington State University and completed postdoctoral work at NeXstar Pharmaceuticals and Harvard University before joining the U as a faculty member in the Department of Chemistry. He is a physical organic chemist whose research program combines techniques from chemistry and data science to develop new reactions with broad applications, including enantioselective synthesis, energy-related topics and biologically inspired reactions. Earlier this year, he received the U’s Distinguished Mentor Award in recognition of his exceptional dedication to graduate students and postdoctoral fellows. A Distinguished Professor in chemistry, Sigman currently holds the Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry and served as chair of the Department of Chemistry from 2019 to 2024. In that role, his leadership was instrumental in maintaining departmental progress and stability through the pandemic.

 

 

 

A Goblin prince among dinosaurs

a ‘goblin prince’ among dinosaurs


June 25, 2025
Above: Artistic reconstruction of Bolg amondol, depicted raiding an oviraptorosaur dinosaur nest amidst the lush Kaiparowits Formation habitat. Credit: Cullen Townsend

A newly discovered, raccoon-sized armored monstersaurian from the Grand Staircase-Escalante National Monument in Southern Utah, United States, reveals a surprising diversity of large lizards at the pinnacle of the age of dinosaurs.

Named for the goblin prince from J.R.R. Tolkien’s “The Hobbit,” the new species Bolg amondol also illuminates the sometimes-murky path that life traveled between ancient continents.

“I opened this jar of bones labeled ‘lizard’ at the Natural History Museum of Utah, and was like, oh wow, there’s a fragmentary skeleton here,” said lead author Hank Woolley from the Natural History Museum of Los Angeles County’s Dinosaur Institute. “We know very little about large-bodied lizards from the Kaiparowits Formation in Grand Staircase-Escalante National Monument in Utah, so I knew this was significant right away.”

Published on June 17, 2025, in the journal Royal Society Open Science, the collaborative research led by the Dinosaur Institute and the Natural History Museum of Utah (NHMU) reveals hidden treasures awaiting future paleontologists in the bowels of museum fossil collections, and the vast potential of paleontological heritage preserved in Grand Staircase-Escalante National Monument and other public lands.

“Discovering a new species of lizard that is an ancestor of modern Gila monsters is pretty cool in and of itself, but what’s particularly exciting is what it tells us about the unique 76-million-year-old ecosystem it lived in,” said co-author Randy Irmis, associate professor of geology and geophysics at the University of Utah and curator of paleontology at NHMU. “The fact that Bolg co-existed with several other large lizard species indicates that this was a stable and productive ecosystem where these animals were taking advantage of a wide variety of prey and different micro-habitats.”

A Middle Earth-inspired moniker

Bolg represents an evolutionary lineage that sprouted within a group of large-bodied lizards called monstersaurs, which still roam the deserts from which Bolg was recovered. Woolley knew that a new species of monstersaur called for an appropriate name from an iconic monster creator, Tolkien.

Bolg is a great sounding name. It’s a goblin prince from ‘The Hobbit,’ and I think of these lizards as goblin-like, especially looking at their skulls,” said Woolley. He used the fictional Tolkien Elvish language Sindarin to craft the species epithet. “Amon” means “mound,” and “dol” means “head,” a reference to the mound-like osteoderms found on Bolg’s and other monstersaur’s skulls. “Mound-headed Bolg” would fit right in with the goblins—and it’s revealing quite a bit about monstersaurs.

Hidden gems in collection drawers

The Bolg amondol discovery highlights the likelihood that more large-bodied lizards existed during the Late Cretaceous Period than previously thought. Bolg, along with other fossils from the Kaiparowits Formation, demonstrates that at least three types of predatory lizards lived in the Late Cretaceous sub-tropical floodplains of what is now Southern Utah. Additionally, this finding shows that unexplored diversity is waiting to be dug up both in the field and in paleontology collections.

Bolg is a great example of the importance of natural history museum collections,” Irmis said. “Although we knew the specimen was significant when it was discovered back in 2005, it took a specialist in lizard evolution like Hank to truly recognize its scientific importance and take on the task of researching and scientifically describing this new species.”The researchers identified the new species from tiny pieces of skull, limbs, girdles, vertebrae and bony armor called osteoderms. Most fossil lizards from the age of dinosaurs are even scrappier—often just single, isolated bones or teeth—so despite their fragmentary nature, the parts of Bolg’s skeleton that survived contain a stunning amount of information.

“That means more characteristics are available for us to assess and compare to similar-looking lizards. Importantly, we can use those characteristics to understand this animal’s evolutionary relationships and test hypotheses about where it fits on the lizard tree of life,” Woolley said.

Read the full story by Lisa Potter in @TheU.

New Chair of Geology & Geophysics

New Chair of Geology & Geophysics


June 24, 2025
Above: Gabe Bowen, Dept of Geology & Geophysics. Credit: Todd Anderson

 

Gabriel "Gabe" Bowen assumes the position of chair in the Department of Geology & Geophysics beginning July 1, 2025

He replaces interim chair Kip Solomon.

Bowen grew up in rural Michigan and spent his childhood outdoors, which grew his love of nature and the earth. He received his bachelor’s in geology at the University of Michigan and went to UC Santa Cruz for a PhD in earth science. Bowen came to the U as a postdoc before joining Purdue University as a faculty member for seven years. He returned to the U through the Global Change and Sustainability Center and is now Professor of Geology & Geophysics and Co-Director of the Stable Isotope Facility for Environmental Research (SIRFER).

Recipient of a College of Science Excellence in Research Award, Bowen founded the Spatio-Temporal Isotope Analytics (SPATIAL) Lab, which uses stable isotope techniques to look at a lot of different areas of application of isotope geochemistry. “Isotope science has been kind of limited by our ability to make measurements,” says Bowen.

The SPATIAL Lab

The SPATIAL group has pushed forward uniting isotope geoscience with data science, which helps facilitate data sharing within and between fields of study. This data can then be leveraged to tackle bigger systems questions.

One focus of work within the SPATIAL group is reconstructing Earth’s climate through its geologic past and using that data to see changes in climate, ecosystems, and biogeochemical cycles, which can then be compared to modern day. The SPATIAL group is also studying how natural cycles operate today, such as the water cycle. Additionally, they also study spatial conductivity, or movement of things on the Earth’s surface, such as water, people, plants, and products.

One example is by using isotopes, Bowen looks at where plants are getting water from in the subsurface of the earth, which can show the stability of water supply within a community and help predict how water resources will change due to climate change.

“There’s an intimate coupling between the physical and biological processes that constitute a system,” Bowen says. “Isotopes are a common currency. The elements and isotopes that go through the water cycle or rock cycle are the same ones that go into an elephant or ponderosa pine. We can really bridge the gap and understand the connection across these spheres.”

Contextualizing current and future trends

“The Earth’s been through a lot,” Bowen says. “There’s a lot of context that shows how unusual what’s happening right now is. We’re pushing the climate system and carbon cycle much faster than it’s ever gone at any point in the geologic record.”

Bowen’s climate change research includes tracking the sources of water, such as where water originates before it makes its way to southern California. The isotopes of water in the Imperial Valley in California look more like isotopes in Colorado water than in water elsewhere in southern California. Most of the Imperial Valley water is irrigation water diverted from the Colorado River. The irrigation water becomes wastewater from irritation because of overwatering, and then it enters the groundwater. This has implications when agricultural runoff affects groundwater, as it could contain pesticides and other chemicals used in agricultural work.

The SPATIAL lab runs an annual summer course for graduate students, which provides training and experience in large-scale, data-intensive, geochemically oriented research. The course consists of a discussion and lecture in the morning, delivered by specialists in the field. Laboratory experiences introduce new techniques and hands-on learning.

Regarding his new position as department chair, Bowen says, "I look forward to supporting my great colleagues in G&G as we continue to expand our research strength and provide world-class education and training to the next generation of Earth Science leaders. Utah is a unique and special place for those of us who study the natural resources, the environment, and Earth history. It's a pleasure to be involved in this work and an honor to have the opportunity to serve our community in this leadership role."

by CJ Siebeneck

Two New Department Chairs

Two New Department Chairs


June 19, 2025
Above: Aurora Clark, Dept. of Chemistry and Gabe Bowen, Dept of Geology & Geophysics. Credit: Todd Anderson

 

Aurora Clark and Gabriel Bowen assume positions as chair in the Department of Chemistry and Department of Geology & Geophysics, respectively, beginning July 1, 2025

Aurora Clark

Aurora Clark

Aurora Clark has been announced as the new chair of the Department of Chemistry at the U beginning July 1, replacing interim chair Peter Armentrout. She brings to the role computational expertise, interdisciplinary leadership experience and a commitment to protecting scientific innovation.

"I've had roles that are adjacent to being a chair, and am excited to expand upon those experiences," she explains, referencing her previous positions as director of an interdisciplinary materials science and engineering Ph.D. program and of a high-performance computing center. Most recently, she helped establish the Joint Institute for Nuclear Science and Technology between Pacific Northwest National Lab and Washington State University where she was on faculty before arriving in Utah.

‘A couple fires and one explosion’

Clark's journey began in a very rural area, where "the nearest hospital was an hour and a half away." Raised by a mother who was a spinner, weaver and natural fiber artist, Clark jokes, "My mom was a dye chemist." Paired with her education in a Montessori School, her unusual if not unconventional upbringing proved formative. " I think that background inspired a lot of creative thought, curiosity and adventurous spirit," she says.

Her path toward computational work was in part propelled by memorable laboratory mishaps. As an undergraduate at Central Washington University, Clark started in synthetic organic chemistry but had "a couple fires and one explosion." A summer research experience at University of Southern California reinforced this message when she accidentally created dangerously explosive frozen oxygen. “So really, the universe told me, in many, many ways, that my love of chemistry had to be manifested using computers."

Allaying separation anxieties

Today, Clark leads groundbreaking research in chemical separations of critical minerals and nuclear materials. "The 15 lanthanide elements that make up most critical materials have similar chemical reactivity and often occur in mixtures with each other," Clark explains. "However, the differences in the way their electrons are arranged leads to important uses as high-field magnets in electronics or as qubits in quantum computers. Separating one lanthanide element from others, or from complex mixtures that like E-waste, is notoriously challenging."

What sets Clark's work apart is her innovative approach to data analysis. Her team develops "physics informed data analysis and data science" tools that are specifically adapted for the high dimensional and time dependent data found in chemical processes, rather than applying generic analytical approaches.

Modeling chemical processes on a computer provides crucial molecular-level insights that are often impossible to obtain experimentally. Such modeling can be particularly valuable when studying radioactive materials, allowing researchers to use computers to "decrease the number of experiments that need to be done and increase the safety of experimental scientists."

Innovation first

Clark brings a thoughtful approach to balancing research with administrative responsibilities. Her lab emphasizes mentorship infrastructure, and she sees her term as chair as protecting the broader scientific enterprise. "It is my job to support faculty who are feeling existential pressure to their research programs, to create an infrastructure that safeguards the incredible science that's being done in our department and ensure the training and education of the next generation of scientists and citizens," she states.

In the current climate, when U researchers are being asked to shorten gestation times of research and move towards applications and commercializing quicker, Clark notes that "innovation in science can be unpredictable — unexpected insight and serendipity can require knowledge and an interdisciplinary perspective that is learned on the decade timescale. Commercialization based on short-term wins can be necessary, but without longer-term intellectual investment is unsustainable.” Her leadership approach is grounded in values from her rural upbringing: curiosity, bravery, and resilience. "There's a lot of bravery that's involved in being a scientist, to learn we must be fearless in the face of the unknown." ~David Pace

 

 

Gabriel Bowen

Gabe Bowen

From tracking the routes of water throughout the West to determining the levels of carbon in the Paleocene, Gabriel "Gabe" Bowen’s research into isotopes extends into a variety of critical research paths. He assumes the position of chair in Geology & Geophysics July 1, replacing interim chair Kip Solomon.

“One of the really cool things about isotope geochemistry is that it really crosses disciplinary boundaries,” Bowen says. “It’s a subfield that grew out of earth science, geology and geochemistry, but it’s useful in everything from forensic science to water research to planetary science.”

Bowen grew up in rural Michigan and spent his childhood outdoors, which grew his love of nature and the earth. He received his bachelor’s in geology at the University of Michigan and went to UC Santa Cruz for a PhD in earth science. Bowen came to the U as a postdoc before joining Purdue University as a faculty member for seven years. He returned to the U through the Global Change and Sustainability Center and is now Professor of Geology & Geophysics and Co-Director of the Stable Isotope Facility for Environmental Research (SIRFER).

Recipient of a College of Science Excellence in Research Award, Bowen founded the Spatio-Temporal Isotope Analytics (SPATIAL) Lab, which uses stable isotope techniques to look at a lot of different areas of application of isotope geochemistry. “Isotope science has been kind of limited by our ability to make measurements,” says Bowen.

The SPATIAL Lab

The SPATIAL group has pushed forward uniting isotope geoscience with data science, which helps facilitate data sharing within and between fields of study. This data can then be leveraged to tackle bigger systems questions.

One focus of work within the SPATIAL group is reconstructing Earth’s climate through its geologic past and using that data to see changes in climate, ecosystems, and biogeochemical cycles, which can then be compared to modern day. The SPATIAL group is also studying how natural cycles operate today, such as the water cycle. Additionally, they also study spatial conductivity, or movement of things on the Earth’s surface, such as water, people, plants, and products.

One example is by using isotopes, Bowen looks at where plants are getting water from in the subsurface of the earth, which can show the stability of water supply within a community and help predict how water resources will change due to climate change.

“There’s an intimate coupling between the physical and biological processes that constitute a system,” Bowen says. “Isotopes are a common currency. The elements and isotopes that go through the water cycle or rock cycle are the same ones that go into an elephant or ponderosa pine. We can really bridge the gap and understand the connection across these spheres.”

Contextualizing current and future trends

“The Earth’s been through a lot,” Bowen says. “There’s a lot of context that shows how unusual what’s happening right now is. We’re pushing the climate system and carbon cycle much faster than it’s ever gone at any point in the geologic record.”

Bowen’s climate change research includes tracking the sources of water, such as where water originates before it makes its way to southern California. The isotopes of water in the Imperial Valley in California look more like isotopes in Colorado water than in water elsewhere in southern California. Most of the Imperial Valley water is irrigation water diverted from the Colorado River. The irrigation water becomes wastewater from irritation because of overwatering, and then it enters the groundwater. This has implications when agricultural runoff affects groundwater, as it could contain pesticides and other chemicals used in agricultural work.

The SPATIAL lab runs an annual summer course for graduate students, which provides training and experience in large-scale, data-intensive, geochemically oriented research. The course consists of a discussion and lecture in the morning, delivered by specialists in the field. Laboratory experiences introduce new techniques and hands-on learning.

“We live in a pretty amazing place for geology,” Gabriel Bowen says. He appreciates the geology of Utah from the air, as an amateur pilot. He flies a Cessna 182, mostly for geology sightseeing. He also participates in charity flying, taking people around Antelope Island for sightseeing of the Great Salt Lake. “I try to take my scientist and artist friends out to see things from a different perspective.” ~ CJ Siebeneck

Wilkes Center names leadership team for expanded climate mission

Wilkes Center names leadership team for expanded climate mission


June 19, 2025
Above: Fielding Norton, John Lin. Credit: Todd Anderson

Climate physicist Fielding Norton and U atmospheric scientist John Lin take new positions.

The Wilkes Center for Climate Science & Policy at the University of Utah has selected Fielding Norton as its new managing director and John Lin as scientific director to lead the center’s increasing focus on translating climate research into real-world solutions. Norton, a climate scientist and startup investor and advisor, will head the center's overall strategy and operations, while Lin, a U atmospheric sciences professor, will oversee its research initiatives and academic programs.

The Wilkes Center, founded in 2022 by philanthropists Clay and Marie Wilkes, connects rigorous climate research with practical solutions to address environmental and human health challenges.


A vision for broader impact

Fielding Norton at Climate Roundtable

Norton began his career as a science and math educator, then earned his M.S. in applied physics and Ph.D. in earth and planetary sciences at Harvard University before working in the global insurance/reinsurance industry for more than 25 years. There, his teams used science and engineering-based models to manage and price the risk of extreme disasters including floods, hurricanes and wildfires. Norton’s most recent executive role was chief enterprise risk officer of XL Group, a Fortune 100 global insurer and reinsurer based in Bermuda. Now, Norton invests in and advises startups in the insurtech (insurance technology) and climatech (climate technology) space, and serves as senior fellow at the U’s College of Science.

As managing director, Norton’s ambition is to expand the Wilkes Center's benefits to society in several ways. For example, building on the success of the Wilkes Climate Prize, which has funded three promising climate solutions, Norton envisions the center supporting the innovation ecosystem more broadly.

“Now that the Climate Launch Prize attracts more than 1,000 applicants per year, we’re looking to partner with U students, faculty, and alumni, and with investors in Utah, the U.S., and worldwide to fund, incubate, and accelerate the growth of innovative startups that promote growth and energy abundance while decreasing the carbon intensity of our economy.”

Norton also sees opportunities for the Wilkes Center to support communities’ climate resiliency. As wildfires increasingly threaten homes and livelihoods across the West, Norton is working across the U and with external partners to pilot programs that help homeowners and businesses assess and cost-effectively mitigate their risk, both to protect their property and to be more insurable. This demonstrates how the center's research and partnerships can directly address the ways climate change impacts people's daily lives.

"A changing climate is not an abstract scientific challenge—it amplifies risk for communities and increases uncertainty about the future,” said Norton. “We bridge cutting-edge research with practical solutions that make a real difference in people's lives."

Expanding scientific leadership

John Lin. Credit: Todd Anderson

Having served as associate director for the past three years, John Lin brings deep expertise to his new role as scientific director. A Harvard University-trained atmospheric scientist, Lin has led innovative research projects on greenhouse gases and air pollution, including partnering with Google to equip their street view cars to measure air pollution street-by-street across Salt Lake County. His research group oversees greenhouse gas and air quality observations in the Salt Lake area and the Uinta Basin, and works regularly with satellite observations from NASA to determine carbon emissions from cities around the world.

As the Wilkes Center prepares to move into the new L. S. Skaggs Applied Science Building this fall, Lin sees the transition as more than just a change of address. Beyond providing more space and visibility on campus, the move will enable deeper collaboration with students, faculty and researchers across disciplines. This increased capacity arrives at a critical moment, as significant opportunities await the center's attention—like supporting efforts to improve air quality along the Wasatch Front ahead of the 2034 Winter Olympic Games. 

Lin's expertise positions the Wilkes Center to play a leading role in developing solutions for the region's air quality challenges. As a trusted leader and collaborator on complex policy issues such as the receding Great Salt Lake, the Wilkes Center is well-positioned to bring together stakeholders and drive meaningful progress on air quality.

“I'm incredibly honored and excited to step into the scientific director role and help guide the center's research initiatives forward,” said Lin. “The Wilkes Center has incredible momentum. I will continue building on this foundation and work with the managing director to expand the center’s impact.”

The new positions come as founding director William Anderegg prepares to step down on June 30 after three years of establishing the center as a national leader in climate research and collaboration. 


A unified vision

“With Fielding and John at the helm, we’re entering an exciting new chapter extending the Wilkes Center’s international prominence in bridging academic research with actionable solutions,” said Peter Trapa, vice provost and senior dean of the Colleges and Schools of Liberal Arts and Sciences at the U. “I’m confident their leadership will drive meaningful, lasting change.”

Pearl Sandick, interim dean of the U’s College of Science, also praised the center’s new direction. "John's scientific expertise paired with Fielding's vision for practical climate solutions creates an ideal leadership team for the Wilkes Center," said Sandick. "Their complementary strengths will help the organization continue its trajectory as a leader in climate research and innovation.”

by Bianca Lyon

Wilkes Center Leadership Transition


June 19, 2025
Above: William "Bill" Anderegg at the opening session of the 2025 Wilkes Center Summit in May. Credit: Todd Anderson

Inaugural Director William Anderegg has established a legacy of communicating science and convening innovators at The Wilkes Center for Climate Science & Policy

After three years as the founding director of the Wilkes Center for Climate Science & Policy at the University of Utah, William Anderegg, professor in the School of Biological Sciences, will step down as the center’s director on June 30th.

Fielding Norton, a venture investor with a climate background, will lead the center’s overall strategy and operations as managing director, while John Lin, a University of Utah atmospheric sciences professor, will oversee the center’s research initiatives and academic programs.

“It has been an incredible privilege to launch the Wilkes Center and guide it through these foundational years,” said Anderegg. “I remain deeply optimistic about addressing climate challenges, and that optimism is fueled by the remarkable work of our faculty, students, and team. They continue to inspire me with their innovative research and commitment to developing real-world climate solutions.”

A solid foundation for climate innovation

Under Anderegg’s leadership, the Wilkes Center positioned the U as a state, national and international leader in science-based climate solutions. Created in 2022 and founded by Clay and Marie Wilkes, the center was designed to promote research, inform public policy and support entrepreneurial solutions to the challenges that climate change poses to society and ecosystems.

Among its major accomplishments, the center launched the annual international Wilkes Climate Prize and several annual events including the Climate Solutions Hackathon for students, the Wilkes Climate Summit and a public speaker series. The center also supported the hires of new climate-focused faculty across campus as well as the creation of the Great Salt Lake Strike Team, a task force designed to inform strategies to increase the lake’s water level, extending its influence beyond the U campus.

Anderegg’s deep expertise in climate change impacts on forests and society in the western U.S. and around the world helped steer the center’s focus during its initial years. He oversaw nation-wide collaborations to develop policy recommendations for nature-based climate solutions, which included partnerships with Microsoft, among others.

“I’m excited to continue and expand our research at the science-policy interface, particularly around the climate risks to forests and society of wildfire, drought, and other disturbances,” Anderegg said.

“It has been an incredible privilege to launch the Wilkes Center and guide it through these foundational years. I remain deeply optimistic about addressing climate challenges, and that optimism is fueled by the remarkable work of our faculty, students, and team. They continue to inspire me with their innovative research and commitment to developing real-world climate solutions.”
~ William Anderegg

Anderegg’s tenure as director solidified his reputation as a world-renowned climate scientist. In 2023, he was awarded both the National Science Foundation’s Alan T. Waterman Award and the Blavatnik Foundation’s National Laureate in Life Sciences award for his work on forest ecosystems and climate change. Anderegg was also recognized as one of the world’s most highly cited researchers by Clarivate.

Anderegg will be remembered not only for his own research and his expert convening of climate innovators but his skill at communicating science to a wide variety of audiences. He demonstrated this routinely, whether as a moderator of a panel on Utah’s energy future, crafting the messaging of center publications or, each year, insightfully framing the annual Wilkes Summit as a forum for thoughtful, real-life, real-time solutions to one of the defining issues of our time. In his final Summit appearance, for example, he memorably summarized the “three pillars of urgency” related to climate change: “it’s here, it’s us, it’s damaging.”

Anderegg’s signature of conveying data-driven science in a concise and clear way continually resonated with academics, industry leaders and policy makers alike.

“Bill’s leadership of the Wilkes Center has inspired so many young science scholars and future innovators across the University of Utah,” said Pearl Sandick, dean of the College of Science. “We are grateful for his leadership for helping launch the center and we’re excited to see what new research projects and partnerships will emerge in the coming years.”

This story originally appeared on the Wilkes Center website here.

Trailblazing with Earth & Environmental Science

Trailblazing with Earth & Environmental Science


June 4, 2025
Above: Ryker Ray (left) and Hunter Hastings

One of the newest majors available for undergraduate students at the University of Utah is Earth & Environmental Science (EES).

The program fuses principles from atmospheric science, geology, and ecology to address key questions about the environment — including freshwater availability, the effects of extreme weather, and ecosystem resilience, among other topics. Students in the program join a faculty research stream — studying in a campus lab or out in the field — to acquire valuable experience.

Utah is known worldwide for its geological attributes and abundance of outdoor recreational opportunities. From the Wasatch Mountains to Zion National Park, the state serves as a natural classroom for EES students to study a variety of research topics, including snowfall dynamics, watershed health, aerosol chemistry and much more.

EES students study together in small cohorts, supported by faculty mentors, to develop practical skills for fruitful careers like environmental consulting, resource management, policy, among others. Students can also supplement their studies with a Sustainability Certificate. 

Among the first graduating EES students are Ryker Ray and Tucker Hastings.

Ryker Ray

Ryker Ray

"I have thoroughly enjoyed my experience these past two years in the EES major,” says Ray, reflecting on his experience. “A brand-new major can be a little rough around the edges at times, but overall my classes were interesting and challenging." 

One of the biggest draws for Ray to study EES was its interdisciplinary focus, reflected in the variety of his research work in the Science Research Initiative. He initially investigated the links between air quality and wildfires in atmospheric scientist Gannet Hallar’s Aerosol Research Lab. Later, he transitioned to biologist Austin Green’s Wildlife-Human Interaction Lab to engage in fieldwork and ecological data analysis. It was there that Ray developed a particular interest in studying carnivores.

"I am evaluating how certain extreme climate variables, which mirror future climate change conditions, are affecting the spatial and temporal behavior of small to large carnivores," says Ray. He focused on developing a framework for wildlife and land management, with the hope of influencing policy.

"We still lack an understanding of the degree to which our urban development affects the behaviors and populations of carnivores across the world," he adds.

Through his research, Ray benefited from a strong mentorship bond with Green. "I have never had such a compassionate and helpful mentor. Austin has always made time for me and the other students in the lab, even when working across two different organizations and caring for a new baby," says Ray.

Beyond the classroom, Ray, who hails from Park City, Utah, co-founded and served as Vice President of the Utah Students for Conservation Club, inspired by his studies and a reforestation internship in Costa Rica. Additionally, he contributed writing and photography to the environment-focused Wasatch Magazine.

Looking ahead, Ray hopes to work in fire ecology. "I want to begin repairing and building a bridge to work with the many Native American tribes and nations who have been using fire to maintain the health of the Western U.S." He hopes to pursue this ambition by founding his own company dedicated to public education and environmental awareness on the issue.

Tucker Hastings

Tucker Hastings

Originally from Santa Fe, New Mexico, William "Tucker" Hastings graduated with a double major in EES and Spanish, along with a minor in atmospheric sciences. As a member of the inaugural EES cohort, he valued the program’s interdisciplinary collaboration. "I enjoyed being able to connect with professors and students in the three different disciplines,” says Hastings. “The major’s emphasis on holistic perspectives and practical experience were also highlights." His EES studies were a particular highlight of his undergraduate career, and he eagerly engaged in research, labs and cross-disciplinary connections.

Hastings’ research focused on Utah's landscapes, stemming from his childhood adventures exploring the state’s wild places. His interest was sparked by a pivotal Science Research Initiative field trip to Costa Rica, where he met with biologists and conservationists. This led to his work in the Şekercioğlu Lab, assisting with trail camera image identification and conducting biodiversity surveys in the Grand Staircase-Escalante National Monument.

For this project, he collaborated with the Aparecido Lab in the School of Biological Sciences to study the impact of invasive species. He compared areas invaded by Russian olive trees to non-invaded sites to build a model of biogeographic trends. Hastings highlighted a significant knowledge gap: "Despite its long history in Utah, Russian olive has gone largely unstudied in the United States. The work of my lab [was] some of the first to investigate its impacts."

Following graduation, Hastings plans to continue his studies in ecology by pursuing a Ph.D., ideally in desert ecology. His core aspiration is "to use science to promote conservation, as well as community engagement in science and ecology."


by Ethan Hood

Students interested in the Earth & Environmental Science major at the University of Utah can learn more here.

 

 

New data suggest need for revision of earthquake hazard models

earthquake hazard models


June 4, 2025
Above: The 1896 Sears mansion in Salt Lake City’s Liberty Wells neighborhood sustained major damage in the Magna Earthquake and was later demolished. Photo credit: Brian Maffly.

 

The sediments underlying the Salt Lake Valley are thicker in places than previously thought, indicating that current seismic hazard models likely underestimate the amount of shaking Utah’s population center could experience in future earthquakes, according to new research led by University of Utah seismologists.

Fan-Chi Lin

Five years ago, the valley trembled during the magnitude 5.7 Magna Earthquake, causing millions in damage to dozens of masonry structures in Salt Lake City and the town of Magna, a few miles to the west. Utah’s urban centers, such as Ogden, Salt Lake City and Provo, lying along the Wasatch Front, remain at risk of future seismic events. The last major earthquake exceeding magnitude 7 to hit the Wasatch Front occurred between 1,200 and 1,300 years ago. With an average recurrence interval of 900 to 1,300 years, Salt Lake City’s geologic clock could be close to striking midnight once again.

In the new study, U researchers utilized seismic data to present a refined three-dimensional seismic velocity model—an essential tool for mapping the geologic structure of the Wasatch Front and identifying seismic hazard sites.

“For this particular study, we are trying to understand the sedimentary structure within the Salt Lake area and how that might differ from previous results,” said study leader Fan-Chi Lin, an associate professor of geology and geophysics. “One of the biggest questions we had was why our observations didn’t agree with previous studies.”

The Wasatch Front community velocity model is currently the leading reference for assessing future seismic activity. However, it has been largely informed by borehole drilling and gravity data—useful indicators, but ones that come with limitations such as private land restrictions, inconsistent documentation and limited sampling scope.

To overcome these constraints, an extensive network of seismic data probes and geophone arrays was deployed across the Salt Lake Valley—even in the backyards of private residences. Many were deployed in the month following the Magna quake in the spring of 2020 to take advantage of a steady parade of aftershocks.

“This community is incredibly supportive and happy to help. I want to emphasize that none of this would have been possible without community support, the Utah Geological Survey and the many students in our department who helped deploy hundreds of stations,” Lin said.

For this study, the research team analyzed seismic waves from only distant earthquakes, using interferometry analysis—comparing measurements of the same signal from two different stations—and conversion phase analysis—comparing the incident P-wave and the S-wave converted at the base of the sediment. This analysis gleaned insights into the subsurface structure of the Salt Lake Valley, which was once the bed of ancient Lake Bonneville that covered northern Utah as recently as 14,000 years ago.

The goal wasn’t to predict strong earthquakes but to predict the severity of ground motion they could produce. The team was also pursuing academic questions.

“We are interested to understand how the tectonic forces or tectonic movements form the basin itself,” Lin said. “Why there’s a basin here? What controls the depth of the basin?”

by Ethan Hood
Read the entire article on @ The U.

Urgency and hope at 2025 Wilkes Climate Summit

Urgency and hope at 2025 Wilkes Climate Summit


May 22, 2025
Above: Wilkes Scholar and Geology & Geophysics undergraduate Autumn Hartley presents research at the Wilkes Climate Summit. Credit: Todd Anderson

“Let’s start with the three pillars of urgency. Climate change—it’s here, it’s us, and it’s damaging,” said William Anderegg, director of the Wilkes Center for Climate Science & Policy at the University of Utah. “There are also three companion pillars of hope—it’s solvable, we’re making progress, and the benefits of solving it are enormous.”

Conor Walsh, assistant professor at the Columbia Business School, delivering his keynote address.

Anderegg’s message resonated with his audience of scientists, policymakers, business leaders and others gathered at the third annual Wilkes Climate Summit, hosted by the Wilkes Center on May 15 at the Cleone Peterson Eccles Alumni House on the U’s campus.

This year’s theme—innovation, science and solutions—was manifest in the day’s keynote addresses, panel breakout sessions, and presentations from the seven finalists vying for the $250K Wilkes Climate Launch Prize.

“When [the Wilkes Center] was set up a number of years ago, the dream was to bring immediate innovation to the problem of climate,” said U President Taylor Randall, speaking of Clay and Marie Wilkes whose $20 million donation launched the Wilkes Center in 2022. “[They] fundamentally believed in science and science’s ability to create scalable change and create scalable solutions…When I see individuals [here] dealing with this problem, I leave with nothing but hope and optimism.”

The Wilkes Center’s mission is to accelerate climate solutions through research, education and innovation, goals especially important during these tumultuous times.

“Many of the cuts to science and research that those of us around the country are worried about will hinder America’s prosperity, economic growth, competitiveness and global leadership,” Anderegg said in his opening remarks. “We need science and innovation more than ever.”

Anderegg outlined the four core questions guiding everything the center does, which capture the spirit of discussions happening throughout the summit:

  • How can we accelerate solutions to yield a global, downward trend in greenhouse gas emissions?
  • How can we get the best science into the hands of decision- and policymakers?
  • How can we train the next generation of leaders?
  • How can we foster innovation to develop, deploy and scale these climate solutions?

“The scientific understanding is really crystal clear; the 2020s are a pivotal decade for climate action,” Anderegg said. “We have a rapidly closing window to avoid the impacts of dangerous climate change and chart a sustainable and prosperous future for everyone here in Utah, around the U.S. and around the world.”

Clean energy transition and the global rise of solar power

The summit kicked off with a morning keynote by Conor Walsh, assistant professor at the Columbia Business School studying the economics of the energy transition. You can read the four highlights from his talks, reports on the seven Wilkes Prize finalist presentations as well as other expansive coverage in the remainder of this article by Lisa Potter in @ The U.