Cold Fog & Complex Terrain

Cold fog & Complex Terrain

 

You might not initially think of fog as a form of severe weather, but when fog sets in and visibility plummets, transportation becomes dangerous.

Zhaoxia Pu

Fog is the second-most-likely cause of aircraft accidents after strong winds, but despite the high impact of fog events and a long history of research, fog prediction remains a long-standing challenge for weather prediction because of complex interactions among the land surface, water, and atmosphere. There’s still a lot of fundamental things about fog that we don’t know.

Zhaoxia Pu, University of Utah professor of atmospheric sciences and Eric Pardyjak, professor of mechanical engineering, hope to change that through a field campaign and scientific research using Utah’s Heber Valley as the laboratory.

For about six weeks, from 7 January to 24 February 2022, Pu, Pardyjak and their colleagues, including scientists from the National Center for Atmospheric Research (NCAR) and the Environment and Climate Change Canada as well as graduate students and undergraduate students from atmospheric sciences and mechanical engineering at the University of Utah, watched a network of sensors on the ground in the Heber Valley along with comprehensive sets of instruments from the NCAR's Erath Observing Laboratory and satellite observations. The valley is bounded by mountains, relatively flat in the basin and features two lakes — Jordanelle and Deer Creek reservoirs. Its conditions, Pu says, are representative of mountain valleys around the world.

On winter nights, cold air pools on the valley floor and creates favorable conditions for several forms of fog, including cold-air pool fog, ephemeral mountain valley cold fog and radiative ice fog. By observing how these different kinds of fog form and dissipate, the researchers are continuing to learn about the meteorological conditions and physical processes governing the formation of fog and improve fog prediction.

The study is funded by a $1.17 million grant from the National Science Foundation.

Now, in a recent paper in the Bulletin of the American Meteorological Society, Pu and her colleagues have published findings via The Cold Fog Amongst Complex Terrain (CFACT) project, conceived to investigate the life cycle of cold fog in mountain valleys.

The overarching goals of the CFACT project, according to the paper’s abstract, are to 1) investigate the life cycle of cold-fog events over complex terrain with the latest observation technology, 2) improve microphysical parameterizations and visibility algorithms used in numerical weather prediction (NWP) models, and 3) develop data assimilation and analysis methods for current and next-generation (e.g., sub kilometer scale) NWP models.

Field observations, NWP forecasts, and large-eddy simulations provided unprecedented data sources to help understand the mechanisms associated with cold-fog weather and to identify and mitigate numerical model deficiencies in simulating winter weather over mountainous terrain. The paper summarizes the CFACT field campaign, its observations, and challenges during the field campaign, including real-time fog prediction issues and future analysis.

Comprehensive measurements

A network of ground-based and aerial in situ instruments and remote sensing platforms were used to obtain comprehensive measurements of thermodynamic profiles, cloud microphysics, aerosol properties and environmental dynamics. Over its seven-week course, the CFACT field campaign collected a diverse and extensive dataset, including high-frequency radiosonde profiles, tethered balloon profiles, remotely sensed thermodynamic and wind profiles, numerous surface meteorological observations, and microphysical and aerosol measurements. Nine intensive observation periods (IOPs) explored various mountainous weather and cold fog conditions.

Despite the drought in the western United States in 2022, which limited the occurrence of persistent deep fog events associated with persistent cold-air pools that regularly form in higher-elevation Intermountain West basins, the campaign observed highly spatially heterogeneous ephemeral fog and ice fog events. Since ephemeral fog and ice fog are extremely difficult to detect, model, and forecast, CFACT provided unprecedented datasets to understand both types of fog and validate the NWP model.

Meanwhile, the variety of non-fog IOPs provided valuable observations for understanding near-surface inversion, ice crystal formation, moisture advection and transportation, and stable boundary layers over complex terrain, all of which are essential factors related to fog formation. Comprehensive studies are ongoing for an improved understanding of cold fog over complex terrain.

Critical high resolution observations

The CFACT campaign observations, complemented by model simulations, have been instrumental in studying the lifecycle of fog and the behavior of the stable boundary layer. More importantly, since Heber Valley is a small-scale valley, the observations from the two CFACT supersites, eight low-cost stations and nine satellite sites provide critical high-resolution observations to validate and improve current and next-generation (i.e., sub-kilometer scale) NWP models.

Moreover, the available CFACT high-resolution meteorological observations, along with the soil and snow observations during CFACT, are helpful for developing fine-scale atmospheric data assimilation and the coupled land–atmosphere data assimilation (e.g., Lin and Pu 2019, 2020; Zhang and Pu 2019) for improved near-surface weather prediction, including cold-fog forecasting.

Various comprehensive studies are presently underway for numerical model validation, improvement and data assimilation to improve cold-fog prediction.

First author of the paper, Zhaoxia Pu is a member of the NOAA Science Advisory Board. She is an elected fellow of the American Meteorological Society and Royal Meteorological Society.

This story is adapted from an earlier announcement on this project by Paul Gabrielsen in @TheU.

UPDATE (Dec.19, 2023): With the persistent "inversion" now occurring in the Salt Lake Valley and beyond,
additional coverage from FOX 13 of Dr. Pu's research has been broadcasted / posted.
Listen to the story here.

UPDATE (Feb. 13, 2024): The EOS newsletter of American Geophysical Union  (AGU)
featured the CFACT project here.


Do the Right Thing: Kevin Perry on the GSL

Do the Right Thing

Dr. Kevin Perry, an atmospheric scientist at the University of Utah, is one of the scientists working to save the Great Salt Lake from drying up.

The lake needs all the help it can get—informing citizens and policymakers on the science of the lake is critical to keep it going for years to come. Lately, Perry says more of his time is spent communicating about his research than actually doing it.

In 2021, Perry presented the findings of a two-year research project to determine the contents of the dust coming off of the dried Great Salt Lake surface. He found that not only was the dust a source of pollution, but it also released toxic chemicals like arsenic and other heavy metals into the air. The potentially harmful air pollutant would only worsen if the lake wasn’t restored—and he’s been trying to get Utahns to listen ever since.

While Perry was out buying groceries, a cashier struck up a conversation with him about the Great Salt Lake. The cashier said he had created a website to warn community members about dust pollutants coming off the Great Salt Lake and started to explain the risk of the exposed lakebed to Perry.

“I laughed and I said, ‘You don’t know who I am, but you know the toxic dust that you’re talking about? That’s my scientific research,’” Perry says. “That kind of blew me away…when [I saw] somebody who has no scientific background was inspired enough to spend their time and effort trying to save the Great Salt Lake.”

Read the full article in Scientist Stories by Science Friday's Emma Lee Gometz.

‘Roving sentinels’ discover new air pollution sources

‘Roving sentinels’

 

In 2019, University of Utah atmospheric scientists, the Environmental Defense Fund and other partners added a new tool to their quiver of air quality monitors—two Google Street View cars, Salt Lake Valley’s roving sentinels that would detect hyper-local air pollution hotspots.

Jon Lin. Banner Photo: A Google Street Car loaded with air quality instrumentation. Credit: Logan Mitchell

In the ensuing months John Lin, professor of atmospheric sciences at the U, developed a new modeling approach that used modeled wind patterns and statistical analysis to trace pollution back to its source location to a scale previously missed by coarser scale monitoring projects that have traditionally characterized air quality averaged over an entire urban airshed.

In a U- and Environmental Defense Fund (EDF)-led study that was published in the October 2023 issue of the journal Atmospheric Environment, the results are in.

“With mobile vehicles, you can literally send them anywhere that they could drive to map out pollution, including sources that are off the road that previous monitoring missed,” said Lin, who also serves as associate director of the Wilkes Center for Climate Science & Policy. “I think the roving sentinel idea would be quite doable for a lot of cities.”

The researchers loaded the vehicles with air quality instrumentation and directed drivers to trawl through neighborhoods street by street, taking one air sample per second to create a massive dataset of air pollutant concentrations in the Salt Lake Valley from May 2019 to March 2020. The observations yielded the highest-resolution map yet of pollution hotspots at fine scales—the data captured variability within 200 meters or about two football fields.

“The big takeaway is that there is a lot of spatial variability of air pollution from one end of a block to another. There can be big differences in what people are breathing, and that scale is not captured by the typical regulatory monitors and the policy that the U.S. EPA uses to control air pollution,” said Tammy Thompson, senior air quality scientist for EDF and co-author of the study.

Read the full story by Lisa Potter in @TheU. 

 

Ring-of-fire eclipse: How to see it

Ring of Fire Eclipse

 

“It’s like when you make a circle with your fingers and close one
eye. When you move your hand closer to your face, the circle gets bigger. Move it away, and it appears smaller.”

Paul RIcketts. Credit: Sara Tabin/Park Record

This is what Paul Ricketts has to say about the upcoming eclipse on Saturday October 14. “This will be a cool event. You’ll still see the surroundings get darker, you’ll feel it get colder, but you won’t be able to look at the eclipse without protective glasses,” continued  Ricketts, the director of the University of Utah’s South Physics Observatory. “Plus, this will last way longer than the total eclipse.”

This is a front row seat for Utahns to an annular eclipse the morning of the 14th. The so-called ring-of-fire eclipse is different than the total eclipse of 2017 but will still be spectacular.

A solar eclipse occurs when the moon’s orbit moves between the sun and the earth so that it blocks out the sun’s light and casts a shadow on Earth’s surface. During an annular eclipse, the moon is at a farther distance from the Earth. The distance makes the moon appear smaller, and it fails to block out the entire sun. The moon looks like a large black disk in front of the bright sun disk. This results in a ‘ring of fire’ around the moon’s silhouette.

Every year the moon drifts slowly farther away from the Earth—around one inch farther per year. Ricketts said that’s one reason to take advantage of these astronomical events while you can.

“Right now, our Earth position with the moon and the sun, they appear the same size in the sky, which is why we can enjoy total eclipses. A few billion years down the road, the moon will appear too small and we’d only get these types of annular eclipses.” Ricketts said. “We’re lucky to be alive right now. In the future, we’d only able to see annular eclipses that look like a much smaller black dot crossing the sun’s surface.”

While many will enjoy viewing the solar spectacle, the event is sacred to local Indigenous tribes. For some Indigenous tribes, an eclipse is a time of renewal and reflection through cultural practices that include fasting and meditation. Diné (Navajo) and Ute Indian Tribes do not watch, or even look at images of the eclipse. When posting images on social media, be mindful of people who want to avoid such images. Consider using a filter so your followers can opt-in to view any multimedia of the eclipse.

 

Learn how to see the eclipse by reading the rest of the story by Lisa Potter in @TheU.

Safe Landings Weather-wise

SAFE LANDINGS Weather-wise

 

Aviation meteorologists like 2008 atmospheric science alumnus Warren Weston connect the dots between severe weather and flight schedules by creating detailed forecasts to help planes and their travelers arrive at destinations safely.

From thunderstorms and limited visibility to scorching temperatures and turbulence, the weather dictates when and where planes can fly. Severe weather is the leading cause of air travel disruptions in the United States.

Aviation meteorologists plan for and around difficult conditions, crafting weather forecasts used to determine the nuances of flights, from altitude to optimal routes. They play an essential role in ensuring travelers get to their destinations safely and efficiently.

Several major domestic carriers, including Delta Air Lines, have in-house meteorologists who monitor global weather 24 hours a day. Delta has 28 meteorologists on staff — the largest team of any airline, it declares — who sit in the carrier’s Operations and Customer Center, alongside flight dispatchers, customer service agents and hundreds of other staffers, at its headquarters in Atlanta.

In this cavernous and screen-filled room, Warren Weston, Delta’s lead meteorologist, recently spoke about the importance of data, the difference between surface weather and upper-air hazards, and how even one degree of temperature can change a flight plan. The conversation has been edited and condensed for clarity.

Photo credit: Delta Air Lines

Read the full Q&A with Warren Weston conducted by journalist Christine Chung in the New York Times.

A widely used instrument for monitoring black carbon in real time.

Black carbon sensor could fill massive monitoring gaps

Black carbon is the most dangerous air pollutant you’ve never heard of. Its two main sources, diesel exhaust and wood smoke from wildfires and household heating, produce ultrafine air particles that are up to 25 times more of a health hazard per unit compared to other types of particulate matter.

 

Despite its danger, black carbon is understudied due to a lack of monitoring equipment. Regulatory-standard sensors are wildly expensive to deploy and maintain, resulting in sparse coverage in regions infamous for poor air quality, such as the greater Salt Lake City metropolitan area in Utah.

A University of Utah-led study found that the AethLabs microAeth MA350, a portable, more affordable sensor, recorded black carbon concentrations as accurately as the Aerosol Magee Scientific AE33, the most widely used instrument for monitoring black carbon in real time. Researchers placed the portable technology next to an existing regulatory sensor at the Bountiful Utah Division of Air Quality site from Aug. 30, 2021-Aug. 8, 2022. The AethLabs technology recorded nearly identical quantities of black carbon at the daily, monthly and seasonal timescales. The authors also showed that the microAeth could distinguish between wildfire and traffic sources as well as the AE33 at longer timescales.

Because black carbon stays close to the source, equipment must be localized to yield accurate readings. The microAethsensor’s portability would allow monitoring at remote or inaccessible stationary sites, as well as for mobile use.

E

“Having a better idea of black carbon exposure across different areas is an environmental justice issue,” said Daniel Mendoza, research assistant professor of atmospheric sciences at the University of Utah and lead author of the study. “The Salt Lake Valley’s westside has some of the region’s worst air quality partly because it’s closest to pollution sources, but we lack the ability to measure black carbon concentrations accurately. Democratizing data with reliable and robust sensors is an important first step to safeguarding all communities from hazardous air pollution.”

The study was published on Feb. 1, 2024, in the journal Sensors.

In the dark

Black carbon pollutants are a type of fine particulate matter (PM2.5), a class of air particles small enough to be inhaled into the lungs and absorbed into the bloodstream. Black carbon is true soot, produced when hydrocarbons do not fully burn, and has been shown to migrate into the heart, brain, fetal tissue, and other biological systems.

“The combination of increasing wildfires driven by anthropogenic climate change and steady population growth along the Wasatch Front in coming decades will result in new pollution challenges that Utah will have to face,” said Erik Crosman, assistant professor of environmental sciences at West Texas A&M University and a co-author of the study.“The portable MA350 ‘micro’ aethalometer could be utilized in building a better spatial observational network of accurate but lower cost black carbon sensors across the region.”

Though research suggests exposure to black carbon is 10 to 25 times more hazardous to respiratory and cardiovascular health than other PM2.5, long-term health outcomes are largely unknown. An accurate observation network is the first step to establishing disease risk and creating effective public health policies. This study, funded by the Salt Lake City Corporation, aims to help regions with poor air quality establish a baseline of black carbon distribution.

“It’s crucial that we target our measurements to identify the largest and most relevant black carbon sources,” said Drew Hill, a study coauthor who leads data science and applied research work at AethLabs. “We’ve added a feature rooted in physical principles to provide real-time estimates of the amount of measured black carbon produced by fossil fuel burning versus wood burning to allow researchers and policy makers to triangulate such sources.”

Having established the portable sensor’s accuracy and regional relevance, the researchers are measuring black carbon levels around the Salt Lake Valley, including testing concentrations present inside school buildings.

“First, you need to get readings. In some neighborhoods you could look at air quality concentrations, then look at the cancer or other disease rate in that neighborhood,” said Mendoza, who is also an adjunct assistant professor in the Division of Pulmonary Medicine at University of Utah Health. “Getting measurements with a high degree of accuracy, now we can really think about health and policy avenues to really protect everyone’s lung health.”

Jeffrey Blair of AethLabs also contributed to the study, titled, “A long-term comparison between the AethLabs MA350 and Aerosol Magee Scientific AE22 Black Carbon Monitors in the Greater Salt Lake City Metropolitan Area.” Sensors 2024, 24 (3), 965; https://doi.org/10.3390/s24030965.

What happened to Co2 emissions during pandemic lockdown?

Reduced traffic during the COVID-19 lockdown was likely the primary driver behind reduced CO2 emissions in Salt Lake City (SLC), according to a new study led by University of Utah professors Derek Mallia and John Lin, published in the Journal of Geophysical Research – Atmospheres.

Derek Mallia

High-density measurements of CO2 were combined with a statistical model to estimate reductions in greenhouse gas emissions across SLC during the lockdown.

The paper reports on evidence of an observable decrease in anthropogenic CO2 emissions. The analysis used measurements from the Salt Lake area’s two CO2 networks–Utah Urban Carbon Dioxide Network (UUCON) and a CO2 instrument installed on a light-rail train car (TRAX) that traverses the Salt Lake Valley. Together, the two networks estimated CO2 concentrations across SLC. The results suggest that high-density CO2 monitoring networks could be used to track the decarbonization of cities.

Of the paper, titled “Can we detect urban-scale CO2 emission changes within medium-sized cities?” Mallia said, “This work demonstrates that mobile-based carbon monitoring networks, like the one deployed on Salt Lake City’s TRAX train, will be critical tools for tracking decarbonization efforts for cities across the globe.”

Given that over half of anthropogenic CO2 is emitted from urban areas, cities will play a pivotal role in future decarbonization efforts, and quantifying CO2 emissions at the city-scale will be important for determining whether cities are meeting CO2 decarbonization targets.

The research was funded by the National Oceanic and Atmospheric Administration’s Climate Program Office (CPO) as part of an air quality research initiative to track impacts of COVID-19 lockdowns & recovery on urban atmospheric composition. The research showed that CO2 emissions across SLC relative to 2019 were reduced by ~20% during the first COVID-19 lockdown and that the largest reductions in CO2 were likely driven by reduced traffic, especially in downtown SLC on the northern end of the Salt Lake Valley.

Unlike other cities used to investigate emission reductions during the COVID-19 lockdown, SLC is a medium-sized metropolitan area with a population just over 1 million people and emits an order of magnitude less CO2 relative to larger cities like Los Angeles, San Francisco, and Washington DC/Baltimore. Determining whether CO2 emissions reductions are traceable for smaller cities and metropolitan areas has been an outstanding question which this paper now addresses. The study is the first to demonstrate that CO2 emissions in medium/small cities can be measured.

“While no one wishes for a repeat of the COVID shutdown, it does illustrate the large leverage a shift in societal behavior has on reducing greenhouse emissions, whether from reduced traffic or the transition to electric vehicles,” said Lin.

Ultimately, the analysis carried out here suggests that inverse models, combined with stationary and mobile CO2 observations, can track modest emission reductions in medium-sized cities, and to some degree, geographically identify emission adjustments at the city-scale. According to the researchers, novel urban CO2 observation networks, like the TRAX network, combined with new satellite-based measurements approaches, will also play a key role towards monitoring decarbonization efforts in cities.

Other contributors to the paper include Logan Mitchell, Andres Eduardo Gonzalez Vidal, Dien Wu, and Lewis Kunik.. Read the full paper here.

This research was tagged as a highlighted feature by Eos.org

By David Pace

Watch the cool video from Utah Educational Network about monitoring air quality in Salt Lake County along UTA TRAX lines below:  

Utah’s Environmental Challenges

“As bad as it is, I think there’s hope,” says John Lin, professor of atmospheric sciences in the College of Science at the University of Utah.

John Lin. Banner photo credit: Jim Steenburgh

Lin, who is also assistant director of the newly formed Wilkes Center for Climate Science & Policy, says the state’s desire to eventually host the Winter Olympics again has added some urgency to the matter of addressing Utah’s climate-related challenges, especially around air quality. He adds that the state’s response to such issues is often reflective of the “Utah way,” in which people with different beliefs talk to each other and work through problems.

The challenges are real, according to a story in U.S. News & World Report which often touts the Beehive State as “best” in many categories. The environment, including air quality, is not, however, one of them.

“With its five national parks, scenic mountain vistas and stunning red rock landscapes, environmental problems likely aren’t top of mind in most people’s perceptions of Utah,” the magazine reports.

“But the proof – and the pollution – is in the data.”

Utah ranks near the bottom in the natural environment category of the magazine’s recently released Best States rankings. “It’s a black mark on a largely sterling record for the No. 1-ranked state overall.”

 

Read the entire article by Elliot Davis Jr.

Dirtiest snow-year in the Wasatch accelerated snowmelt by 17 days

As the shrinking Great Salt Lake exposes an ever-growing area of its lakebed, wind-blown dust becomes more dangerous for those living in Utah’s most populous region. It also makes the snowpack dirty, which threatens the state’s most precious resource—water.

“You might see 17 days and think it’s no big deal, but our current snowmelt models don’t account for dust,” said McKenzie Skiles, assistant professor of geography at the U and senior author of a new study in which researchers analyzed the impact of dust on Utah snow during the 2022 season. They found that 2022 had the most dust deposition events and the highest snowpack dust concentrations of any year since observations began in 2009on the paper. “So, the snow is melting, water is coming out earlier and faster than we expect it to, and we’re not prepared to use it in the most efficient way. The landscape is also not expecting the water earlier, so it impacts watershed functionality as well as water availability downstream.”

The study published on June 15, 2023, in the journal Environmental Research Letters.

In 2018 Skiles authored a study that found that a single dust event accelerated snowmelt in the Wasatch by one week. That paper identified the Great Salt Lake as a relatively new dust source due to historically low water levels. Subsequent years of prolonged drought, increased evaporation and sustained agriculture and domestic water consumption drove the Great Salt Lake to record lows in 2021 and 2022 and exposed even more dry lakebed.

“Anecdotally, we kept saying, ‘This is crazy—this is the dirtiest snow in the Wasatch I’ve seen since I started making observations,’” said Skiles. “Ultimately, after we analyzed everything, it was the dirtiest year.”

You don’t need a weatherman to know which way the dust blows …

Derek Mallia

… you need co-author of the study Derek Mallia, a research assistant professor in the Department of Atmospheric Sciences at the U. Strong winds can loft dust into the atmosphere and degrade air quality, which can trigger yellow or red air pollution warnings. Dust-on-snow deposition requires a specific set of factors; nearby dust sources, relatively dry conditions and winds that are strong enough to loft dust into the atmosphere. Mallia developed a dust transport model that can pinpoint where the dust on snow originated by synthesizing meteorological and soil data. For every dust event, Mallia ran his model to identify dust sources that were responsible for accelerating snow melt in the Wasatch Mountains.

“We were expecting large areas like the Great Salt Lake Desert to be a major source of dust, but we were somewhat surprised that we observed such large contributions of dust coming from the Great Salt Lake, and especially Farmington Bay. While the lake’s dust sources are much smaller than the West Desert in terms of area, the exposed dry lakebeds are much closer to the Wasatch Mountains,” said Mallia. “These results suggest that the Great Salt Lake is an important factor when it comes to accelerating snow melt across the Wasatch Front and will become a bigger player if it continues to shrink.”

Read the full article by Lisa Potter in @TheU.

 

Geologist Brenda Bowen, to chair Department of Atmospheric Sciences

The College of Science and the College of Mines and Earth Sciences (CMES) are pleased to announce that Professor Brenda Bowen has agreed to serve as the next chair of the Department of Atmospheric Sciences (ATMOS).

Bowen is a Professor of Geology and Geophysics and Director of the Global Change and Sustainability Center (GCSC). She will continue as the Director of the GCSC while serving as chair and will replace John Horel who has been at the helm of ATMOS for five years.

“Brenda Bowen is an internationally prominent researcher and an experienced academic leader,” said Peter Trapa, Dean of the College of Science. “Bowen’s vision will guide the Department of Atmospheric Sciences in exciting new directions.” 

“As most of you know, Brenda is a dynamic leader on campus who has a collaborative vision of academics and research,” said Darryl Butt, out-going dean of the CMES to his colleagues. “I am really looking forward to watching the synergy between departments in our merged college structure as you all continue to break down barriers of academics and, as I like to say, make two plus two equal something greater than four.”

 Said Bowen who begins her tour as chair on July 1, 2023, “I am excited for the opportunity to serve as Chair of Atmospheric Sciences.  I look forward to leading ATMOS in a way that creates stronger connections between our departments and the College of Science as a whole. My goal is to build on the department’s leadership in advancing field stations and long-term field-based science, commitment to conducting and advancing community-based research with highly significant societal relevance, and dedication to training students for careers of the future.”  

An interdisciplinary geoscientist, Bowen explores the links between sedimentology, geochemistry and environmental change, particularly in extreme environments.  Recent work is focused on how surface process, groundwater flow and geochemical change impact landscape evolution in human-modified systems using field observations, satellite and airborne remote sensing and a range of lab-based analytical techniques including geochemistry and microscopy. 

In addition to her geologic research and teaching, Bowen works to facilitate interdisciplinary sustainability research, practice, and academic programs that address critical issues related to understanding global change and creating sustainable solutions related to energy, resources, climate and equity.

ATMOS is the leading program of weather and climate related research and education in the Intermountain West and is recognized internationally for its expertise in cloud-climate interactions, mountain meteorology, climate physics and dynamics, weather and climate modeling, and tropical meteorology. The department, which celebrated its 75th anniversary earlier this year, houses research and teaching endeavors that provide the knowledge and tools needed by society to address the challenges posed by hazardous weather and climate change in the 21st century. The department is a student-centered department with faculty who are dedicated graduate student mentors and classroom instructors. Several of ATMOS professors have won college or university-wide teaching awards. For more information, read the department’s 2023 magazine Air Currents.