SRI Stories: Bones of the Past

SRI Stories: Bones of The Past Teach Us About The Present


April 22, 2024

Animal bones found in Utah’s caves are being used to study the impact of climate change on current animal communities. “I like to think of it as just one big puzzle,” Kasey Cole, Science Research Initiative (SRI) post-doctoral researcher and stream leader, states. “We can look at past records of animals and compare them to modern records of animals in that same area.”

Kasey has always been interested in studying the past. Originally from California, she graduated from California State University, Fullerton with a degree in anthropology. “I started as a history major,” Kasey says. “But I took an archaeology course, just as a general education requirement, and realized I can incorporate science and a more hands-on approach to learning about the past.” She then received her master’s from California State University, Chico, before coming to the University of Utah to get her PhD.

Left to right: Randall Irmis, NHMU’s curator of paleontology, Dr. Tyler Faith, NHMU’s chief curator, and caver Tom Evans examine and collect mammal bones on the floor of Tubafore Cave. Credit: Colin Stern

“My advisor, Jack Broughton, is a wonderful archaeologist, and he specializes in zooarchaeology of western North America, the exact thing I wanted to do,” says Kasey. “The anthropology program is unified by an evolutionary and ecological theoretical perspective, which is something I wanted to pursue more. I liked the connection with biology and the connection with ecology, so that’s what got me hooked. With my background in zooarchaeology, I study environmental change in the past.” Her expertise also includes paleoecology and she works as a research affiliate for the Natural History Museum of Utah (NHMU) and the Department of Anthropology. The Utah Cave Paleo project started when citizen cavers began noticing bones at the bottom of caves they were exploring.

Enter Tyler Faith, chief curator and Randy Irmis, curator of paleontology at NHMU. They were interested in the findings and have since collected many bones from caves throughout Utah over the past four years. Last year, Kasey was brought in because of her expertise in North American fauna in order to identify and research the bones.

“At the time, I was one of Tyler Faith’s graduate students,” says Kasey. “He brought me into this project — perfect for a postdoc,” and she has been studying the bones from these Utah caves ever since.

The collaboration between the NHMU, SRI, and local cavers made this research possible, which is providing a glimpse into the past. The bones range in age, from only a few weeks old to hundreds of years old. In terms of archaeology, the caves are a gold mine, allowing researchers to understand animal communities before anthropogenic climate change. The data from the bones are then compared to current animal communities to see how they are affected by climate change.

Kaedan O’Brien, lead author of published findings from Utah caves, and anthropology Ph.D. candidate at the U, holds up a mummified wood rat at an undisclosed cave in the House Range of western Utah. Credit: Randy Irmis

“I use the term paleoecologist,” says Kasey when describing herself. “I study old environments. And the way I do that is by studying animal bones from either archaeological or paleontological contexts. I then use those animals to help me reconstruct what the environment looked like.”

Kasey’s research is interdisciplinary, involving biology, ecology, anthropology, chemistry, climate science, among others. By studying past environments through animal bones, Cole can ask questions about the climate and geologic record and even questions about human behavior.

Some of the insights provided by this research include records of the now-extinct Southern Rocky Mountain Wolf, from bones recovered in a cave in the Uinta Mountain range. These wolves went extinct in the early 1900s, and records of them are rare because of how quickly they disappeared due to eradication by humans.

The cave bones also indicate the presence of wolverines, animals that are extremely rare in Utah, with only eight confirmed sightings in Utah since the 1970s. However, bones in these caves imply resident populations of the animal.

Kasey Cole posing next to special exhibit at the Natural History Musem of Utah.

The project is beginning to expand out of the Wasatch and Uinta and into other mountain ranges such as Utah’s House Range located in Millard County. Within some of these caves, the remains of bighorn sheep are being discovered, which is fascinating since there is no historical or modern record of them in the region.

The SRI students in Kasey’s lab not only assisted with this research, but they get to explore their own individual research projects.

“It’s associated with the stream, but they’re focused on questions they’re asking,” says Cole about student activities. “The students all learn the process of identifying bones, but at the end of the semester, I want them all to have an individual project idea, so they can conduct that research the next semester. All of these research projects have transferable skills that pre-med students or other students can take with them.”

Kasey is involved with SRI because she’s passionate about teaching, and SRI is a great place for students to learn research skills and gain access to research opportunities. “The thing that brings me the most joy is talking to students and teaching them,” she says. “Also breaking down these antiquated barriers for people in science and giving people opportunities.”

Kasey Cole’s research is currently on display at the Natural History Museum of Utah in a special exhibit which opened April 1 and will be on display until early September.

 

By CJ Siebeneck

SRI Stories is a series by the College of Science intended to share transformative experiences from students, alums, postdocs and faculty of the Science Research Initiative. To read more stories, visit the SRI Stories page.

Remembering Alan Rigby

Remembering Alan D. Rigby 1969-2024


On January 2, 2024 Alan David Rigby of West Valley City, Utah, passed away unexpectedly at the young age of 54. He was born on January 22, 1969 and spent his childhood in Taylorsville, Utah. After graduating from Taylorsville High School in 1987, Alan attended the University of Utah to study Environmental Earth Sciences. In the late 80s, Alan began working in the Department of Geology and Geophysics as an undergraduate, helping Thure Cerling study cosmogenic dating of the Lava Falls debris flow in the Grand Canyon. After graduating with a Bachelor of Science degree in 1995, he continued his career at the U and helped to build and manage the Noble Gas Lab, which he did for many years. He was the best tour guide for visiting groups and was surrounded by the most intelligent and dedicated people. He thoroughly enjoyed his time there and created friendships that he treasured.

Here below, colleagues Thure Cerling and Kip Solomon reflect on their time with Alan.


 

By Thure Cerling

Alan began working in my laboratory as an undergraduate in the early 1990s; I needed someone to work on mineral separates for cosmogenic dating, a technique recently developed for dating Quaternary events. Always willing, always enthusiastic, I found Alan an ideal person for the sometimes tedious, but critical, job of obtaining pure olivine or pyroxene separates for 3He analysis.

In 1994, while Alan as still an undergraduate I had the opportunity to meet a US Geological Survey Grand Canyon rafting trip at Lava Falls.  Alan was an obvious choice for my companion on the trip. The scientific question was whether we could date the debris flows that resulted in this famous river rapids – one of the best known in the world.  Research trips in the Grand Canyon are generally in the winter months, and indeed our trip was in late February.

Our plan was to fly to St George, rent a car, then drive to Vulcan’s Throne on the northern rim of the canyon, and then hike down to the river, a drop of about 800 meters over a very short distance – about 1000 meters on the map.  We left Salt Lake City in a dual propeller plane, and climbed to our cruising altitude. “Alan”, I said, “isn’t that propeller slowing down?”.  Indeed, it slowed until barely turning, and we turned back to Salt Lake on the single right engine.  So we got my 4-Runner, grabbed two sandwiches from Crown Burger, and drove the six or so hours to Vulcan’s Throne, reaching the campsite on the canyon rim about 10 at night.  A cold night’s camping, a quick breakfast, and then a hike down the scree slope of volcanic cinder.  The trail switch-backed down the slope and each of us would send a cascade of cinders and gravel down the slope in front of us.  The lead person would find a safe refuge, at the edge or behind an exceptionally large boulder, while the following person made his way down, sending a skitter of gravel down towards the bottom.

Safely at the bottom, the USGS group had already arrived and sent raft across the river to fetch us.  We spent a few days at Lava Falls, collected sufficient samples for dating which fortunately could be put on the USGS rafts and taken downstream. But someone had to fetch the car at the top of the Canyon and that was Alan.  With Ted Melis, Alan and I hiked up the Vulcan’s throne trail where he could fetch the car and drive back to Salt Lake City; then Ted and I hiked back down to the river.  We were able to date the debris flows; the debris forming Lava Falls is about 3000 years old, and initially dammed the river to a depth of at least 22 meters, some 2 times greater than the drop today.

Alan came along on several other of those trips, always willing to make the long hike in and retrieve the car at the top.  Such a cheerful camper, willing worker in the lab and in the field.

In the later 1990s Kip Solomon and I were funded by NSF to purchase a noble gas mass spectrometer and set up a noble gas lab – Kip to work on the tritium-3He dating method for groundwater and me to work on cosmogenic isotopes.  We had to visit the MAP mass spectrometer lab near Manchester and Alan accompanied me to UK to discuss logistics with Mike Lynch, the MAP designer as these mass spectrometers were made individually.  Airfares were considerably less if we stayed over a Saturday night and so Alan and I arrived in Manchester early on a Saturday on a bleak November day.  What to do for the weekend – I suggested Hadrian’s Wall and so off we went in a rented car.  We explored Hadrians’ Wall for the day, hiking along the base, exploring Roman ruins, and thinking how miserable to be a Roman soldier uprooted from Italy and banished to the Scottish lowlands to protest a stupid wall in the middle of nowhere.  Wanting a good and early night’s sleep, we found a cosy English Inn in Haltwhistle at about 4 pm just as the sun was setting.  The expansive bar with low ceilings was empty except for the proprietor who assured us that he had plenty of room for us that evening — after all, it was November and the very very low part of the tourist season.  We checked the rooms, which were just above the bar, and they looked cosy and warm with a fireplace.  So we were just about to sign up when we noticed a newcomer in the bar —  all dressed in white with spangles and cowboy boots and an electric guitar.  “What’s that?”, we asked.  “We are having an Elvis Presley look-alike contest tonight — with music and you are welcome!”  Badly needing sleep, we declined!

After returning to Salt Lake, having decided to go with the MAP mass spectrometer, Alan became part of our team to set up the extraction lines and then the MAP when it eventually arrived in Salt Lake City.  He was a key part of the laboratory, running samples for the tritium-3He dating of groundwater, carefully monitoring the 1600 °C furnace for melting minerals and extracting cosmogenic gases for dating.

In all, Alan worked in our department for some 30 years. He was devoted to the department and was a key part of the day-to-day workings for many of us.

In one sentence: if you are on an airplane when one of the engine fails, you would be hard pressed to find a better seat mate than Alan Rigby!

 


By Kip Solomon

I first met Alan shortly after I returned to the University of Utah in 1993 as faculty member.  Alan and I immediately had common ground as we had both been undergraduates at the U and both had worked for Thure Cerling and Frank Brown.

When Thure and I received an NSF grant to build a noble gas system, Alan was the obvious choice to help build the extraction lines and operate the mass spectrometer.  Alan’s mechanical skills were evident as he bolted together and made leak tight more than 60 valves, hundreds of fittings, a 10 ˚K cold head, and associated high vacuum pumps.  When we were developing the helium ingrowth method for tritium analyses and needed an inexpensive metal container to store water under high vacuum for several months, Alan had a great idea.  Why not use copper floats used in toilet tanks?  These proved to be cheap, leak tight, and became known as the toilet tritium method!

Alan’s skills were utilized both in the lab and field.  When the Nature Conservancy asked us to investigate the source of water for the Matheson Wetland Preserve (near Moab Utah), Alan helped develop a system for installing wells using a portable jack hammer.  The wells he installed formed the basis for a graduate student thesis, field course for geological engineers, and most recently a cooperative project with the U.S. Geological Survey that redefined the water resources of the Moab Spanish Valley.

Alan became so well known to the local Swagelok dealer (Salt Lake Valve and Fitting) that they made several attempts at hiring him away from the University.  To my great fortune, and the University’s, Alan stayed at the University for his entire career.

In addition to his extraordinary technical skills, Alan was a people person who enjoyed interacting with clients of the noble gas lab, students, faculty, and staff.  His pleasant demeanor and patience became a huge asset to the lab as he interfaced with researchers and consultants who all wanted their samples run NOW!  Somehow, Alan was able to calm the crowds and answer their questions over and over regarding the specialized sample collections methods.

While I don’t recall ever seeing Alan angry, his love and empathy for his family and friends was clear as their problems became his problems.  Family was always Alan’s top priority as he worked through many challenges including the early passing of his father and health issues with his young children.  The well-being of his family was always on his mind and the topic of many lunchtime conversations over the years.  He has been an absolute staple in the Department for more than 30 years.

Harley Benz Distinguished Alumnus

2022 DistinGuished AlumnUS


February 29, 2024

Among the nation’s preeminent earthquake seismologists, Harley Benz MS’82, PhD’86, scientist emeritus at the US Geological Survey (USGS)’s Earthquake Hazards Program, first worked at the USGS in Menlo Park, California, and then, beginning in 1993, in Golden, Colorado.

 

With positions in the Branch of Seismology, the Branch of Earthquake and Geomagnetic Information, and the Geologic Hazards Team, he became the Technical Manager of the Advanced National Seismic System (ANSS) which oversees and coordinates seismic network operations throughout the US. In 2022 the Department of Geology & Geophysics recognized him with the 2022 Distinguished Alumnus Award.

In 2003, Benz was appointed ANSS Megaproject Chief, overseeing the National Earthquake Information Center (NEIC) which is the world’s pre-eminent seismic monitoring system. Benz also played a role in the modernization of earthquake operations within the participating seismic networks, after co-authoring “An Assessment of Seismic Monitoring in the United States,” the 1999 Congressional Report that led to the formation and funding of the ANSS. The success of ANSS was due in no small part due to Benz’ ability to engender trust and respect from the regional network operators who were essential to the program’s success, according to the commendations from his colleagues.

Benz is credited with helping to modernize USGS earthquake analyses, reporting procedures and facilities, in particular revising the data processing and operations at NEIC to become less labor intensive and more automated. Under his leadership, rapid notifications, web services and data feeds became routine as ways to rapidly disseminate earthquake information to government agencies, emergency managers, the media and the general public. NEIC now processes continuous data from more than 2,200 seismic stations contributed by more than 145 seismic networks across the globe.

Benz’ use of innovative communication products, especially ArcGIS StoryMaps, demonstrate his commitment to sharing earthquake science. The use of story maps to place complex events into tectonic and seismological context so that they are understandable to a broad audience has been equally groundbreaking in classrooms and newsrooms, according to Benz’ colleagues. (The story map created for the 2023 Kahramanmaraş, Turkey, earthquake sequence is one such example.)

Along with his mentorship of dozens of graduate students, postdoctoral students and early career scientists, Benz forged a number of international partnerships during his time at USGS. He aided in the development of the Caribbean and N4 networks and expansion of the Global Seismographic Network, and expanded ties with the nuclear test ban treaty monitoring community that analyzes global seismic signals through the International Monitoring System (IMS). High-quality digital data from each of these networks is now available in real-time for NEIC, as a result of his efforts.

A native of Georgia, Benz earned his BS in geophysics from the University of Kansas and has been involved in a broad range of research and applications in earthquake seismology. This includes imaging earth structure, earthquake detection, modeling of seismic sources, and near-real-time location and moment-tensor calculation to inform earthquake disaster response. Additionally, the range of his work extends to measurement and prediction of strong ground motion; seismic discrimination between natural seismicity and nuclear explosions; understanding earthquake swarms; induced seismicity and its implications for seismic hazard; seismic network operations; and generation and management of earthquake catalogs. His expertise and knowledge in these areas have informed his continual efforts to educate college students and the general public about earthquake hazards.

In addition to educating college students—most recently as an adjunct professor at the U during the 2021-2022 academic year—Benz has also been an exceptional leader in meeting USGS’s missions to quantify seismic hazards and to inform national, state, and local governments, private industry, and the general public about such earthquake hazards and their mitigation.

The Distinguished Alumni Award is given regularly by the Department of Geology & Geophysics. This past fall David Braxton MS’97 was announced as the 2023 recipient. His profile will appear in an upcoming issue of Down to Earth.

You can read the entire Geology & Geophysics Department magazine Down to Earth where this story originally appeared here.

Sizing Up Courthouse Crack

Sizing Up Courthouse Crack


February 29, 2024

Geohazards, due to the way they constantly change, are a source of useful research into landslides and how they happen.

 

^ Erin Jensen at the Courthouse Mesa. Credit: courtesy of Erin Jensen. ^^ Banner Photo: Erin Jensen in Courthouse Crack. Credit: Jeff Moore.

When landslides and slope failures occur in our built and natural environments, damaging property and threatening life, there’s a scramble to secure reliable assessments to prevent further damage. But what if there were ways to measure the character and instability of rock and soil beforehand and to predict potential disasters?

Recently, PhD student Erin Jensen used seismic resonance measurements to characterize the Courthouse Crack, a potentially hazardous rock slope near Moab, Utah that is part of the Courthouse Mesa. “It’s important to be able to see a site like this in person,” Jensen says, “and really appreciate the size and scale. I get to experience firsthand all the different mechanisms and influences that are happening at a particular site.”

Seismic resonance is an emerging technique within the field of geohazards and has allowed Jensen to collect more data on the Courthouse Mesa instability than can be obtained with traditional approaches.

Perhaps surprising to the uninitiated, structures like buildings, bridges, as well as natural rock formations like arches have natural vibration modes and are constantly in motion at their resonance frequencies. The new technique can help detect and characterize rock slope instabilities. Using sensitive seismic instruments has changed how researchers detect changes in slope stability and what those changes look like.

“Traditional techniques are easy to implement, and fairly inexpensive,” Jensen says. “But the main limitation is that they’re really only measuring the surface of an instability. They aren’t providing much information about the internal structure, or what’s going on at depth.”

Seismic monitoring not only bridges the gap between surface and subsurface techniques but does so without being structurally invasive, though it can be costly. In the end, Jensen used a combination of new and traditional techniques to create a clearer picture of the instability of Courthouse Crack as a whole.

The mother of invention
At sites like Courthouse Mesa, traditional methods include expensive means of drilling and field mapping which means measuring the cracks you can see, plotting it out on a map, and viewing the geometry of instability. Alternatively, generating field data with seismic resonance and then coupling the data with numerical models result in an improved picture of crack conditions, which Jensen then uses to describe the instability geometry and how the Courthouse Crack’s stability might fail. “The combination of new and traditional techniques,” Jensen says,  “generates an improved picture of landslide behavior and failure development.”

“We aren’t really concerned about imminent failure or any hazard to the public,” continues Jensen, specifically about Courthouse Mesa. “So it’s a really good spot to use as a field laboratory” and to use different seismic resonance techniques to understand work with rock slope instabilities and how they can be applied to different types of landslides, an obvious application for civil engineers, planners, and builders. Jensen’s work is a reminder that scientific inquiry is not just about discovering unknowns in the natural world but also about developing and refining new tools that have broader implications elsewhere. In this scenario, geological necessity has become the mother of invention.

With friends at Rainbow Bridge, Utah. Credit: courtesy Erin Jensen.

“I came to the U because I was interested in working with Jeff,” she says of Associate Professor Jeff Moore who is her advisor and leads the geohazards research group. His work focuses on the mechanics of processes driving natural hazards and shaping the evolution of bedrock landscapes. Utah is in fact a prime location for research into geohazards and understanding the instability of rock formations because of the abundance of natural rock formations found in places such as Arches National Park.

Jensen received her undergraduate degree in physics and civil engineering. Before coming to the U, she worked on a variety of landslide projects during her master’s degree work in geological engineering and with the US Geological Survey. At the U, she had an opportunity to develop and apply techniques that the geohazards group had been using for a decade. Before this, Moore and his group had used seismic resonance techniques to study natural arches and towers but had not yet applied these methods to large rock slope failures like those at Courthouse Mesa.

Jensen and Moore build on past studies in order to refine and move instrumentation forward by answering basic questions such as how the techniques of seismic resonance measuring can be used at other sites. Seismic resonance methods enable geohazard practitioners to better characterize and monitor potentially hazardous unstable rock slopes, especially those where invasive equipment cannot be installed, and again providing a potential service for developers and engineers.

Another benefit of the instruments Jensen is using is that she can continuously track seismic data to monitor how the site’s instability responds to temperature and rainfall changes. Jensen can use this data to check if the changes are associated with progressive failure of the rock slope. For this project, she used a single seismometer installed on the rock surface for three years and tracked the resonance frequencies of the landslide over time. What she found was that the Courthouse instability is particularly affected by thermal stresses created by heating and cooling, which causes the crack to open and close both daily and on a seasonal cycle. “We see a pretty big seasonal change,” Jensen says. “The Courthouse Crack opens and closes about fifty millimeters annually. It’s very slowly increasing and opening by millimeters per year.”

In the future, characterization measurements repeated in another season at the same site could be useful to observe the changes based on larger swings in temperature and climate. These measurements could also detect a continuing extension and failure of the cracked mesa. Coming back to the site several years later would be useful to observe changes in the overall geometry of the Courthouse Mesa.

Creating another technique in the toolkit of geological engineering is important for Jensen and her group because it helps mitigate outside risks. Her work, which is being published soon,  is instrumental in pushing the new technique for practical implementation and helps show how one can monitor landslide behavior. Conceptually, seismic resonance measuring can anticipate what kinds of other data and observations might be seen in other landslides.

Part of the project was stepping back from the site and doing conceptual and numerical modeling, such as testing out how frequency decreases with slope failure. This helps to predict how resonance frequencies will respond during progressive rock slope failures of different types. These models give new insights where field data does not exist, because instrumented rock slope failures are very rare.

Sometimes complex patterns of resonance frequency change before failure, and the models showed, for the first time, the expected form of resonance frequency change as ultimate slope collapse approaches. Field measurements like those at Courthouse Mesa are invaluable for establishing the new approach and understanding the limitations.

Erin Jensen’s work is taking her far afield from Utah. She is preparing for a postdoctoral fellowship with the US Geological Survey as part of the Mendenhall Research Fellowship Program. Her research will focus broadly on landslides in Alaska, as well as how landslides are affected by glacial retreat and climate change. <

By CJ Siebeneck

You can read the entire Geology & Geophysics Deptartment magazine Down to Earth where this story originally appeared here.

Utah’s Bonneville Salt Flats Has Long Been in Flux

Utah’s Bonneville Salt Flats has long been in flux


February 21, 2024

Salt crusts began forming long after Lake Bonneville disappeared, according to new U research that relied on pollen to date playa in western Utah.

 

Jeremiah Berneau. Credit: Chevron

It has been long assumed that Utah’s Bonneville Salt Flats was formed as its ancient namesake lake dried up 13,000 years ago. But new research from the University of Utah has gutted that narrative, determining these crusts did not form until several thousand years after Lake Bonneville disappeared, which could have important implications for managing this feature that has been shrinking for decades to the dismay of the racing community and others who revere the saline pan 100 miles west of Salt Lake City.

This salt playa, spreading across 40 square miles of the Great Basin Desert, perfectly level and white, has served as a stage for land-speed records and a backdrop for memorable scenes in numerous films, including “Buckaroo Banzai” and “Pirates of the Caribbean.”

Relying on radiocarbon analysis of pollen found in salt cores, the study, published Friday in the journal Quaternary Research, concludes the salt began accumulating between 5,400 and 3,500 years ago, demonstrating how this geological feature is not a permanent fixture on the landscape.

“This now gives us a record of how the Bonneville Salt Flats landscape responds to environmental change. Originally, we thought this salt had formed here right after Lake Bonneville and it was a static landscape in the past 10,000 years,” said the study’s lead author, Jeremiah Bernau, a former U graduate student in geology. “This data shows us that that’s not the case, that during a very dry period in the past 10,000 years, we actually saw a lot of erosion and then the accumulation of gypsum sand. And as the climate was becoming cooler and wetter, then the salt began to accumulate.”

Read the full story by Brian Maffly in @The U

ACCESS: Sarah Lambart

'ACCESS'ing Geology & Geophysics

ACCESS Scholars faculty liaison, Sarah Lambart, initially got involved in the program because she wanted to host students in her lab. An Assistant Professor in Geology & Geophysics at the University of Utah, Lambart wanted to offer hands-on activity in small research projects that students could actually work on during the semester. "I really liked working with ACCESS students. [They are] very smart ... very enthusiastic, very curious about learning new things, and so when they created this faculty liaison position, it's something I knew I would be interested [in].”

As principal investigator (PI) of the MagMaX Lab, recent projects have included working of the cause of excess magmatism during the Northeast Atlantic breakup (IDOP Expedition 396), magma genesis and transport, quantifying the mantle heterogeneity and the implications for the Earth dynamics, and, more recently, better understand the formation of critical minerals and ore deposits. If this sounds like an intense program focused on the chemistry of Earth and planetary interiors, it clearly is, especially with her emphasis on the role of magmatic processes during the differentiation and chemical evolution of terrestrial planets. "I use experimental devices such as piston-cylinders and one atmosphere furnaces to simulate high pressure-temperature conditions relevant for planetary interiors as well as various analytical techniques. Those highly-specialized techniques are designed to characterize synthesized and natural samples. "Because one limiting aspect of solid-media apparatus is that all experiments are performed in closed-systems," she writes in her research statement, "I also use innovative experimental strategies to investigate new topics." Those strategies include simulation of magma circulation and magma-rock interaction or melt segregation. The lab team also uses thermodynamic modeling to extrapolate the data they collect and/or as support for semi-empirical models.

It's exactly the kind of rigor that an ACCESS Scholar interested in earth sciences can sink their proverbial shovel into or their underwater collection implements from the bottom of the sea. (More on that later.)

But Lambart's mentoring and department-based liaisoning with ACCESS has a very human side as well. “So first, I am a woman," she says about a STEM discipline that historically has been male-centric. "But I was also a first-generation student.." Currently, most of the students in her team are also "first-gen." "I understand what challenges you might have when you don't necessarily know how the system works. I'm also from France, and so when I arrived in the US, I didn't know how the system worked. I think providing this opportunity very early on in ... [a student's] career, in their degree, can actually really make a difference at the end. So that's why I was very happy to contribute to this program.”

As a faculty liaison, Lambart coordinates the summer activities that take place in Geology & Geophysics, meets with a group of students on a monthly basis for mentorship, and serves on the selection committee. She has hosted three ACCESS scholars in her lab to date.

Expedition 396 women scientific team. From left: Sarah Lambart (Petrologist, University of Utah, USA), Weimu Xu (Sedimentologist, University College Dublin, Ireland), Stacy Yaeger (Micropaleontologist, Ball State University, USA), Sayantani Chatterjee (Inorganic Geochemist, Niigata University, Japan), Marialena Christopoulou (Sedimentologist, Northern Illinois University, USA), Natalia Varela (Paleomagnetist, Virginia Tech, USA), and Irina Filina (Physical Properties Specialist, University of Nebraska, USA). (Credit: Sandra Herrmann, IODP JRSO) [Photo ID: exp396_254]. ^^ banner photo above: courtesy of Sarah Lambart.

A native of Rennes, France, Lambart earned her doctorate from Clermont Auvergne University in 2010 followed by work as a postdoctoral research fellow at first Caltech (2010-2013) and Columbia University (2013-2015). She then took an appointment as a visiting assistant professor at UC Davis (2015-2016. In 2017, she became a Marie Skłodowska-Curie Research Fellow at Cardiff University in Wales, before landing at the U in 2018. She first got interested in her current research as a child; she had a picture of a volcano in Costa Rica in her bedroom that she had cut out of a National Geographic magazine. In high school she decided she wanted to pursue her passion for volcanoes through research.

"From our observations of the beauty of the Hawaiian Islands," says Lambart, "to the discovery of submarine volcanic chains (i.e., mid-ocean ridges) by Marie Tharp more than seventy years ago, we know that our planet is shaped by plate tectonics and magmatism. Combining geochemistry, experimental petrology and thermodynamic modeling, my lab produces innovative tools to constrain the role of crustal recycling, one of the motor of plate tectonics, on the nature of the mantle source of magmas." She remarks that, because of familiar models, most people do not know that the interior of the Earth is actually the color green, not red. "Most representations of the interior of the Earth in textbooks show it red to express the high temperature environment. However, the mantle is dominated by a rock called peridotite that is mostly made of olivine and pyroxenes, two green minerals," she says. (Click here for a 3D picture of a peridotite, as part of the U's Geo 3D rock collection.)

Recent research from Lambart's MagMaX lab includes an article by former student Otto Lang MS'21 on a new approach to constrainthe mineralogy of the magma sources. "I was [also] lucky to be involved in a recent publication on recommendation for sharing F.A.I.R (Findable, Accessible, Interoperable and Reusable) geochemical data," she says. Her work has taken Lambart to, literally, the far ends of the planet. Insights from results obtained during IODP Expedition 396, on which Lambart has sailed on, were published in 2023. (IODP is an  international marine research collaboration that explores Earth's history and dynamics using ocean-going research platforms to recover data recorded in seafloor sediments and rocks and to monitor sub seafloor environments.) Finally, a highly anticipated paper is expected soon by Ashley Morris, a doctorate student in Lambart's group who worked on an early Eocene dacitic unit collected during the same expedition.

ACCESS Scholars is about the whole being greater than the some of its research parts. The program's signature is to meld academic work with networking, mentoring and work/life balance, a unique undergraduate amalgam in which creativity is paired with analytical inquiry and where experiential learning, in all its forms, is at a premium. As an ACCESS faculty liaison in Geology and Geophysics, Sarah Lambart is no exception. "I love hiking and visiting national parks," she says of her life outside the lab. "During my professional training, I had to cross the country twice. My husband and I used this opportunity to visit as many national parks we could. So far, we visited 32, many multiple times! And I’m sure we will continue to explore new parks in the future."

Sporting an adventurous ethic—from the Atlantic seafloor to 32 of the likes of Yosemite National Park—Sarah Lambart is poised to mentor future Earth scientists at the U.

By David Pace and Seth Harper

New Tyrannosaurus Species

Scientists Conclude New Mexico Fossil Is New Tyrannosaurus Species


 

 

Scientists reassessing a partial skull first unearthed in 1983 in southeastern New Mexico have concluded that the fossil represents a new species of Tyrannosaurus - the fearsome apex predator from western North America at the twilight of the dinosaur age - that predated the fabulously famous T. rex.

^ Mark Loewen. ^^ Banner image above: An artist's reconstruction of the newly identified dinosaur species Tyrannosaurus mcraeensis, based on a partial skull fossil collected in New Mexico, U.S. Sergei Krasinski/Handout via REUTERS

Subtle differences from Tyrannosaurus rex observed in the skull merit recognizing the dinosaur as a separate species called Tyrannosaurus mcraeensis that lived several million years before T. rex and was comparable in size, the researchers said on Thursday. The skull previously was identified as a T. rex.

Other researchers expressed doubt that it represents a new Tyrannosaurus species, saying differences between it and other T. rex skulls were unremarkable and the study's conclusion that the fossil dated to 71-73 million years ago was problematic.

T. rex has been the sole species of the genus Tyrannosaurus recognized since the dinosaur was first described in 1905. A genus is a broader grouping of related organisms than a species. T. rex fossils date to the couple million years before an asteroid struck Earth 66 million years ago, dooming the dinosaurs.

The first parts of the New Mexico skull were found near the base of Kettle Top Butte in 1983, with more later discovered.

Paleontologist Anthony Fiorillo, executive director of the New Mexico Museum of Natural History & Science and one of the authors of the study published in the journal Scientific Reports, said about 25% of the skull has been collected. Most of the braincase and the upper jaws are missing.

"Compared to T. rex, the lower jaw is shallower and more curved towards the back. The blunt hornlets above the eyes are lower than in T. rex," said paleontologist Nick Longrich of the University of Bath in England, another of the researchers.

"It's the nature of species that the differences tend to be subtle. The key thing is they're consistent. We looked at lots of different T. rex, and our animal was consistently different from every known T. rex, in every bone," Longrich added.

Vertebrate paleontologist Mark Loewen, associate professor lecturer, Department of Geology and Geophysics, University of Utah is a co-author of the paper and Resident Research Associate at the Natural History Museum of Utah.

Read the entire story by Will Dunham (Reuters) in USA Today.

Kona Coffee Lawsuit

Kona Coffee Claims GET Litigated

On the volcanic slopes of Hawaii’s Big Island, hundreds of farmers in the Kona region produce one of the most expensive coffees in the world.

James Ehleringer

Those farmers recently won a series of settlements — totaling more than $41 million — after a nearly five-year legal battle with distributors and retailers that were accused of using the Kona name in a misleading way.

In 2019, Bruce Corker, who owns the Rancho Aloha coffee farm in the Kona district, filed a lawsuit on behalf of Kona farmers against more than 20 companies. At the center of the complaint was a chemical analysis performed at a private lab in Salt Lake City by James Ehleringer, Distinguished Professor in the School of Biological Sciences at the University of Utah who ran the analysis and who said that standard tests depended on the amount of water in each sample. That wouldn’t have worked on the variety of Kona products at issue.

“As you go from green beans to roasted beans, you’re changing the water content,” says Ehleringer. So he borrowed an approach from geology that instead looked at the relative concentrations of rare, inorganic minerals in the beans. These ratios, he said, stay constant even at roasting temperatures.

After testing coffee samples from around the world as well as more than 150 samples from Kona farms, Dr. Ehleringer’s team identified several element ratios — strontium to zinc, for example, and barium to nickel — that distinguished Kona from non-Kona samples. “We were able to establish a fingerprint for Kona,” said Dr. Ehleringer, who described the general method in a 2020 study. “It’s the characteristics of the volcanic rock.”

Those chemical signatures, he found, were largely absent from samples of coffee labeled “Kona” sold by the defendants.

 

 

Read the full article in the New York Times by Virgina Hughes here.

Remembering Geologist Hellmut Doelling

Geology alumnus and generous donor, Hellmut Hans Doelling, worked as a core laboratory curator, draftsman, and assistant geologist with the Utah Geological and Mineral Survey (UGMS) before returning to the U to earn his PhD in geology. 

He was born on 25 July 1930 in Richmond Hill, Queensborough, New York City, the only son of Otto Johannes Doelling and Emma Camilla Hartmann.  The family moved to Salt Lake City in 1943 and crossed “the plains” on a Greyhound bus in 5 days due to a 35 mph speed limit during WWII.

Doelling graduated from West High School in 1948, lettering in track and field. He attended the U from 1948 to 1950, then received a letter from Harry Truman and served in the U.S. Army from 1951 to 1953 during the Korean War, returning to the U in 1953 where he graduated with a B.S. in Geology. He was then called on a mission for the Church of Jesus Christ of Latter-day Saint to the East German Mission, where he served in Neumünster, Brake/Weser, Uelzen, and Berlin, under Presidents Gregory and Robbins. Work experiences up to this time included fruit picker, farmhand, paper delivery boy, newspaper inserter, copy boy, and photo lab assistant (Salt Lake Telegram and Tribune).

After earning his PhD, Doelling first taught at Midwestern University in Wichita Falls, Texas, 1964 to 1966, keeping ties with the UGMS in the summertime and was later recruited as the first chief of the Energy and Minerals Section. In 1983 he became the first chief of the Geologic Mapping program, a position he held until 1995. He then continued as a senior geologist until his formal retirement in 2003. 

Highlights of his profession include the publication of more than 200 books, maps, and articles about the geology of Utah. He also served as president of the Utah Geological Association in 1990 and received the Governors Medal for Science and Technology in 1993.  He also did consulting work, mostly in the western states: in Colorado, Nevada, Arizona, Oregon, California, and New Mexico. He also worked in Arkansas, Mexico, and Canada. 

Doelling also did consulting work, mostly in the West. He also worked in Arkansas, Mexico, and Canada. A gifted musician on the accordion, piano, harmonium, and organ, he died 29 November 2023 in Centerville, Utah at the age of 93. He was born  survived by his wife, Gerda and their seven children.

The Doelling Endowed Scholarship  in the U’s Department of Geology & Geophysics, is named in his honor. 

Read Dr. Doelling’s obituary here

Revisiting the Coast Salish Woolly Dog

Revisiting the Coast Salish Woolly Dog

Researchers and Coast Salish people are analyzing a 160-year-old Indigenous dog pelt in the Smithsonian’s collection to pinpoint the origin and sudden disappearance of the culturally significant Coast Salish Woolly Dog.

 

Chris Stantis. Banner photo above: The reconstructed woolly dog shown at scale with Arctic dogs and spitz breeds in the background to compare scale and appearance; the portrayal does not imply a genetic relationship. Credit: Karen Carr.

Researchers from the Smithsonian’s National Museum of Natural History led a new analysis that sheds light on the ancestry and genetics of woolly dogs, a now extinct breed of dog that was a fixture of Indigenous Coast Salishcommunities in the Pacific Northwest for millennia. A team of researchers analyzed genetic clues preserved in the pelt of “Mutton,” the only known woolly dog fleece in the world, to pinpoint the genes responsible for their highly sought-after woolly fur.

The study’s findings, published Dec. 14, in the journal Science, include interviews contributed by several Coast Salish co-authors, including Elders, Knowledge Keepers and Master Weavers, who provided crucial context about the role woolly dogs played in Coast Salish society.

“This was one of the most exciting projects in my career as an archeologist and an isotopes expert because of the way that we were able to weave together these different types of knowledge,” said Chris Stantis, postdoctoral researcher in the Department of Geology & Geophysics at the University of Utah and co-author of the study.  “To work with geneticists, historians, and Indigenous Knowledge Keepers just makes better research to bring it all together.”

Read the full article by Lisa Potter in @TheU.