New Tyrannosaurus Species

Scientists Conclude New Mexico Fossil Is New Tyrannosaurus Species


 

 

Scientists reassessing a partial skull first unearthed in 1983 in southeastern New Mexico have concluded that the fossil represents a new species of Tyrannosaurus - the fearsome apex predator from western North America at the twilight of the dinosaur age - that predated the fabulously famous T. rex.

^ Mark Loewen. ^^ Banner image above: An artist's reconstruction of the newly identified dinosaur species Tyrannosaurus mcraeensis, based on a partial skull fossil collected in New Mexico, U.S. Sergei Krasinski/Handout via REUTERS

Subtle differences from Tyrannosaurus rex observed in the skull merit recognizing the dinosaur as a separate species called Tyrannosaurus mcraeensis that lived several million years before T. rex and was comparable in size, the researchers said on Thursday. The skull previously was identified as a T. rex.

Other researchers expressed doubt that it represents a new Tyrannosaurus species, saying differences between it and other T. rex skulls were unremarkable and the study's conclusion that the fossil dated to 71-73 million years ago was problematic.

T. rex has been the sole species of the genus Tyrannosaurus recognized since the dinosaur was first described in 1905. A genus is a broader grouping of related organisms than a species. T. rex fossils date to the couple million years before an asteroid struck Earth 66 million years ago, dooming the dinosaurs.

The first parts of the New Mexico skull were found near the base of Kettle Top Butte in 1983, with more later discovered.

Paleontologist Anthony Fiorillo, executive director of the New Mexico Museum of Natural History & Science and one of the authors of the study published in the journal Scientific Reports, said about 25% of the skull has been collected. Most of the braincase and the upper jaws are missing.

"Compared to T. rex, the lower jaw is shallower and more curved towards the back. The blunt hornlets above the eyes are lower than in T. rex," said paleontologist Nick Longrich of the University of Bath in England, another of the researchers.

"It's the nature of species that the differences tend to be subtle. The key thing is they're consistent. We looked at lots of different T. rex, and our animal was consistently different from every known T. rex, in every bone," Longrich added.

Vertebrate paleontologist Mark Loewen, associate professor lecturer, Department of Geology and Geophysics, University of Utah is a co-author of the paper and Resident Research Associate at the Natural History Museum of Utah.

Read the entire story by Will Dunham (Reuters) in USA Today.

Cosmic Ray Learning in Public Schools

Cosmic Ray Learning in Public Schools

A cohort of teens at the Salt Lake Center for Science Education (SLCSE) is learning the principles of physics and computer programming by building detectors for cosmic rays.

January 29, 2024

 

^ Professor of physics, Tino Nyawelo coaches a student. ^^ Banner photo above: Ricardo Gonzalez, REFUGES Afterschool Program Coordinator staging an orientation for the cosmic ray program at SLCSE. Credit: Todd Anderson

The pilot program is led by U faculty member Tino Nyawelo, one of three recipients of the 2023 Spirit of Salam Award given annually on the birthday of the famed theoretical physicist from Punjab, Pakistan, Abdus Salam.

The program is an extension of the larger successful REFUGES initiative, designed to support refugee students entering Utah’s public school system, a transition that can often be difficult due to the age-based placement of schools. “[The students] couldn't succeed in this [Utah public] school system because they spent years in refugee camps without any education,” says Nyawelo. “Since we can't change the school system, we have to fill-in by providing additional support.” In addition to hands-on experience with science, the students are also provided with resources for personal health and wellness, college and career readiness and assistance applying for scholarships. Several students from the last cohort have received full-ride scholarships.

Nyawelo emphasizes the importance of this component: “For [students] to succeed, you need to address the costs of education. That's why we have college and career readiness, and we have provided scholarships. They can be smart and all those kinds of things, but if you don't support them and don't provide all those resources, they may not be able to afford to come [to the U], for example.”

Beyond the unique opportunity to engage with real physics, ensuring a viable future path for its participants is one of the program’s vital elements. 

Detectors for Cosmic Ray Science

SLCSE student doing calculations related to the cosmic ray outreach project.

The detector technology is adapted from HiSPARC (High School Project on Astrophysics Research with Cosmics), a program co-founded by physicists Bob van Eijk and Nyawelo’s former advisor Jan-Willem van Holten, a theoretical physicist at Nikhef (the Dutch National Institute for Subatomic Physics) with whom Nyawelo continues to collaborate to this day. Van Holten and a number of researchers who worked on the HiSPARC project have flown to Utah several times to help Nyawelo adapt the program in its new digs in the Mountain West. “I still have a big connection with the Netherlands,” says Nyawelo. “Van Holten, van Eijk, and their colleagues at Nikhef have donated a lot of the equipment to work and build cosmic ray detectors with high school students here in Utah, and they handed me the project that they started more than 20 years ago.”

After the detectors are installed at SLCSE and begin collecting data, there is a continual opportunity for the students to learn coding skills and data analysis as part of their physics and astronomy curriculum. The database is an international one, with data dumps coming in from all over the world, in real-time. The program is designed to scale up to other high schools throughout the state so that students can have hands-on experience collecting and analyzing data about cosmic rays globally. “It’s been an exciting project that can serve as a model for other places that want to support students from these backgrounds to succeed in STEM in higher education, just like I did while attending the ICTP [Abdus Salam International Centre for Theoretical Physics in Italy] and in the Netherlands.” 

Generous support for the pilot program at SLCSE was provided by Jeff and Pauline Unruh through the Unruh Family Foundation. "Our foundation focuses on STEM disciplines and inspiring young minds. [This] is a perfect example. We're proud to support the next generation of scientists," says Jeff. "With his commendable dedication to this program, Nyawelo has ensured that these students will walk away not just with extensive hands-on experience in STEM, but also with the tools to succeed in their lives beyond the classroom, fostering a brighter and more accessible future for science." 

By Julia St. Andre

How long can menopause be delayed?

How long can menopause be delayed?

At birth, ovaries in girls can contain about a million tiny structures called primordial follicles, each of which contains an egg cell. As girls grow and experience adulthood, most of these follicles will die while only one follicle will survive each month to ovulate a mature egg.

^Sean Lawley. ^^Banner photo above: “The 28 Day Cycle," a temporary art installation of a three-dimensional bar graph of the ebb and flow of menstruation by biology/art/pre-med student Danielle Okelberry, debuted at the U's Aline Skaggs Biology building in 2022.

When the loss of primordial follicles is nearly complete, and only hundreds remain, women experience menopause, a time when menstrual cycles have ceased for 12 months.New research, which relies on a mathematical model developed by a University of Utah mathematician, indicates that it is possible to delay the onset of menopause, perhaps indefinitely, by implanting a woman’s own previously harvested ovarian tissue back into her body. This technique has been successfully used to restore fertility in cancer patients, according to Sean Lawley, associate professor of mathematics and co-author of a study published Friday in the American Journal of Obstetrics and Gynecology, or AJOG.

This interdisciplinary work is a collaboration between Lawley, Joshua Johnson, an ovarian biologist at the University of Colorado School of Medicine; Jay Emerson, professor of statistics and data science at Yale University; and Kutluk Oktay, a prominent physician, professor of obstetrics, gynecology, and reproductive sciences and ovarian biologist at Yale School of Medicine. In the late 1990s, Oktay developed ways to harvest ovarian tissue from young cancer patients, freeze it (“cryopreserve” it), and then transplant it after she has undergone cancer treatments that would have left her menopausal and infertile. This the technique is referred to as “ovarian tissue cryopreservation and transplantation.”

The technique has enabled hundreds of cancer survivors to conceive and have children. It is substantially different from the common procedure of freezing eggs, which is effective in helping older women conceive through in vitro fertilization, but has no impact on menopause.

 

Read the entire article by Brian Maffly in @TheU.


Read more about the art installation featured above here.

Preeminent geneticists recognized with revamped GSA Awards

OFer Rog, GSA AWARD

In 2022, Genetics Society of America’s Board of Directors launched an audit to review the five major awards conferred by the Society. On January 11th, the organization announced the recipients of the reimagined GSA Awards, including Ofer Rog who won the new Early Career Medal, recognizing "outstanding contributions to the field of genetics."

Rog is recognized for work visualizing meiotic exchange between sisters, exploring synaptonemal complex proteins, and tracking single molecules. Additionally, Rog’s efforts to recruit and maintain a diverse student body at the University of Utah and support LGBTQ+ students are commendable and an inspiration to many in the field.

The scientists honored this year are recognized by their peers for their outstanding contributions to research and education and their distinguished service in the field of genetics. They will be presented with their awards at The Allied Genetics Conference 2024 taking place March 6-10, 2024, in Metro Washington, DC. Throughout the rest of the year, a series of profiles published in Genes to Genomes and virtual awards seminars will provide more insight into their inspiring careers.

Read about all of the awardees here.

 

 

Measuring Co2 levels

Measuring CO2 levels over the past 66 million years

Although 800,000 years may seem like a long time, when it comes to measuring important data, like CO2 levels, 800,000 years is just a blink of an eye.

 In order to gain a better understanding of the changes in CO2 levels and their fluctuations over geologic time, geoscientists have now been able to go back 66 million years.

But why is it important to measure CO2 levels over such a long span of time? And how does the current CO2 levels of 419 parts per million fit in earth’s history?

To answer this, and many more questions, Gabe Bowen, a geology professor at the University of Utah and a corresponding author of the recent study mapping changes in atmospheric CO2 over the past 66 million years, joins Cool Science Radio.

 

Listen to the podcast with Gabe Bowen on KPCW's Cool Science Radio.

Kona Coffee Lawsuit

Kona Coffee Claims GET Litigated

On the volcanic slopes of Hawaii’s Big Island, hundreds of farmers in the Kona region produce one of the most expensive coffees in the world.

James Ehleringer

Those farmers recently won a series of settlements — totaling more than $41 million — after a nearly five-year legal battle with distributors and retailers that were accused of using the Kona name in a misleading way.

In 2019, Bruce Corker, who owns the Rancho Aloha coffee farm in the Kona district, filed a lawsuit on behalf of Kona farmers against more than 20 companies. At the center of the complaint was a chemical analysis performed at a private lab in Salt Lake City by James Ehleringer, Distinguished Professor in the School of Biological Sciences at the University of Utah who ran the analysis and who said that standard tests depended on the amount of water in each sample. That wouldn’t have worked on the variety of Kona products at issue.

“As you go from green beans to roasted beans, you’re changing the water content,” says Ehleringer. So he borrowed an approach from geology that instead looked at the relative concentrations of rare, inorganic minerals in the beans. These ratios, he said, stay constant even at roasting temperatures.

After testing coffee samples from around the world as well as more than 150 samples from Kona farms, Dr. Ehleringer’s team identified several element ratios — strontium to zinc, for example, and barium to nickel — that distinguished Kona from non-Kona samples. “We were able to establish a fingerprint for Kona,” said Dr. Ehleringer, who described the general method in a 2020 study. “It’s the characteristics of the volcanic rock.”

Those chemical signatures, he found, were largely absent from samples of coffee labeled “Kona” sold by the defendants.

 

 

Read the full article in the New York Times by Virgina Hughes here.

Remembering Geologist Hellmut Doelling

Geology alumnus and generous donor, Hellmut Hans Doelling, worked as a core laboratory curator, draftsman, and assistant geologist with the Utah Geological and Mineral Survey (UGMS) before returning to the U to earn his PhD in geology. 

He was born on 25 July 1930 in Richmond Hill, Queensborough, New York City, the only son of Otto Johannes Doelling and Emma Camilla Hartmann.  The family moved to Salt Lake City in 1943 and crossed “the plains” on a Greyhound bus in 5 days due to a 35 mph speed limit during WWII.

Doelling graduated from West High School in 1948, lettering in track and field. He attended the U from 1948 to 1950, then received a letter from Harry Truman and served in the U.S. Army from 1951 to 1953 during the Korean War, returning to the U in 1953 where he graduated with a B.S. in Geology. He was then called on a mission for the Church of Jesus Christ of Latter-day Saint to the East German Mission, where he served in Neumünster, Brake/Weser, Uelzen, and Berlin, under Presidents Gregory and Robbins. Work experiences up to this time included fruit picker, farmhand, paper delivery boy, newspaper inserter, copy boy, and photo lab assistant (Salt Lake Telegram and Tribune).

After earning his PhD, Doelling first taught at Midwestern University in Wichita Falls, Texas, 1964 to 1966, keeping ties with the UGMS in the summertime and was later recruited as the first chief of the Energy and Minerals Section. In 1983 he became the first chief of the Geologic Mapping program, a position he held until 1995. He then continued as a senior geologist until his formal retirement in 2003. 

Highlights of his profession include the publication of more than 200 books, maps, and articles about the geology of Utah. He also served as president of the Utah Geological Association in 1990 and received the Governors Medal for Science and Technology in 1993.  He also did consulting work, mostly in the western states: in Colorado, Nevada, Arizona, Oregon, California, and New Mexico. He also worked in Arkansas, Mexico, and Canada. 

Doelling also did consulting work, mostly in the West. He also worked in Arkansas, Mexico, and Canada. A gifted musician on the accordion, piano, harmonium, and organ, he died 29 November 2023 in Centerville, Utah at the age of 93. He was born  survived by his wife, Gerda and their seven children.

The Doelling Endowed Scholarship  in the U’s Department of Geology & Geophysics, is named in his honor. 

Read Dr. Doelling’s obituary here

Revisiting the Coast Salish Woolly Dog

Revisiting the Coast Salish Woolly Dog

Researchers and Coast Salish people are analyzing a 160-year-old Indigenous dog pelt in the Smithsonian’s collection to pinpoint the origin and sudden disappearance of the culturally significant Coast Salish Woolly Dog.

 

Chris Stantis. Banner photo above: The reconstructed woolly dog shown at scale with Arctic dogs and spitz breeds in the background to compare scale and appearance; the portrayal does not imply a genetic relationship. Credit: Karen Carr.

Researchers from the Smithsonian’s National Museum of Natural History led a new analysis that sheds light on the ancestry and genetics of woolly dogs, a now extinct breed of dog that was a fixture of Indigenous Coast Salishcommunities in the Pacific Northwest for millennia. A team of researchers analyzed genetic clues preserved in the pelt of “Mutton,” the only known woolly dog fleece in the world, to pinpoint the genes responsible for their highly sought-after woolly fur.

The study’s findings, published Dec. 14, in the journal Science, include interviews contributed by several Coast Salish co-authors, including Elders, Knowledge Keepers and Master Weavers, who provided crucial context about the role woolly dogs played in Coast Salish society.

“This was one of the most exciting projects in my career as an archeologist and an isotopes expert because of the way that we were able to weave together these different types of knowledge,” said Chris Stantis, postdoctoral researcher in the Department of Geology & Geophysics at the University of Utah and co-author of the study.  “To work with geneticists, historians, and Indigenous Knowledge Keepers just makes better research to bring it all together.”

Read the full article by Lisa Potter in @TheU. 

CO2 changes over past 66 M years

CO2 Atmospheric changes

Carbon dioxide has not been as high as today's concentrations in 14 million years thanks to fossil fuel emissions now warming the planet.

 

Gabriel Bowen

Today atmospheric carbon dioxide is at its highest level in at least several million years thanks to widespread combustion of fossil fuels by humans over the past couple centuries.

But where does 419 parts per million (ppm) — the current concentration of the greenhouse gas in the atmosphere—fit in Earth’s history?

That’s a question an international community of scientists, featuring key contributions by University of Utah geologists, is sorting out by examining a plethora of markers in the geologic record that offer clues about the contents of ancient atmospheres. Their initial study was published this week in the journal Science, reconstructing CO2 concentrations going back through the Cenozoic, the era that began with the demise dinosaurs and rise of mammals 66 million years ago.

Glaciers contain air bubbles, providing scientists direct evidence of CO2 levels going back 800,000 years, according to U geology professor Gabe Bowen, one of the study’s corresponding authors. But this record does not extend very deep into the geological past.

“Once you lose the ice cores, you lose direct evidence. You no longer have samples of atmospheric gas that you can analyze,” Bowen said. “So you have to rely on indirect evidence, what we call proxies. And those proxies are tough to work with because they are indirect.”

Read the full article by Brian Maffly in @TheU.
Read more about Gabe Bowen, recipient of the College of Science's Excellence in Research award,  and his work with isotopes here.

Read related article "'Call to Action': CO2 Now at Levels Not Seen in 14 Million Years" in Common Dreams.