Measuring Co2 levels

Measuring CO2 levels over the past 66 million years

Although 800,000 years may seem like a long time, when it comes to measuring important data, like CO2 levels, 800,000 years is just a blink of an eye.

 In order to gain a better understanding of the changes in CO2 levels and their fluctuations over geologic time, geoscientists have now been able to go back 66 million years.

But why is it important to measure CO2 levels over such a long span of time? And how does the current CO2 levels of 419 parts per million fit in earth’s history?

To answer this, and many more questions, Gabe Bowen, a geology professor at the University of Utah and a corresponding author of the recent study mapping changes in atmospheric CO2 over the past 66 million years, joins Cool Science Radio.

 

Listen to the podcast with Gabe Bowen on KPCW's Cool Science Radio.

Kona Coffee Lawsuit

Kona Coffee Claims GET Litigated

On the volcanic slopes of Hawaii’s Big Island, hundreds of farmers in the Kona region produce one of the most expensive coffees in the world.

James Ehleringer

Those farmers recently won a series of settlements — totaling more than $41 million — after a nearly five-year legal battle with distributors and retailers that were accused of using the Kona name in a misleading way.

In 2019, Bruce Corker, who owns the Rancho Aloha coffee farm in the Kona district, filed a lawsuit on behalf of Kona farmers against more than 20 companies. At the center of the complaint was a chemical analysis performed at a private lab in Salt Lake City by James Ehleringer, Distinguished Professor in the School of Biological Sciences at the University of Utah who ran the analysis and who said that standard tests depended on the amount of water in each sample. That wouldn’t have worked on the variety of Kona products at issue.

“As you go from green beans to roasted beans, you’re changing the water content,” says Ehleringer. So he borrowed an approach from geology that instead looked at the relative concentrations of rare, inorganic minerals in the beans. These ratios, he said, stay constant even at roasting temperatures.

After testing coffee samples from around the world as well as more than 150 samples from Kona farms, Dr. Ehleringer’s team identified several element ratios — strontium to zinc, for example, and barium to nickel — that distinguished Kona from non-Kona samples. “We were able to establish a fingerprint for Kona,” said Dr. Ehleringer, who described the general method in a 2020 study. “It’s the characteristics of the volcanic rock.”

Those chemical signatures, he found, were largely absent from samples of coffee labeled “Kona” sold by the defendants.

 

 

Read the full article in the New York Times by Virgina Hughes here.

Remembering Geologist Hellmut Doelling

Geology alumnus and generous donor, Hellmut Hans Doelling, worked as a core laboratory curator, draftsman, and assistant geologist with the Utah Geological and Mineral Survey (UGMS) before returning to the U to earn his PhD in geology. 

He was born on 25 July 1930 in Richmond Hill, Queensborough, New York City, the only son of Otto Johannes Doelling and Emma Camilla Hartmann.  The family moved to Salt Lake City in 1943 and crossed “the plains” on a Greyhound bus in 5 days due to a 35 mph speed limit during WWII.

Doelling graduated from West High School in 1948, lettering in track and field. He attended the U from 1948 to 1950, then received a letter from Harry Truman and served in the U.S. Army from 1951 to 1953 during the Korean War, returning to the U in 1953 where he graduated with a B.S. in Geology. He was then called on a mission for the Church of Jesus Christ of Latter-day Saint to the East German Mission, where he served in Neumünster, Brake/Weser, Uelzen, and Berlin, under Presidents Gregory and Robbins. Work experiences up to this time included fruit picker, farmhand, paper delivery boy, newspaper inserter, copy boy, and photo lab assistant (Salt Lake Telegram and Tribune).

After earning his PhD, Doelling first taught at Midwestern University in Wichita Falls, Texas, 1964 to 1966, keeping ties with the UGMS in the summertime and was later recruited as the first chief of the Energy and Minerals Section. In 1983 he became the first chief of the Geologic Mapping program, a position he held until 1995. He then continued as a senior geologist until his formal retirement in 2003. 

Highlights of his profession include the publication of more than 200 books, maps, and articles about the geology of Utah. He also served as president of the Utah Geological Association in 1990 and received the Governors Medal for Science and Technology in 1993.  He also did consulting work, mostly in the western states: in Colorado, Nevada, Arizona, Oregon, California, and New Mexico. He also worked in Arkansas, Mexico, and Canada. 

Doelling also did consulting work, mostly in the West. He also worked in Arkansas, Mexico, and Canada. A gifted musician on the accordion, piano, harmonium, and organ, he died 29 November 2023 in Centerville, Utah at the age of 93. He was born  survived by his wife, Gerda and their seven children.

The Doelling Endowed Scholarship  in the U’s Department of Geology & Geophysics, is named in his honor. 

Read Dr. Doelling’s obituary here

Revisiting the Coast Salish Woolly Dog

Revisiting the Coast Salish Woolly Dog

Researchers and Coast Salish people are analyzing a 160-year-old Indigenous dog pelt in the Smithsonian’s collection to pinpoint the origin and sudden disappearance of the culturally significant Coast Salish Woolly Dog.

 

Chris Stantis. Banner photo above: The reconstructed woolly dog shown at scale with Arctic dogs and spitz breeds in the background to compare scale and appearance; the portrayal does not imply a genetic relationship. Credit: Karen Carr.

Researchers from the Smithsonian’s National Museum of Natural History led a new analysis that sheds light on the ancestry and genetics of woolly dogs, a now extinct breed of dog that was a fixture of Indigenous Coast Salishcommunities in the Pacific Northwest for millennia. A team of researchers analyzed genetic clues preserved in the pelt of “Mutton,” the only known woolly dog fleece in the world, to pinpoint the genes responsible for their highly sought-after woolly fur.

The study’s findings, published Dec. 14, in the journal Science, include interviews contributed by several Coast Salish co-authors, including Elders, Knowledge Keepers and Master Weavers, who provided crucial context about the role woolly dogs played in Coast Salish society.

“This was one of the most exciting projects in my career as an archeologist and an isotopes expert because of the way that we were able to weave together these different types of knowledge,” said Chris Stantis, postdoctoral researcher in the Department of Geology & Geophysics at the University of Utah and co-author of the study.  “To work with geneticists, historians, and Indigenous Knowledge Keepers just makes better research to bring it all together.”

Read the full article by Lisa Potter in @TheU. 

CO2 changes over past 66 M years

CO2 Atmospheric changes

Carbon dioxide has not been as high as today's concentrations in 14 million years thanks to fossil fuel emissions now warming the planet.

 

Gabriel Bowen

Today atmospheric carbon dioxide is at its highest level in at least several million years thanks to widespread combustion of fossil fuels by humans over the past couple centuries.

But where does 419 parts per million (ppm) — the current concentration of the greenhouse gas in the atmosphere—fit in Earth’s history?

That’s a question an international community of scientists, featuring key contributions by University of Utah geologists, is sorting out by examining a plethora of markers in the geologic record that offer clues about the contents of ancient atmospheres. Their initial study was published this week in the journal Science, reconstructing CO2 concentrations going back through the Cenozoic, the era that began with the demise dinosaurs and rise of mammals 66 million years ago.

Glaciers contain air bubbles, providing scientists direct evidence of CO2 levels going back 800,000 years, according to U geology professor Gabe Bowen, one of the study’s corresponding authors. But this record does not extend very deep into the geological past.

“Once you lose the ice cores, you lose direct evidence. You no longer have samples of atmospheric gas that you can analyze,” Bowen said. “So you have to rely on indirect evidence, what we call proxies. And those proxies are tough to work with because they are indirect.”

Read the full article by Brian Maffly in @TheU.
Read more about Gabe Bowen, recipient of the College of Science's Excellence in Research award,  and his work with isotopes here.

Read related article "'Call to Action': CO2 Now at Levels Not Seen in 14 Million Years" in Common Dreams.

Solving Water Shortages by Lease

Solving Water shortages Through Lease

 

Booming growth is driving more demand for water, but climate change, aridification and an over-allocated system ensure a short supply.

Lily Bosworth. Banner Photo Credit: US National Park Service

 

State lawmakers have looked to farmers to solve Utah’s mounting water issues, hoping they’ll lease water to save the Colorado River and Great Salt Lake.

So far, almost no irrigators have signed up. Their reasons vary, but a pilot program on central Utah’s Price River shows farmers are willing to lease their water if it makes economic sense and if they trust the process. And the state has a lot of hurdles to overcome before water leasing makes a measurable difference.

“If we can generate the revenue we need with water versus putting something in the ground, it works,” said Kevin Cotner, a hay farmer near Price. “It’s yet another cash crop.”

Cotner just wrapped up his third season participating in the Upper Colorado Basin Commission’s water leasing project, called the System Conservation Pilot Program. He irrigated 450 acres this year and left 530 acres fallow. He got paid up to $650 per acre-foot left in-stream.

But Cotner’s participation in the pilot water leasing plan isn’t purely based on economics.

“This is a hard ag area to make a living. Things are pretty severe,” he said. “We’re transforming the desert. Water is one of the big issues.”

Cotner serves as the president of the Carbon Canal Co., and policing use is part of his daily life.

“I’m the bad cop,” he said. “I’m the water guy.”

Even after Utah saw record-breaking snowpack and runoff last winter, Cotner said drought is becoming the norm rather than an exception. Last year, his canal company could only deliver shareholders 38% of the water they’re entitled to on paper.

“That was a hard summer,” he said. “A lot of unhappy people.”

Booming growth in the West is driving more demand for water, but human-fueled climate change, aridification and an over-allocated system have ensured it remains in short supply.

The water leasing pilot is one strategy Upper Basin states identified to get demand back in sync with reality in the Colorado River system.

All the water Cotner conserved by fallowing his fields stayed in the Carbon Canal, making its way back to the Price River, eventually flowing to the Colorado River and Lake Powell reservoir. It will then flow to thirsty Lower Basin states like Arizona and California, helping the Upper Basin fulfill its obligations under the century-old Colorado River Compact.

At least that’s how it’s supposed to work. As of now, Utah and other Upper Basin states don’t have the ability to track where the saved water goes, or ensure another irrigator downstream doesn’t divert it away.

“We want to get there,” said Lily Bosworth, a U alumna from geology & geophysics and now a staff engineer with the Colorado River Authority of Utah. “That’s our goal.”

Read the full article in the Salt Lake Tribune (subscription required). 

 

More about Lily Bosworth BSG, HGE, '20

Bosworth is a Staff Engineer for the Colorado River Authority of Utah. Born and raised in Ogden, Utah, Lily has observed Utah's dynamic water systems throughout her life and developed an interest in water systems that combine natural and engineered elements with supporting water quality and quantity for all stakeholders. Lily completed bachelor's degrees in Honors Geological Engineering and Environmental Geoscience at the University of Utah, with a thesis on changes in hydrology when beaver dam analogs are installed during the riparian restoration. Lily also completed a master's degree in Hydrologic Science and Engineering at the Colorado School of Mines, with a thesis focusing on water treatment with engineered wetlands. Outside of work, Lily loves to mix and match birding, backpacking, water coloring, yoga, trail running, hiking, biking, and ballet with friends and family.

Remembering Marta Weeks

Remembering Marta Weeks

 

With husband Karelton Wulf.

A longtime Associate Trustee of the Association of American Petroleum Engineers Foundation she embodied legendary civic promotion as well as historic philanthropic support to the Foundation as well as to the Department of Geology & Geophysics and the College of Mines & Earth Sciences at the University of Utah which honored her in 2010 with the Founder's Day Distinguished Alumna Award.

The daughter of a petroleum geologist and the wife and daughter-in-law of world-renowned petroleum geologists, Weeks generously and continuously supported the AAPG Foundation as well as a host of other cultural and humanitarian causes around the world.

Weeks had many careers (often publicly praised as a “Renaissance Woman”) and remained active and passionate about her roles well after the usual retirement age – she was ordained an Episcopal priest in 1992 – directly impacting thousands of lives through her involvement with a host of groups and organizations.

The world knew of her great and lasting work; friends and those close knew that she was, in the words of past Foundation Trustee Chairman William L. Fisher, “as modest as she is generous.”

With AAPG, she had been a Foundation Trustee Associate since 1976. For her, philanthropic engagement with AAPG was her opportunity of “giving back,” she said, and it was a lifetime pleasure.

“I give to AAPG to honor my father, my husband and my father-in-law,’ she said, “all of whom were involved in petroleum geology.”

For Weeks, advancing opportunities in education for new generations of geoscientists was an especially significant part of her life.

Her most recent gift to the Foundation was bequeathed just last year – a $5 million annuity that will be distributed through 2029, impacting geoscientists for decades to come.

Indeed, she and her family made many donations to the AAPG Foundation throughout its history, including a $10 million bequest in 2006, the largest gift ever received by AAPG.

A Life of Excellence

Marta Weeks receives AAPG Foundation's inaugural highest honor, the L. Austin Weeks Memorial Medal, at the 2008 Annual Convention & Exhibition in San Antonio, Texas.

Marta Joan Sutton Weeks was born in Buenos Aires, Argentina, where her father Fredrick Sutton worked as a petroleum geologist. She was raised in both North and South America, and petroleum geology was a constant in her life.

Her first job – at age 13, while residing with her family in Maracaibo, Venezuela – came as she started a small popcorn business for the outdoor oil camp moviegoers.

She attended high school in Salt Lake City, Utah before attending Beloit College in Wisconsin, then graduated with a degree in political science from Stanford University.

Her career then started with summers spent teaching English for the Mene Grande Oil Co. and the Centro-Venezolano Americano in Caracas, Venezuela. Again, the oil business was a regular part of her life.

She then married petroleum geologist Lewis Austin Weeks in 1951, who was the son of famed petroleum geologist Lewis Weeks, and subsequently resided with him in Utah, Colorado, California and Maryland before moving to Miami, Fla., in 1967.

In 1988 she returned to graduate school in Austin, Texas, earned a master’s degree in theology and in 1992 was ordained an Episcopal priest. Her ministry included chaplaincies at Jackson Memorial Hospital in Panama, the Bahamas, the American Cathedral in Paris, France, and ultimately the Diocese of Southern Florida.

In 2008 she was the first recipient of the L. Austin Weeks Memorial Medal, intended to recognize “extraordinary philanthropy and service directed to advance the mission of the AAPG Foundation.”

In addition to the geosciences, she was passionate in her support of the University of Miami, where she was an advocate for academics, the arts, health care and research.

A complete listing of all her connections, honors and activities would be exhaustive, but a partial listing includes:

  • Director of Weeks Petroleum Ltd., Omni-Lift Corp. and the Weeks Air Museum
  • University of Miami Board of Trustees (their first woman chairperson, 2007-09)
  • Founding member and president of the Stanford Club of Florida
  • A member of St. Andrew’s Episcopal Church Foundation, board member of the SE Episcopal Foundation and a trustee of Beloit College and Bishop Gray Inns
  • A member of the National Advisory Council-University of Utah and the Order of St. John of Jerusalem (both as a chaplain and a Dame)
  • Supporter of the Center for Sexuality and Religion
  • Her name graces the YMCA building in Miami, a music school building at the University of Miami and the center at the Episcopal Theological Seminary of the Southwest
  • Chairs and scholarships are named for her and exist because of her generosity at numerous schools

And Foundation TAs know very well of her passion for golf and active participation at TA annual meetings – a plethora of stories of her exploits on the links will keep that part of her legacy alive for years to come. In addition to being a legendary philanthropist and woman of vision, she was a friend.

After Lewis Austin Weeks passed in 2005, Marta married Karleton Wulf in 2009. Wulf passed in 2020, and Marta spent her final years residing with her daughter, Leslie Anne Davies, on Jupiter Island.

In addition to her daughter, Marta Weeks is survived by her son, Kermit Austin Weeks; granddaughter, Katie Weeks; and grandsons, Bryce and Cole Davies.

A version of this memorial was first published in American Association of Petroleum Geologists (AAPG)'s Explorer where you can read more about Weeks and her impact on the industry. Watch a video of Week's receiving the AAPG's top honor, the inaugural 2008 L. Austin Weeks Medal.

Isotopes: Science’s Common Currency

isotopes: Science's Common Currency

 

From tracking the routes of water throughout the West to determining the levels of carbon in the Paleocene, Gabriel Bowen’s research into isotopes extends into a variety of critical research paths.

“One of the really cool things about isotope geochemistry is that it really crosses disciplinary boundaries,” Bowen says. “It’s a subfield that grew out of earth science, geology and geochemistry, but it’s useful in everything from forensic science to water research to planetary science.”

Bowen grew up in rural Michigan and spent his childhood outdoors, which grew his love of nature and the earth. He received his bachelor’s in geology at the University of Michigan and went to UC Santa Cruz for a PhD in earth science. Bowen came to the U as a postdoc before joining Purdue University as a faculty member for seven years. He returned to the U through the Global Change and Sustainability Center and is now Professor of Geology & Geophysics and Co-Director of the Stable Isotope Facility for Environmental Research (SIRFER).

Recipient of this year's College of Science Excellence in Research Award, Bowen founded the Spatio-Temporal Isotope Analytics (SPATIAL) Lab, which uses stable isotope techniques to look at a lot of different areas of application of isotope geochemistry. “Isotope science has been kind of limited by our ability to make measurements,” says Bowen.

The SPATIAL Lab

The SPATIAL group has pushed forward uniting isotope geoscience with data science, which helps facilitate data sharing within and between fields of study. This data can then be leveraged to tackle bigger systems questions.

One main focus of work within the SPATIAL group is reconstructing Earth’s climate through its geologic past and using that data to see changes in climate, ecosystems, and biogeochemical cycles, which can then be compared to modern day. The SPATIAL group is also studying how natural cycles operate today, such as the water cycle. Additionally, they also study spatial conductivity, or movement of things on the Earth’s surface, such as water, people, plants, and products.

One example is by using isotopes, Bowen looks at where plants are getting water from in the subsurface of the earth, which can show the stability of water supply within a community and help predict how water resources will change due to climate change.

“There’s an intimate coupling between the physical and biological processes that constitute a system,” Bowen says. “Isotopes are a common currency. The elements and isotopes that go through the water cycle or rock cycle are the same ones that go into an elephant or ponderosa pine. We can really bridge the gap and understand the connection across these spheres.”

Contextualizing current and future trends

 

“The Earth’s been through a lot,” Bowen says. “There’s a lot of context that shows how unusual what’s happening right now is. We’re pushing the climate system and carbon cycle much faster than it’s ever gone at any point in the geologic record.”

Bowen’s climate change research includes tracking the sources of water, such as where water originates before it makes its way to southern California. The isotopes of water in the Imperial Valley in California look more like isotopes in Colorado water than in water elsewhere in southern California. Most of the Imperial Valley water is irrigation water diverted from the Colorado River. The irrigation water becomes wastewater from irritation because of overwatering, and then it enters the groundwater. This has implications when agricultural runoff affects groundwater, as it could contain pesticides and other chemicals used in agricultural work.

The SPATIAL lab runs an annual summer course for graduate students, which provides training and experience in large-scale, data-intensive, geochemically oriented research. The course consists of a discussion and lecture in the morning, delivered by specialists in the field. Laboratory experiences introduce new techniques and hands-on learning.

“We live in a pretty amazing place for geology,” Gabriel Bowen says. He appreciates the geology of Utah from the air, as an amateur pilot. He flies a Cessna 182, mostly for geology sightseeing. He also participates in charity flying, taking people around Antelope Island for sightseeing of the Great Salt Lake. “I try to take my scientist and artist friends out to see things from a different perspective.”

 

By CJ Siebeneck

A Utah Fossil’s Journey to Harvard

A Utah fossil’s journey to Harvard

 

The 500-million-year-old fossil doesn’t stick out in Carrie Levitt-Bussian’s memory. Why would it?

Carrie Levitt-Bussian ^.Banner photo above: Artistic reconstruction of Megasiphon thylakos and comparisons with modern tunicates. Courtesy of Natural History Museum of Utah.

It looks like an unassuming, light gray, palm-sized rock with a thick “Y” on it.

That “Y” is, in fact, an animal — the ancestor of a modern sea squirt. It’s much older than any such relative previously found in the fossil record, and also much better preserved. If you’re into the grand story of evolution and, say, insights into the earliest days of vertebrates, this is remarkable enough to warrant a nine-page writeup by a team from Harvard University in Nature Communications. We’ll get to that.

But Levitt-Bussian, MS'13 in geology, has handled thousands of fossils — from ancient footprints to prehistoric poop to spectacular dinosaur skulls; her favorites are the ceratopsians, like triceratops. And what sticks out about this fossil has more to do with how it arrived in her custody, and how it left.

As the paleontology collections manager for the Natural History Museum of Utah, “I am a librarian, but for fossils,” she said. Boxes of rocks come and go all the time. Usually, though, the new arrivals don’t look like they were seized as evidence of a crime.

“There was Customs tape — red, scary tape all over the boxes,” she recalled. (“EVIDENCE,” some of the tape sternly warned: “DO NOT OPEN.”)

Here’s the backstory: Federal law enforcers had seized a large collection of fossils from the Cambrian period, roughly twice as old as the oldest dinosaur. These weren’t common trilobites like the casual, law-abiding collector might pay a few bucks to take home from a roadside quarry. They were amazing finds, many from federal land. The people who illegally took them had some knowledge of what to look for and hoped to sell them in Canada.

So for a long while, these ill-gotten Cambrian fossils were part of a case involving the Bureau of Land Management. Then came the question of where they should end up.

 

Read the full story by Daniel Potter at NHMU's website/blog.

‘Lunar Forge’ Project at NASA

'LUNAR FORGE' AT NASA

 

College students are often told to “shoot for the moon,” exploring their interests with ambitious plans and projects. This week, a team of University of Utah engineering students is taking that advice to heart in a more literal way. The team is led by Hong Yong Sohn and his graduate research assistant John Otero in Metallurgical Engineering.

John Otero and Hong Yong Sohn. Banner Photo Credits: NASA/Advanced Concepts Lab

NASA’s Breakthrough, Innovative and Game-changing (BIG) Idea Challenge is an annual, nation-wide competition that gives college students the opportunity to play a pivotal role in the future of space exploration. In response to a yearly prompt that tasks participants to solve a specific space-based problem, teams of undergraduate and graduate engineering get to work developing creative and innovative concepts. After all project proposals are submitted, five to eight teams are selected to receive a combined total of $1.1 million to further build and develop their system, which they then present to at the BIG Idea Forum in the fall of that year.

The U team is one of seven finalists for the 2023 challenge, titled “Lunar Forge: Producing Metal Products on the Moon.” Onsite and self-sufficient metal production is essential to NASA’s goal of creating a sustained human presence on the lunar surface. Every added ounce of rocket pay-load is expensive and limited, so to transport all the metal needed for lunar infrastructure from earth is out of the question. Yet to create a metal production pipeline on the moon isn’t simply a matter of taking the techniques used on earth, plopping them down on the Sea of Tranquility, and expecting them to work.

Not only does the unique makeup of lunar material need to be taken into account, but the moon’s weaker gravity (one sixth of earth’s), lack of an oxygenated atmosphere, essentially non-existent atmospheric pressure, extreme cold (with nighttime temperatures dipping below -200 degrees Fahrenheit), and constant bombardment of solar winds all pose significant obstacles to earth-centric metallurgy. Additionally, the production methods must be as resource efficient as possible, and transportable.

Read the full story at the College of Engineering