Isotopes: Science’s Common Currency

isotopes: Science's Common Currency

 

From tracking the routes of water throughout the West to determining the levels of carbon in the Paleocene, Gabriel Bowen’s research into isotopes extends into a variety of critical research paths.

“One of the really cool things about isotope geochemistry is that it really crosses disciplinary boundaries,” Bowen says. “It’s a subfield that grew out of earth science, geology and geochemistry, but it’s useful in everything from forensic science to water research to planetary science.”

Bowen grew up in rural Michigan and spent his childhood outdoors, which grew his love of nature and the earth. He received his bachelor’s in geology at the University of Michigan and went to UC Santa Cruz for a PhD in earth science. Bowen came to the U as a postdoc before joining Purdue University as a faculty member for seven years. He returned to the U through the Global Change and Sustainability Center and is now Professor of Geology & Geophysics and Co-Director of the Stable Isotope Facility for Environmental Research (SIRFER).

Recipient of this year's College of Science Excellence in Research Award, Bowen founded the Spatio-Temporal Isotope Analytics (SPATIAL) Lab, which uses stable isotope techniques to look at a lot of different areas of application of isotope geochemistry. “Isotope science has been kind of limited by our ability to make measurements,” says Bowen.

The SPATIAL Lab

The SPATIAL group has pushed forward uniting isotope geoscience with data science, which helps facilitate data sharing within and between fields of study. This data can then be leveraged to tackle bigger systems questions.

One main focus of work within the SPATIAL group is reconstructing Earth’s climate through its geologic past and using that data to see changes in climate, ecosystems, and biogeochemical cycles, which can then be compared to modern day. The SPATIAL group is also studying how natural cycles operate today, such as the water cycle. Additionally, they also study spatial conductivity, or movement of things on the Earth’s surface, such as water, people, plants, and products.

One example is by using isotopes, Bowen looks at where plants are getting water from in the subsurface of the earth, which can show the stability of water supply within a community and help predict how water resources will change due to climate change.

“There’s an intimate coupling between the physical and biological processes that constitute a system,” Bowen says. “Isotopes are a common currency. The elements and isotopes that go through the water cycle or rock cycle are the same ones that go into an elephant or ponderosa pine. We can really bridge the gap and understand the connection across these spheres.”

Contextualizing current and future trends

 

“The Earth’s been through a lot,” Bowen says. “There’s a lot of context that shows how unusual what’s happening right now is. We’re pushing the climate system and carbon cycle much faster than it’s ever gone at any point in the geologic record.”

Bowen’s climate change research includes tracking the sources of water, such as where water originates before it makes its way to southern California. The isotopes of water in the Imperial Valley in California look more like isotopes in Colorado water than in water elsewhere in southern California. Most of the Imperial Valley water is irrigation water diverted from the Colorado River. The irrigation water becomes wastewater from irritation because of overwatering, and then it enters the groundwater. This has implications when agricultural runoff affects groundwater, as it could contain pesticides and other chemicals used in agricultural work.

The SPATIAL lab runs an annual summer course for graduate students, which provides training and experience in large-scale, data-intensive, geochemically oriented research. The course consists of a discussion and lecture in the morning, delivered by specialists in the field. Laboratory experiences introduce new techniques and hands-on learning.

“We live in a pretty amazing place for geology,” Gabriel Bowen says. He appreciates the geology of Utah from the air, as an amateur pilot. He flies a Cessna 182, mostly for geology sightseeing. He also participates in charity flying, taking people around Antelope Island for sightseeing of the Great Salt Lake. “I try to take my scientist and artist friends out to see things from a different perspective.”

 

By CJ Siebeneck

A Utah Fossil’s Journey to Harvard

A Utah fossil’s journey to Harvard

 

The 500-million-year-old fossil doesn’t stick out in Carrie Levitt-Bussian’s memory. Why would it?

Carrie Levitt-Bussian ^.Banner photo above: Artistic reconstruction of Megasiphon thylakos and comparisons with modern tunicates. Courtesy of Natural History Museum of Utah.

It looks like an unassuming, light gray, palm-sized rock with a thick “Y” on it.

That “Y” is, in fact, an animal — the ancestor of a modern sea squirt. It’s much older than any such relative previously found in the fossil record, and also much better preserved. If you’re into the grand story of evolution and, say, insights into the earliest days of vertebrates, this is remarkable enough to warrant a nine-page writeup by a team from Harvard University in Nature Communications. We’ll get to that.

But Levitt-Bussian, MS'13 in geology, has handled thousands of fossils — from ancient footprints to prehistoric poop to spectacular dinosaur skulls; her favorites are the ceratopsians, like triceratops. And what sticks out about this fossil has more to do with how it arrived in her custody, and how it left.

As the paleontology collections manager for the Natural History Museum of Utah, “I am a librarian, but for fossils,” she said. Boxes of rocks come and go all the time. Usually, though, the new arrivals don’t look like they were seized as evidence of a crime.

“There was Customs tape — red, scary tape all over the boxes,” she recalled. (“EVIDENCE,” some of the tape sternly warned: “DO NOT OPEN.”)

Here’s the backstory: Federal law enforcers had seized a large collection of fossils from the Cambrian period, roughly twice as old as the oldest dinosaur. These weren’t common trilobites like the casual, law-abiding collector might pay a few bucks to take home from a roadside quarry. They were amazing finds, many from federal land. The people who illegally took them had some knowledge of what to look for and hoped to sell them in Canada.

So for a long while, these ill-gotten Cambrian fossils were part of a case involving the Bureau of Land Management. Then came the question of where they should end up.

 

Read the full story by Daniel Potter at NHMU's website/blog.

‘Lunar Forge’ Project at NASA

'LUNAR FORGE' AT NASA

 

College students are often told to “shoot for the moon,” exploring their interests with ambitious plans and projects. This week, a team of University of Utah engineering students is taking that advice to heart in a more literal way. The team is led by Hong Yong Sohn and his graduate research assistant John Otero in Metallurgical Engineering.

John Otero and Hong Yong Sohn. Banner Photo Credits: NASA/Advanced Concepts Lab

NASA’s Breakthrough, Innovative and Game-changing (BIG) Idea Challenge is an annual, nation-wide competition that gives college students the opportunity to play a pivotal role in the future of space exploration. In response to a yearly prompt that tasks participants to solve a specific space-based problem, teams of undergraduate and graduate engineering get to work developing creative and innovative concepts. After all project proposals are submitted, five to eight teams are selected to receive a combined total of $1.1 million to further build and develop their system, which they then present to at the BIG Idea Forum in the fall of that year.

The U team is one of seven finalists for the 2023 challenge, titled “Lunar Forge: Producing Metal Products on the Moon.” Onsite and self-sufficient metal production is essential to NASA’s goal of creating a sustained human presence on the lunar surface. Every added ounce of rocket pay-load is expensive and limited, so to transport all the metal needed for lunar infrastructure from earth is out of the question. Yet to create a metal production pipeline on the moon isn’t simply a matter of taking the techniques used on earth, plopping them down on the Sea of Tranquility, and expecting them to work.

Not only does the unique makeup of lunar material need to be taken into account, but the moon’s weaker gravity (one sixth of earth’s), lack of an oxygenated atmosphere, essentially non-existent atmospheric pressure, extreme cold (with nighttime temperatures dipping below -200 degrees Fahrenheit), and constant bombardment of solar winds all pose significant obstacles to earth-centric metallurgy. Additionally, the production methods must be as resource efficient as possible, and transportable.

Read the full story at the College of Engineering

SRI Stories

SRI Stories: hands-on learning during COVID

 

 

This is me out on the frozen bed of the Great Salt Lake, collecting soil and water samples. It might be sunny, but it was freezing, and I think I still have salt stuck in my boots.

 

 

My name is Lauren, I’m a senior majoring in biology and philosophy of science, and I was a member of the first cohort of the Science Research Initiative (SRI), first-year research program in the College of Science. For my project in the antibiotic discovery stream, led by Dr. Josh Steffen, I cultured a library of halophilic bacteria that thrive in the Great Salt Lake. In a time when most of my classes were online, the SRI offered the opportunity for hands-on learning, both in a lab and in the field. In just my second semester, I was gaining valuable research skills and synthesizing concepts from my other classes. 

We took a closer look at our benchwork (an example is pictured to the left) with weekly journal clubs. Dr. Steffen helped us tackle academic articles that were directly applicable to our research and in turn enforced our understanding of the fundamental ideas at play.

These exercises combined with my work in philosophy of science and a year-long novel writing workshop through the Honors College spurred the realization that my true passion lies in science communication. 

 

 

 

 

 

 

Oh … and during my spare time I took a job at the stock room in the Department of Chemistry where, among other things, for BeReal, I wielded bolt cutters that were almost my height. En garde!

 

When I told Dr. Steffen that I loved science but didn’t think research was for me, he helped me find a role where I could play to my strengths and apply my scientific expertise.

Now, as a science writer intern for the College of Science (I’m posing here with my fellow interns), I talk to students and faculty about their research and turn their experiences into stories that everyone can engage with regardless of their background.

zebrafish (Danio rerio)

So, it turned out that laboratory research didn’t end up being the path for me. Even so, my participation in the SRI has been one of my most radical experiences at the U. During my time in the program, I developed confidence in the lab, professional connections and a lasting community within the College of Science. One of my favorite projects I covered was a paper from the Gagnon Lab about a chemical sunscreen called gadusol found in zebrafish. The research paper reading skills I learned from the SRI came in handy on that one!

There may be a point in your academic career at the U where, like me, you aren’t sure you even belong at the university – or in science at all. But the SRI and Dr. Steffen helped me see that a career in science can take many forms, not just being “at the bench” but wordprocessing away on a laptop telling stories about science. Sky’s the limit for you as a science major as well. 

I am honored to have been among the first cohort of SRI students and gratified to see how the program has already developed in the few years since its conception. Already, SRI scholars are producing great work, and I’m excited to hear (and write about) their imminent discoveries across all disciplines of science. 

 

by Lauren Wigod
Science Writer Intern

SRI Stories is a series by the College of Science, intended to share transformative experiences from students, alums, postdocs and faculty of the Science Research Initiative. To read more stories, visit the SRI Stories page.

Read more College of Science stories by Lauren Wigod here.

Ingredients for Data Science

Ingredients for Data Science

 

Data science is crucial — but can be faced with plenty of difficulties.

Posted November 16, 2023

“Sometimes [data science] can feel like alchemy,” Anna Little, Assistant Professor of Mathematics states. “Like we’re just stirring this big pile of math until the results look right.” Little was the featured speaker at the College of Science's Science at Breakfast speaker series on November 2 at the Natural History Museum of Utah. She titled her remarks Challenges of the Modern Data Era.

There are three key challenges today within the field of data science: Determining effective knowledge transfer, how to accomplish reliable data visualization and achieving physically meaningful machine learning.  All are issues that Anna Little’s research focuses on solving.

Effective knowledge transfer centers on what it means for two tasks to be similar. With so many different applications, it becomes difficult to accurately predict. “An alternative to assessing similarity is to think about distances depending on conditions in some underlying network, not just the individual points,” Little said, "investigating novel ways of measuring distance.”

Reliable data visualization deals with the patterns that we see when looking at data. Modern data tends to have a very large number of features, which makes it difficult to visualize the data as well as analyze it. Through a process called dimension reduction, one can take a large table and minimize it into a smaller table that’s easier to analyze. However, dimension reduction can also lead to patterns going undetected, or create false patterns, as well as the disappearance of outliers. Little’s research looks into the “best of both worlds” by using linear algorithms with better note properties for the data.

For the last challenge, Little reported that machine learning is currently unreliable when it comes to data science. “AI responses aren’t stable,” Little said. “We want a small change in input to lead to a small change in output, but it often leads to a big change in output, and that makes mathematicians very uncomfortable.” Machine learning has good performance, but it’s difficult for data scientists to understand why or how it comes up with a certain conclusion.

It’s important to design features of machine learning with the characteristics that one wants, and Little focuses on utilizing translation in variant features. This means the features all compute the same, regardless of whether the data has shifted in terms of location or interference.

Anna Little was born in Alabama, but spent a majority of her childhood in Europe. She received a bachelor’s in mathematics from Samford University before completing a PhD in mathematics at Duke University before arriving at the U in 2021. 

By CJ Siebeneck

Science @ Breakfast is a lecture series that features U faculty sharing their latest, cutting-edge research - while enjoying a meal. If you would like to be invited to our next Science @ Breakfast, please consider a donation to the College of Science at https://science.utah.edu/giving.

Forming Ice: Molinero

Forming ice: there’s a fungal protein for that

The way ice forms is a lot more interesting than you think. This basic physical process, among the most common in nature, also remains somewhat mysterious despite decades of scientific scrutiny.

A cryomicroscopic image of a hexagonal ice crystal grown in a Fusarium acuminatum ice nucleator (IN) extract. Credit: PNAS

Now new research from the University of Utah, with Germany’s Max Plank Institute for Polymer Research and Idaho’s Boise State University, is shedding fresh light on the role of biological agents—produced by fungi of all things—in ice formation.

Contrary to what we have been taught in school, water won’t necessarily freeze at 0 degrees Celsius (32 degrees F) because of the energy barrier inherent in phase transitions.

Completely pure water won’t freeze until it cools to as low as -46 C. This is because water molecules require particles on which to build the crystals that lead to ice, a process called nucleation. Organisms have evolved various ways to control ice formation as an adaption to survive in cold environments.

So the most efficient ice-nucleating particles are biological in origin, produced in bacteria and fungi, and even insects, but the molecular basis and precise mechanisms of “biological ice nuclei” has not been well understood.

Valeria Molinero, a theoretical chemist with the University of Utah’s College of Science, is at the forefront of sorting out this mystery, which holds potential implications for improving our understanding of how life affects precipitation and climate.

Read the full article by Brian Maffly in @TheU

SRI Stories

SRI Stories: Gap-Year Buzz

 

“I joined the beekeepers club my first semester of college,” says Claudia Wiese, a recent graduate from the U and an alum of the Science Research Initiative (SRI). She became very interested in bees — both honeybees and native bees. “So when an opportunity arose to do research on bees, I was very excited.”

Not as excited, perhaps, as bees get when they’re being looked at and managed by an eager student researcher. Little do they know, they are in good (and ambitious) hands. The Missoula, Montana native graduated with no fewer than three degrees: two BS honors degrees, one in biology and the other in Environmental and Sustainability Studies as well as a BA in Latin American Studies.

But wait. There’s more. She also graduated with Honors Ecology and Legacy Integrated Minor which offers students a guided pathway through Honors, one where they can dive into environmental and ecological thinking in an interdisciplinary manner.

Busy as a bee, it would appear.

SRI experience

No wonder today, Claudia is taking a gap-year break before she heads back to academia for a graduate degree. In the meantime, she spends “a lot of time outside and work[ing] as a ski instructor and river guide. It’s also a priority of mine to be active in local organizations that work on protecting public lands.”

Bzzzzz . . .

“Honeybees,” she reminds us, “are only about eight species of 20,000+ bee species in the world! In other words, the vast majority of bees on earth do not make honey.” This isn’t your average backyard beekeeper. In her research, she explains, “I sequence the DNA of pollen from honeybees to understand what plants they are visiting. Specifically, I am using this approach to understand the effect of a mite treatment that is commonly used. Do bees visit different flowers due to the treatment?,” she asks.

Her SRI experience in the program's Pollen Metagenomics research stream was a definite introduction and asset to her field of study. And gap-year or not, she regularly leaves Snowbird during the winter where she works as a ski instructor to continue working in her SRI stream “with the goal to finalize my research and mentor other students.”

“I am very thankful for the opportunities that SRI has provided me,” says Claudia Wiese, the recent graduate, poised to take on the next hive of scientific inquiry. “They have been an incredible launchpad to culture my passion for research and [to demonstrate how to balance it with my other interests.”

 

By David Pace

SRI Stories is a series by the College of Science, intended to share transformative experiences from students, alums, postdocs and faculty of the Science Research Initiative. To read more stories, visit the SRI Stories page.

SRI Stories

SRI Stories: little things matter

 

Ali Bouck (they/them) has always found enjoyment in the little things in life. Really little things. A scientist from a young age, Ali has been fascinated by what made seemingly simple processes work on a molecular level. 

Ali naturally gravitated towards chemistry classes in high school. Upon the recommendation of an influential teacher, Ali became more inspired by a future in chemistry and completed a pharmacy technician certification program to gain real-world experience in the field. Working as a pharmacy tech proved valuable for Ali; however, they craved work that was more “behind the scenes” of pharmacological development. This epiphany led Ali to recognize that research was their long-term career goal.

But what does a research-based academic and career trajectory look like? For Ali, and many other students like them, those opportunities are mysterious or unknown. This is where the Science Research Initiative (SRI) comes in.

During their second year at the U, Ali came across the new SRI program in the College of Science. Its mission: to place first and second-year science students in discovery-based research, thereby providing the skills and experience to prepare them for academic and professional success.

Ali immediately applied, though didn’t expect to be admitted. “I worried it was an exclusive program that was difficult to get into,” Ali says. So when Director Josh Steffen contacted Ali several weeks later to personally welcome them to the Science Research Initiative, they were “shocked.” That small but personal connection made a big difference to Ali, and demonstrated to them the accessibility of the SRI. 

After taking a one-credit course on research methods, Ali joined an SRI research stream, a specific area of study with a cohort of students, led by a faculty member. More specifically for Ali, it was Ryan Stolley’s Underexplored Molecular Architectures stream, which explores the behavior of atoms, the principles of organic chemistry and chemical experimentation. This was a natural fit for Ali’s interests in the infinitesimal. The stream also exposed them to methods of analysis, project management and practical lab experience. But for Ali, it was much more than that.

“I learned how to read scientific papers and [developed] my leadership and science communications skills,” says Ali. These skills helped them ascend to other research opportunities, scholarships and recognitions, which culminated in graduation with a bachelor’s degree in chemistry, along with several emphases.

Now in their first year as a bioscience PhD student, Ali reflects on their SRI experience with gratitude. “I received individualized support that helped me with my goals and authentically supported my wellbeing,” says Ali. Additionally, the tangible skills and knowledge they gained, is allowing them to study the development of novel organic and biosynthetic products as a graduate student. “As I learned different techniques in the lab. I found a love for organic synthesis, but having worked as a pharmacy technician throughout my undergraduate career, I want to expand to work on molecules that have relevance in that field.” Ali is poised for a career in industry research after their graduation. 

Several years after their SRI experience, Ali still sees their mentors and colleagues around campus and in the Crocker Science Center. “Josh [Steffen] says ‘hi’ every time he sees me and asks how I am doing,” they say. Whether it be science on a smaller scale, or the personal connections formed during one’s formative years, the little things truly matter.

When asked if they’d do it again, Ali Bouck says, “SRI set me on my academic and career path. Joining the program was the best decision I ever made.”

 

By Bianca Lyon

SRI Stories is a series by the College of Science, intended to share transformative experiences from students, alums, postdocs and faculty of the Science Research Initiative. To read more stories, visit the SRI Stories page.

Safety Committee

2023-2024 COS Safety Committee Members

Dr. Charlie Jui (Physics and Astronomy): charles.jui@utah.edu

David Thomas (COS Director of Safety): d.r.thomas@utah.edu

Dr. Huiwen Ji (Materials Science and Engineering): huiwen.ji@utah.edu

Isabelle Harward (Manager of Educational Labs at CSC): isabelle.harward@utah.edu

Dr. Jessica Brown (School of Biological Sciences): brown@biology.utah.edu

Dr. Jim Muller (COS Executive Director of Facilities Management): jmuller@chem.utah.edu

Nathan Watchman (Environmental Health and Safety Ex. Officio Member): nathan.watchman@ehs.utah.edu

Dr. Ryan Looper (Chemistry): r.looper@utah.edu

Wil Mace (Geology and Geophysics, Atmospheric Sciences, Mining Engineering): wil.mace@utah.edu

Dr. W.P. Lee (Mathematics): yplee@math.utah.edu

On Naps, Carbs & Motivation: Annika Edwards, BMG

As I’ve thought back on the past four years and wondered what life lessons I learned, the lesson that stands out the most to me is simple yet profound. I found this quote by an Anonymous source I felt fit perfectly, it goes like this, in life “Sometimes you need motivation, sometimes you just need carbs” and a nap.

By Annika Edwards, Valedictorian
College of Mines & Earth Sciences Convocation
11 April 2022

I added that last part about naps. Over the past four years we’ve all been through typical and atypical experiences. Of course, there’s the typical freshman 15 that we all lost from walking up and down hills motivated to make it to class on time, or the freshman 15 we all gained from a healthy diet of pizza and ramen every week. Now, I don’t have a degree in mathematics nor a degree in health sciences but to me those two seem to cancel each other out. We all experienced the atypical covid years where self-motivation became essential more than anyone could have ever imagined, and the carb intake skyrocketed. We experienced the usual snow days and the unusual earthquakes that cancelled classes and saved us from our lack of motivation to complete homework or study for that day’s tests and provided extra time to sneak in another nap. 

What motivates us

Although naps, carbs, and motivation — not necessarily in that order — are important to achieving goals, more is required to be successful. We’ve just reflected on some of our experiences with motivation, but we didn’t talk about what is motivating us. As freshmen our motivation to get to class on time may have been to get good grades or to try to start off our college careers strong. Motivation to continue to work through school while being forced to stay home and take classes online may have been the money invested in tuition for that semester, to continue to progress in our degree programs or to simply have something to do while stuck at home.

Fortunately for us there are no grades in industry and the tests are the projects we spend our time on. Unfortunately, the grades and the tests were motivators. As we start, or continue our careers, we need to set goals and have dreams both work related and personal to keep us motivated. Reba McEntire stated, “to succeed in life you must have three things, a wishbone, a backbone, and a funny bone.” Discover your motivator a.k.a. wishbone. 

Motivators often lead to action which brings us to our next bone, the backbone. The backbone is often used as a symbol of strong character, which is necessary to be successful, but today I would like to broaden the meaning of having a backbone. As both scientists and engineers, we all took math, chemistry, and physics. Often these were classes that we were the least excited about but somehow took all of our time. The work we put into these classes built the foundation needed to continue our education in each of our degree programs. We have worked hard, countless hours to get where we are today; the same is true to get to where we want to go, to achieve our goals. Today, right now, to have a backbone means to put in the honest work.

Build your backbone. 

Light bulbs

To introduce the final bone to a successful life I would like to share a joke:

How many PhD candidates do you need to change a single light bulb?

You actually only need one, but it may take more than four years.

Some of you find these kinds of jokes funny, and some of you don’t. We all have a different sense of humor, but be sure not to lose your funny bone along the way. Think back on the four plus years it has taken for you to get here. The things I remember the most are the late nights and hard work because they were truly scary, but I also remember the fun times I had laughing and joking with my classmates. I know it’s the same for you. Being able to laugh and have a good time is what makes life enjoyable. Don’t let yourself become the old person in the room who regrets taking life too seriously and spending too much time at work. 

To conclude my speech, I would like to take a minute to say thank you. Thank you to the partners, spouses and significant others who dealt with the countless hours and late nights we spent away from you working on homework and projects in the computer labs. Thank you to the parents and family who have supported us through our journey. Thank you to the advisors, industry professionals, and other supporters of our students’ groups who helped us raise money and gain valuable experiences. Thank you to the professors for passing on your knowledge and wisdom related and unrelated to school. Thank you to the classmates who became lifelong friends.

As we start this new chapter in our lives, let’s not forget that success is what you make it: discover your wishbone, build your backbone and never lose your funny bones.

To the College of Mines and Earth Sciences Class of 2022, ∫ We did it!