Why mobile farm technology won the 2024 Wilkes Climate Launch Prize

How mobile farm technology won the 2024 Wilkes Prize


January 7, 2025
Above: Applied Carbon’s pyrolyzer. PHOTO CREDIT: Applied Carbon

A Texas company, winner of the 2024 Wilkes Climate Prize, aims to develop technology to create 'biochar' as a soil additive that could benefit farmers.

This story is jointly published by nonprofits Amplify Utah and The Salt Lake Tribune to elevate diverse perspectives in local media through student journalism.

A "pyrolizer," a machine that can apply high heat without oxygen to crop waste and create a soil additive called biochar, dumps loads of the substance into bags. Applied Carbon, a Texas startup, has received a $500,000 prize from the U's Wilkes Center to develop the technology as a way to store carbon. Credit: Applied Carbon

The stalks and husks of corn plants — the waste product left by combine harvesters — could be a key tool in the fight against climate change, and the University of Utah is putting up $500,000 to test the idea.

The U.’s Wilkes Center for Climate Science and Policy recently awarded its half-million-dollar Wilkes Climate Launch Prize to Applied Carbon, a Texas-based startup.

Applied Carbon won the prize for its mobile farm technology, which turns crop waste into a soil additive that decreases the need for fertilizer and stores the remaining carbon in the earth’s soil.

William Anderegg, director of the Wilkes Center, said one of the main selling points of Applied Carbon’s technology is its potential to be made for scale.

“The scalability is very exciting, and you can see a path for them to really scale up across many different agricultural fields in the next couple of years,” he said.

The crop waste is produced when combine harvesters sail through tall corn fields, their rotating blades slicing through the stalks, filtering them into the machine’s mouth, where its spinning cylinders rip the corn kernels from the husk and stems. The combine saves the kernels of corn in its body and spits out the stalk and husk remnants, leaving it to waste on the flattened field.

The prize, one of the largest university-run climate prizes in the world, was created in 2023 to help jump-start promising climate solution ideas. At a September reception in partnership with the Southwest Sustainability Innovation Engine, Anderegg awarded the prize money to Jason Aramburu, Applied Carbon’s CEO and co-founder.

At the reception, Aramburu said that “as a startup company … there’s often a funding gap, particularly in this sector, to get your technology to market.” He later added that the prize money will help the company produce more of their biochar machines and get them into the field.

Applied Carbon now has four mobile pyrolizers, a machine that can reach high temperatures without oxygen, and the company will apply the prize money to its field operations in Texas, Aramburu said. These operations, he said, work in partnership with the U.S. Department of Agriculture through the Natural Resources Conservation Service.

“We’ve got about 4,000 acres of corn that we’re working with. We will test our equipment [in Texas] and also test how effective the biochar is on the soil,” he said.

The yield and soil chemistry testing, Aramburu said, will determine if the process works and to measure the impact of the technology. The project, in its first multi-season trial run, is expected to remove 100,000 tons of carbon from the atmosphere by 2026, he said.

Biochar, a charcoal-like substance derived from biomass waste, is made through pyrolysis, a heat-driven process that uses virtually no oxygen and stores carbon in the waste product, according to Utah State University. Biochar, Anderegg added, is promising as a nature-based tool for fighting climate change because its carbon storage is stable and lasts hundreds of years.

“By contrast, a huge number of companies and governments are interested in tree planting, … but forests are at increasing risk from fire and drought and climate change,” he said. “We really worry about planting trees in one area that may be dead in 10 to 20 years.”

By Giovanni Radtke

 

You can read the full story for free at Amplify or with a subscription in the Salt Lake Tribune.

 

 

Two 2 Tango

TWO 2 Tango


October 25, 2024

​​Chemistry faculty & graduate student duos prove that two minds are better than one.

 

Unraveling Bacterial Genomes

At the University of Utah's Department of Chemistry, faculty member Aaron Puri and graduate student Delaney Beals are pioneering research to decode bacterial genomes by understanding their natural environments. Their project, which began with Puri's pilot experiments during his postdoctoral fellowship, focuses on linking methanotroph phenotypes to genotypes using a spatially resolved model ecosystem.

Graduate student Delaney Beals and faculty member Aaron Puri

Puri, who started his research group in 2019, brings a diverse and impressive background to the project. With triple bachelor's degrees from the University of Chicago, a PhD in chemical and systems biology from Stanford University, and postdoctoral research at the University of Washington, Puri's expertise spans chemical tools for host-pathogen interactions and genetic tools for methane-oxidizing bacteria. Now a faculty member in the Henry Eyring Center for Cell & Genome Science, his work centers on the biological chemistry of bacteria that grow on one-carbon compounds like methane and methanol.

Beals, a fifth-year PhD candidate, contributes vital expertise in the chemical ecology of methane-oxidizing bacterial communities. Originally from North Carolina with a bachelor's from UNC Asheville, Beals was drawn to Puri's lab due to its focus on bacterially derived natural products. "By studying how a particular microbe behaves in the natural environment versus in the lab,” she explains, “we can better understand the ecological context in which various compounds are produced, and thus improve efforts to capitalize on a naturally occurring process."

Their research aims to uncover how bacteria use natural products to interact with each other and the environment. Puri elucidates the challenge: "We live in a time where we have virtually unlimited access to bacterial DNA (genome) sequences. But we have a hard time making sense of the vast majority of this information in the lab." To address this, the team grows bacteria in conditions closer to their natural environment, which has revealed exciting insights. Puri notes, "We can use relatively simple materials to uncover new bacterial behaviors in the lab in a reproducible manner."

The Puri-Beals collaboration has yielded significant findings, showing that bacterial behavior varies depending on their location within the model ecosystem. This research has potential applications in alternative energy, agriculture, and health by optimizing the use of microbes for various purposes. Their work not only advances our understanding of bacterial genetics but also paves the way for practical applications with far-reaching societal impacts.

As Puri emphasizes, "This work underscores that it is critical to think about the environment the bacterium of interest came from to understand what the genes in bacterial DNA are doing, since that is where they evolved." This approach promises to enhance our ability to harness microbes as sources for new natural products and to optimize their use in diverse applications.

Decoding Human Milk Oligosaccharides

In the aftermath of the 2022-2023 infant formula shortage, the research of Professor Gabe Nagy and graduate student Sanaz Habibi (they/their) has taken on newfound significance. Their project, focused on characterizing human milk oligosaccharides (HMOs), addresses crucial sugars in human milk that play a vital role in infant development.

Gabe Nagy and graduate student Sanaz Habibi

The complexity of HMOs presents a significant challenge, with potentially over 200 different compounds, yet authentic references are currently available for only about 30 of them. Nagy and Habibi are at the forefront of developing new analytical techniques to enhance HMO characterization, which could have profound implications for improving infant formula and understanding infant nutrition.

Habibi, who joined Nagy's lab in 2021, brings expertise in analytical chemistry and instrumentation from their undergraduate studies at Virginia Commonwealth University. Their research utilizes high-resolution cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS) to analyze HMOs. Habibi explains their journey: "I became very interested in the cIMS-MS instrument that was being used in his lab, despite having little to no background in IMS or MS. I realized that Gabe's lab was the best fit for me to learn a different type of separation technique and increase my knowledge of mass spectrometry for studying an important class of carbohydrates."

Further elaborating on their innovative approach Nagy says, "We aim to develop advanced methods using ion mobility separations and mass spectrometry. These methods aim to decipher the structures of all possible HMOs, addressing the gap in understanding caused by the lack of comprehensive reference materials." This work involves constructing collision cross section databases, which provide numerical descriptions of the size, shape, and charge of ions—crucial for accurately identifying both known and unknown HMOs in real human milk samples.

The team's work is particularly timely, as Nagy points out: "The world of sugar analysis has lagged behind other fields by 10-20 years, and we believe that our lab could develop new tools in order to bridge this gap." The duo’s research not only contributes to solving immediate challenges in infant nutrition but also has broader implications for analytical chemistry.

Nagy and Habibi are optimistic about the wider applicability of their tools and methods. They envision their advancements being adopted by laboratories worldwide across various molecule classes. Habibi emphasizes the potential of their work "to enhance the comprehensive profiling of human milk using our developed methods."

This pioneering research has the potential to empower other disciplines such as biology and medicine by providing access to advanced analytical tools. As infant nutrition continues to be a critical area of study, the work of Nagy and Habibi stands at the forefront of efforts to improve our understanding and application of human milk components in infant formula and beyond.

By Julia McNulty and David Pace

The intersection of science and aesthetics

The intersection of science and aesthetics


Dec 04, 2024

The work of recent chemistry graduate Uziel Gonzalez BS ‘24 was featured in the September 24 publication of C & E News feature “Chemistry in Pictures.” 

Uziel Gonzalez (BS ‘24)

Tom Richmond said for the C & E News “While purifying tert-butylmalononitrile, a useful starting material for the synthesis of organic electronic materials, University of Utah chemistry undergraduate Uziel Gonzalez discovered the molecule had made beautiful, fernlike crystals via room temperature sublimation. Though not suitable for structure determination by X-ray diffraction, which was the original goal, the crystals in the resulting 6 x 4 mm microscope image were suitable for framing. The acidic C–H bond of the malononitrile provides a useful handle to make new carbon-carbon bonds with highly fluorinated aromatics. 

Uziel Gonzalez is one of the 2024 Laya F. Kesner Award recipient. When he received the award, Professor Thomas Richmond noted, “Uziel was an outstanding student in Inorganic Chemistry, has been involved with the ACS student affiliate's group and even managed to make some new fluorocarbon molecules in my lab. Ultimately, he would like a career as an FBI Agent."  

The feature “showcases the beauty of chemistry, chemical engineering and related sciences” to the 150,000 readers of C&E News and beyond.  As noted in the article, an elegant leaf-like structure was formed upon sublimation of a volatile organic compound.  Although not suitable for crystallography, it was suitable for framing. 

This story was originally posted on @chem.utah.edu  where you can see other stunning images from Uziel Gonzalez 's collection.

The surprising role of CO₂ in cellular health

The surprising role of CO₂ in cellular health


Dec 02, 2024

The cells in our bodies are like bustling cities, running on an iron-powered system that uses hydrogen peroxide (H₂O₂) not just for cleaning up messes but also for sending critical signals.

Normally, this works fine, but under stress, such as inflammation or a burst of energy use, oxidative stress damages cells at the genetic level.

This is because iron and H₂O₂ react in what’s known as the Fenton reaction, producing hydroxyl radicals, destructive molecules that attack DNA and RNA indiscriminately. But there’s a catch. In the presence of carbon dioxide — that pesky gas disrupting global climate systems — our cells gain a secret weapon in the form of bicarbonate which helps keep pH levels balanced.

A team of University of Utah chemists has discovered that bicarbonate doesn’t just act as a pH buffer but also alters the Fenton reaction itself in cells. Instead of producing chaotic hydroxyl radicals, the reaction instead makes carbonate radicals, which affect DNA in a far less harmful way, according to Cynthia Burrows, a distinguished professor of chemistry and senior author of a study published this week in PNAS.

“So many diseases, so many conditions have oxidative stress as a component of disease. That would include many cancers, effectively all age-related diseases, a lot of neurological diseases,” Burrows said. “We’re trying to understand cells’ fundamental chemistry under oxidative stress. We have learned something about the protective effect of CO₂ that I think is really profound.”

Co-authors include Aaron Fleming, a research associate professor, and doctoral candidate Justin Dingman, both members of the Burrows Laboratory.

“Just like opening up a can of beer. You release the CO₂ when you take your cells out of the incubator. It’s like doing experiments with a day-old glass of beer. It’s pretty flat. It has lost the CO₂, its bicarbonate buffer,” Burrows said. “You no longer have the protection of CO₂ to modulate the iron-hydrogen peroxide reaction.”

She believes bicarbonate needs to be added to ensure reliable results from such experiments.

Read the full article by Brian Maffly in @TheU.

Teaching Thousands

Teaching Thousands


October 25, 2024

At the University of Utah, six chemistry professors are the face of their discipline to thousands of students. 

At the Department of Chemistry, excellence and innovation converge in an extraordinary educational endeavor: moving over 2,000 students each semester through foundational chemistry classes.

This remarkable feat is achieved through a cutting-edge curriculum delivered by six passionate educators known as the "teachers of thousands": Jeff Statler, Elizabeth Greenhalgh, Ryan DeLuca, Kaci Kuntz, Holly Sebahar, and Greg Owens. These instructors, all six of whom are featured here, possess a rare skill set that allows them to present fundamental chemistry with competence, patience, and an uncanny ability to inspire. In their classrooms and labs, aspiring chemists and future medical professionals alike find themselves immersed in an unparalleled learning environment. These six are supported by other faculty dedicated to curriculum development and fostering a robust space for scientific curiosity.

Greg Owens

Greg Owens

When Greg Owens walks into the classroom, he’s in paying-it-forward mode. He attended college in rural Georgia where two of his chemistry professors had just arrived from the U and inspired him to transfer there. They facilitated a spot for Owens in the REU program where he spent his summer after his junior year working in Tom Richmod’s lab, learning valuable skills and techniques. “That experience solidified my interest in academics and in going to graduate school,” he says.

Owens attended UCLA for graduate school where he focused on teaching and used his Utah connection to sneak a toe back in the door after finishing his dissertation. Since 2002, he has instructed classes ranging from 115 to 230 students, totaling over 19,000 students taught throughout his career so far. Owens' graduate work in inorganic chemistry provided him with comprehensive knowledge of the field, making general chemistry a natural choice for his teaching career. Even as a TA in graduate school, he enjoyed opening students’ eyes not only to the world of atoms and molecules but also to the satisfaction of problem-solving.

General chemistry represents for many students their first opportunity to apply mathematics and fundamental principles to understand how things work and how seemingly unrelated phenomena are connected. The course allows them to move beyond memorization and learn to navigate through a series of logical steps to solve complex problems.

In recent years, Owens’s teaching style has evolved from traditional lecturing of hundreds of students in a classroom setting to asynchronous instruction. In these “online courses,” students engage with course materials independently through Canvas, which includes textbooks, instructional videos, problem sets, practice quizzes, and discussion boards. There are no set class meetings, allowing students to study at their own pace and convenience. This approach offers flexibility and freedom while also placing significant responsibility on the student.

One of his favorite classes to teach is the first semester of chemistry for students aiming to enter nursing school. He often finds that many students in these classes initially believe they lack aptitude for math and science, leading to a lack of confidence at the start of the course. However, their strong motivation to succeed in nursing school drives them forward. “It’s rewarding to witness these students’ growing confidence as they recognize the subject’s relevance to their career path and discover their capability in science and math, far exceeding what they had previously believed possible.”

Reflecting on fond memories from these types of classes, he recalls a humorous incident involving Halloween and students’ cell-phones to which, in the early days, he had a particular aversion to especially when they rang ringing loudly during class, including during exams. One Halloween, a student surprised everyone by running down the lecture hall dressed in a homemade cell-phone costume, distributing candy to the audience amidst laughter.

Throughout Owens’s teaching career, he has managed to help his students see their world in very different ways and comprehend complex ideas they initially thought were beyond their abilities. “Every semester,” he says, “I’m in awe of the students who refuse to give up, overcoming enormous hardship and personal tragedy to excel in their studies. He believes in giving students space as wide as rural Georgia and opportunity to learn how to learn and make mistakes, advising incoming students interested in chemistry to get involved with a research lab as soon as possible. This is where students’ knowledge, skills, and interests can grow exponentially.

Jeff Statler

Jeff Statler

Originally from Iowa, Jeff Statler taught physics and chemistry in public high schools for about 22 years and worked with professors Ron Ragsdale, Jerry Driscoll, and Tom Bebee for many of those years. He has always had an innate drive to live around the mountains and the desert and moved to Utah about 35 years ago. In 2010, professors Ragsdale, along with Henry White and Greg Owens, recruited Statler to transition into the Department of Chemistry full-time where he’s been since 2011. Even with an early and abiding passion for the physical sciences and mathematics, chemistry was not his first choice, but he saw the need for chemistry teachers. It helps that he gets to do really cool demonstrations.

Statler has also taught analytical chemistry, physics, and mathematics, but general chemistry may be his favorite. On a Wednesday before Labor Day weekend, he opens a classroom jam-packed with about 350 students with careful, deliberative class procedurals. He is quick to reiterate what the learning objectives are of chapters, distinguishing between what students will be tested on and what content is strictly for their enrichment. He is aware of how big his subject is and how distracting some lines of inquiry can become. “Don’t worry about chapter two until this weekend,” he says. “There’s a lot physics and a lot of quantum mechanics, mostly enrichment stuff, not part of the learning objectives.” He talks strategy, as if he’s enrolled himself. “I won’t test you on that,” he says answering a question about prioritizing.”Pretty much all the rest of this it’s all chapter one and essentials.” The rest of it? “Be mesmerized, bewildered, by it, but, no you don’t have to memorize anything. I’ll give you all the equations you will need.  I’ll emphasize the equations you’ll need and we’ll practice them.” The way he scans the bank of students above him in class is intimate, improbably giving eye contact, it seems, to everyone.

Clearly, he’s skilled at reassuring students that there’s a sequence of things. “I’m big not on memorization but on patterns… We’re almost anti-memorization,” around here.

As he introduces the subject matter for the class—why white light is made of the colors of the rainbow and electromagnetic fields–prisms and spectrums—he projects five statements on the multiple screens throughout the lecture hall: some of the statements are true, others are false and others are just made up. “Mingle, chat, ask your neighbor what they think,” he says and suddenly, his TAs are trailing up the stairs, scanning the clusters of chatting students, listening in on the conversations, making themselves available for questions, making comments . . . being present.

This interactive, “inverted classroom” approach meets students where they are. In these large classes of between 250 to 350 students, getting students to interact with each other is crucial. His favorite aspect about teaching students who are not necessarily studying chemistry is simply sharing his fascination with science and nature with all STEM students. “Teaching and learning are always so individual in many ways,” he admits, and he can only hope that whatever impact he might have is overall positive and motivating. How he has been impacted is not so variable. “Students always inspire and motivate me and keep me ‘thinking young’ with their fresh questions, perspectives, and unique needs and backgrounds.”

Just the herculean endeavor of teaching 12,000 students over his 35-year career to thrive and flourish in chemistry brings Jeff Statler all the rewards he could ever hope for. And his embodied wonder as he conducts the light experiments his face down close and itself awash in light, the detail of it, in turn, projected above, is chemistry in action, pedagogy in the flesh.

HOLLY L SEBAHAR

Holly Sebahar

It all started with frogs. “I had a strong interest in frog ecology so I had declared a biology major which meant I was required to take organic chemistry,” says Holly Sebahar, a first-generation college student from Minnesota. “I fell in love with the subject and could not get enough of it.” In particular, she says, it was the mechanistic side of organic chemistry. “The fact that a small set of rules can be used to predict and explain a wide range of reactions was fascinating to me. I also love applying our knowledge of organic chemistry to understand biochemical pathways and how drugs work.”

After earning her PhD, she interviewed for both industrial and academic jobs. “Eventually it was my love of interacting with students that helped me to decide to become a professor.”

At the U, with class sizes that range from 200 to 340, Sebahar aspires to challenge her students and to provide a supportive and encouraging environment with lots of resources to help them find success. “I believe that having a large team of teaching and learning assistants and supplemental instructors is the key to supporting so many unique students,” she says. “We try offer a wide variety of office hours and review sessions, a diverse set of communication styles, lots of chances to talk about the chemistry and ask questions . . . and learn from their mistakes.”

Learning from mistakes is embedded in Sebahar’s course culture, “where mistakes are embraced and utilized instead of feared.” Tapping not only TAs but learning assistants through the College of Science’s Center for Science and Mathematics Education, she claims that because these leaders have recently taken the class “they remember how challenging it was and are able to provide excellent advice about how to study and how to approach each of the challenging topics.” Instructional staff also serve as mentors and provide important major/career advice.

The diversity in Sebahar’s large lectures is staggering: older students with different levels of family and job responsibilities; those with little or no preparation in chemistry and few if any established study skills and test-taking abilities; gender; preferences for working independently and those who prefer group work; race, gender . . . differing goals. It requires that the instructor be nimble, flexible and innovative.

As an HHMI UPSTEM Faculty Fellow, an instructor in Being Human in STEM, a member of the Chemistry Articulation Team and an inaugural member of the Department of Chemistry’s Diversity, Equity, and Inclusion Committee, all inform her attempt to create an inclusive classroom setting. “I try to constantly ask myself ‘who will be left out if I design my course this way?’ she writes in her teaching philosophy statement, an ambitious, comprehensive and detailed plan for reaching and succeeding with students across multiple spectra. “I strive to create a highly structured class with clear expectations, several lines of communication, and as much flexibility as possible to try to reach the many learning styles and accommodate the busy schedules inherent in a class of 300 students.”

An example of this penchant for innovation, Sehabar held Zoom lectures for students that thrive having a set schedule and who wish to interact with the instructor, other students, and the TAs during lecture. The recorded lectures are also posted for those students that work the night shift prior to the lecture or wish to watch the lecture at their own pace with the ability to pause and rewind as desired.

Sebahar maintains a 6:1 ratio between students and TAs who are aware when a student is going through a difficult time. “This has become increasingly important to me as I have witnessed more and more students struggling with mental health issues each year,” she says.  “Adding the pandemic, recession, and protests on top of the normal stressors has been extremely difficult this year. [2023-24]...  By identifying issues early, we have been able to refer several students to the counseling center, the student emergency fund and the Dean of Students.”

To countervail attrition in student enrollment and graduation, attention must be paid not only to securing resources but recognizing varied signals of student distress. It’s a high-touch approach to student success that over the past 22 years—700 students per year—has grandly totaled over 15,000 students. Her mantras? “Don’t focus on the negatives. Take time to get to know your students and enjoy their energy, enthusiasm and unique gifts and talents. Keep learning so your passion for the subject doesn’t fizzle.”

With that navigation set, it’s little wonder that Holly Sebahar found her bliss in teaching not in spite of a frog pond but because of it.

Kaci Kuntz

Kaci Kuntz

For Kaci Kuntz, the louder the groan, the happier she is. This may take some explaining.

Known for her expressive personality and love of glitter, this associate professor (lecturer) decorates her office and coordinates her wardrobe with sequins and bright colors. Students appreciate her exuberant teaching style, and her tradition of sharing daily jokes helps engage them in the learning process.

And so it goes that when her “joke of the day” elicits a massive groan from over 300 students Kuntz knows that though they disdain her jokes, they comprehend the chemistry behind them. Mission accomplished.

As with her Teaching Thousands colleagues, whose teaching style is interactive and inclusive, Kuntz is also keen on historical context. In General Chem 1, state -the-art science starts at 460 BCE when philosophers hypothesized that matter was made of fire, water, air, and earth. Over the course, she advances all the way to the current “state-of-the-art” science. It is truly unique to cover 680+ years of science and its advancement in a single course.

Then, in General Chemistry II, she dives more deeply and applies chemical concepts to experimental conditions with all of the complexities encountered. In Kuntz’s opinion, General Chemistry II is the most useful course in chemistry because it teaches how to design a proof-of-concept experiment for investigating a hypothesis. She loves teaching this course knowing that students can walk out of it with the skills needed to become scientists. Since starting at the U she has taught lectures with as few as 30 students and as many as 360 for a career total of around 4,000 students so far.

“The student mind is compassionate and has much to learn,” she states. “I cannot speak on behalf of the students, but I hope I’ve empowered them to be confident in their knowledge and their ability to succeed in chemistry, their education, and their career pursuits.”

In class, Kuntz follows brief lectures with interactive problem-solving sessions, allowing students to apply concepts and address common misconceptions. When students hesitate, she sits beside them to offer guidance—a practice she acknowledges with a glittering laugh that might seem 'annoyingly' interactive, though students appreciate her approach and authenticity. Her commitment to student advocacy includes revamping General Chemistry labs to reduce fees and enhancing laboratory safety procedures.

Ryan DeLuca

Ryan DeLuca

If the classroom is a molecule writ large, Ryan Deluca is the bonding agent of its constituent atoms, his students. Standing at the front of a class of 250-plus he is the glue that, in chemistry, defines the smallest identifiable unit into which a pure substance can be divided and still retain the composition and chemical properties of that substance.

A Utah native and U alumnus who returned to the U to teach after a postdoctoral fellowship at Stanford University, DeLuca is captivated by the intricacies of molecular mechanisms, the art of synthesizing compounds, and the analytical challenge of elucidating reaction pathways. But this hydrogen bond-of-a teacher of thousands is also captivating to his acolytes who the first week of class may find such subjects baffling.

DeLuca loves introducing students from various disciplines to the marvels of organic chemistry or “o-chem.” “It’s incredibly rewarding for me to see students, who may not have a primary interest in chemistry, develop an appreciation for the subject,” he says.

O-chem is relevant to many fields, and DeLuca enjoys helping students understand its applications and significance in their respective areas of study. He facilitates this by by employing a problem-based teaching approach, believing that students learn best through active engagement and practical application of concepts. While o-chem, a requirement for pre-med/pre-nursing students and other majors, can be daunting, DeLuca finds that tackling challenging problems helps students develop critical thinking and problem-solving skills. He emphasizes the importance of perseverance and provides ample resources to support students’ learning journeys.

To ensure effective learning in diverse class settings (from 25 students to 350), DeLuca utilizes peer-directed learning and provides strong support from teaching assistants. Overall, DeLuca has recorded 29 chemistry courses over the past seven years, reaching a total of approximately 3,600 students best served, he believes, by doing problem-solving in real time. In this way he believes students can better understand the thought process behind tackling difficult questions. “I emphasize the importance of engaging actively with the material and understanding that chemistry is a cumulative subject,” he says, “where each concept builds on the previous one.”

These active learning strategies for students take place not only in lectures but in those micro- even atomic-sized interactions with DeLuca out of class, with TAs, and, critically, with one another. Ever the chemical bonder, DeLuca engineers each semester, and in each course, a dynamic, intricate-as-a-clock (or a galaxy) molecular structure where student atoms move, interact, vibrate, rotate and translate with success within differing materials and environments.

Elizabeth Greenhalgh

Elizabeth Greenhalgh

Unlike her Teaching Thousands compatriots, Elizabeth Greenhalgh is emerging on the scene, but she plays to the strengths of being the new kid on the quad. What she’s brought to her gig in the Department of Chemistry is solid and broad-thinking:  connecting general chemistry, organic chemistry, and biology in a way that highlights the significance and relevance of these subjects.

This integrated approach allows students to explore the “why we care” aspect that often unappreciated until the subjects are brought together. From this foundation, she is currently in the process of discovering what teaching methods work best for her.

A strong advocate for a mixed approach that combines traditional lecturing with sample problems and an active learning discussion session, Greenhalgh believes her methods might evolve over time, noting, “ask me again in five years and we’ll see how this has changed!” Right now a traditional lecture component, she believes, is crucial for demonstrating the thinking, logic, and problem-solving behind the science.

At present, she teaches a fall lecture course with just over 300 students and a spring biochemistry lab with nearly 100 students, with plans to increase lab capacity in the coming years. In addition to her general chemistry lab in the spring and biochemistry courses in the summer, she interacts with nearly 1,000 students each year and has taught over 2,500 students during her career.

One of Greenhalgh’s favorite aspects of teaching biochemistry is working with students who are not necessarily studying chemistry as a major. She finds it particularly rewarding that, of the approximately 300 students in this class, only about a third are chemistry or biochemistry majors. The diversity of perspectives in the classroom leads to engaging connections and conversations that she might not otherwise experience.

How does she manage that diversity? First, she encourages new students to use the initial classes to explore what genuinely interests them. General chemistry and organic chemistry lay the groundwork for many exciting topics that students won’t encounter until later. Second, she encourages students to actively engage with all available resources beyond instructors and TAs. This includes attending office hours, participating in supplemental instruction (SI) sessions, tackling bonus practice problems from textbooks, and studying with classmates.

Being new on the scene is an asset for Greenhalgh in that the student diversity she’s experiencing in class is an opportunity for rich feedback. So far, her approach has, she’s been told by students, significantly influenced how they tackle topics outside of her class. She finds this kind of feedback incredibly gratifying, again, underscoring her belief that she’s here not just to teach chemistry, but how to learn and how to figure out the “why I care” which is a student’s motivation to succeed in higher education and in life more generally. This belief gives real oxygen to the mantra of “meeting the student where they are.”

Elizabeth Greenhalgh’s teaching journey has already been marked by a deep appreciation for the interconnectedness of scientific disciplines and the vibrant community of students.

By Julia McNulty and David Pace

A microscopic view of global challenges in chemical separations

Separation Issues


November 15, 2023
Above: Aurora Clark

In 'People vs. the 2nd Law of Thermodynamics' chemist Aurora Clark addresses a microscopic view of global challenges in chemical separations.

An illustration from Aurora Clark's Science at Breakfast lecture on the microscopic view of global challenges in chemical separations.

Our environment is filled with mixtures, whether it is the air we breathe, the water we drink, or the earth we walk on. Often, separating mixtures is key to human health - for example, creating clean water supplies or recycling materials. Understanding how mixtures are separated, and optimizing this process, is a challenging task - and this is exactly what University of Utah Chemistry Professor Aurora Clark is doing.

Clark was the featured presenter November 7th at the College of Science’s Science at Breakfast event staged at the Natural History Museum of Utah. 

“A major issue is that separating materials currently consumes a massive amount of energy,“ Clark explains, citing distillation as an easy example. “As such, chemists try to develop low-energy separation methods to create an environment where such isolation will happen spontaneously.” Achieving spontaneity means that chemists have to leverage the laws of thermodynamics, which include the energy stored in matter (called enthalpy) and entropy (which represents how energy is distributed in matter). Likening the reaction to a rock atop a hill, spontaneity means that that rock will begin rolling without the need of an extra push. 

Such a breakthrough would have monumental effects on the recycling of rare materials. For example, the palladium in mobile phone capacitors is sourced to just a handful of areas, with Russia producing roughly 40% of the world's supply. As geopolitical tensions rise, the incentive to recycle this palladium grows in turn, but such isolation is tricky. It is difficult to develop a separation system that selectively grabs palladium in the complex mixture found in cell phones while ignoring other metals. The question of how to remedy this, by using changes in entropy, is the focus of Clark’s research, which uses the power of the U’s supercomputer to simulate the separations process. Computational geometry and data science play a key role in this pursuit.

By studying the patterns of interactions in complex mixtures, Clark seeks to control the amount of entropy change, which in turn makes it favorable for molecules and metals to selectively move across a separating barrier. Although in its early stages, the idea of using entropy to improve the efficiency of separating mixtures is moving at a rapid pace because of the technological advances of supercomputers and data science. If mastered, the recycling of critical materials like palladium would be significantly simplified, massively reducing energy consumption and optimizing our own self-sufficiency. 

Aurora Clark is a relatively new addition to the U’s faculty, having joined in 2022. She completed a PhD at Indiana University, postdoctoral work at the Los Alamos National Laboratory, and spent almost two decades as a professor of Washington State University’s Department of Chemistry.

By Michael Jacobsen

Science @ Breakfast is a lecture series that features U faculty sharing their latest, cutting-edge research — while enjoying a meal. If you would like to be invited to our next Science @ Breakfast, please consider a donation to the College of Science at https://science.utah.edu/giving.

2023 Distinguished Alumni, Chemistry

2023 Distinguished Alumni, Chemistry


November 2023
Above: Roger Leach, Amy Barrios, Mitch Johnson and Zlatko Bačić

 

Four alumni have been honored as distinguished alumni for 2023 in the Department of Chemistry.

Zlatko Bačić:  Tectonic Science

“When two people limited to different ways of thinking come together, you have a synergy that couldn’t exist otherwise,” says Zlatko Bačić PhD’81, speaking on the vital importance of collaborating across the divisions of science. First-hand experience with this synergy is deeply embedded in his history, from serving as the inaugural director of the Simon Center for Computational Physical Chemistry to studying the quantum dynamics of molecules in Los Alamos

He compares the sciences to tectonic plates, constantly moving in varying directions, uncovering the most exciting discoveries where they collide at the edges. “It’s at those interfaces that the most interesting things happen!” he explains. And just as the Earth’s plates change the landscape, so too can the scientific landscape be terraformed in turn.

Bačić’s journey has not only taken him across the field of theoretical chemistry but across the world, studying everywhere from Croatia to Chicago to Jerusalem to Utah. He found a deep love of the culture and cuisine of New York and Philadelphia, while also delighting in the environment and people in the Four Corners area. He loves the town of Telluride,Colorado but also enjoys visiting his daughter in Seattle, creating a bewildering decision when considering a destination for a far-out retirement. He takes every opportunity he can to travel and experience every area to its fullest potential.

Bačić carries this attitude into his teaching as well. As a current professor at New York University, he has uplifted the lives of countless students and overseen the publication of over 150 papers. “Basic research is at the heart of everything,” he tells his students. “If you think you can guide it somehow, you’re missing the point. It is only unguided research that will illuminate the mysteries you know nothing about.” Championing the value of “unguided research,” he delights in providing opportunities for postdocs, creating an environment for them to prove their worth, opening every door for collaboration to let them show what they can do under optimal circumstances. ~ Michael Jacobsen

Amy Barrios: A world-class education

A Professor of Medicinal Chemistry in the College of Pharmacy, Amy Barrios’ passion for inorganic chemistry began at the University of Utah as a high schooler during a summer chemistry program and propelled her through a career in academia to Professor of Medicinal Chemistry in the U College of Pharmacy.

Barrios BS'95 grew up in Salt Lake City. During her time as an undergrad, she engaged in radiobiology research about Chernobyl victims with radiobiologist Scott Miller, now research professor emeritus at the U's School of Medicine.

Barrios ventured from Salt Lake to the East coast to earn her PhD in chemistry at the Massachusetts Institute of Technology in 2000. There, she dove deeper into bio-inorganic chemistry with Steve Leopard. “My focus was on making molecules that would mimic the activity of metalloenzymes. And I specifically looked at urease, which was actually the first enzyme ever discovered,” says Barrios. “I was making dinuclear nickel complexes that hydrolyzed urea.”

After graduate school, Barrios returned to the west coast and spent some time in California, first in a postdoctoral position at University of California, San Francisco, and later as a professor at University of Southern California.

Finally, Barrios returned home to the U in 2007, this time as a professor. Throughout her education and career, Barrios has visited many institutions and says she’s “...continually impressed by the quality of education that I got here at the U.”

“Our chemistry department, particularly, does an amazing job of educating undergraduates and graduate students, helping us understand all the things we need to know, all the tools we need to go on to be successful in whatever career we go into. So that's something I think is important for our students to recognize: they really get a world class education here.”

Barrios is keen to deliver a message of belonging as she continues in academia. “It's so important, I think, for students to be able to feel like they belong here,” she says. “We need scientists from all backgrounds and with all kinds of different interests and all kinds of different skills. So, I think that's really important also for young people to recognize and for us as faculty and instructors to help them feel that this is a place for them, that we need their talents, and their talents are valued. I hope that they get that message here.”
~ Lauren Wigod


Roger Leach: lifelong learning and agility

Originally from Chicago, Roger Leach Phd'84 first journeyed to the University of Utah for a summer REU program while pursuing his undergraduate degree in chemistry from Augustana College in Illinois. The program allowed him to explore hands-on scientific research for the first time and, captivated by the unique outdoor access and balanced lifestyle he enjoyed in Salt Lake, City Leach returned to the U for graduate school.

Reflecting on his time here, Leach fondly remembers Joel Harris, a distinguished professor whose openly enthusiastic teaching style and love for science still inspire Leach today. “Everything about it was like, the door’s open, walk in, and let’s talk,’ he recalls. “My whole career after Utah, that was sort of my motto you know, ‘What would Joel do?’”

After finishing his graduate degree at the U, Leach began his career working as an analytical chemist in the textile fibers department at DuPont. Though he recalls the initial nerves he felt upon joining the company, Leach acknowledges the U for preparing him well: “[At Dupont], you could meet people who had really moved the bar in terms of technology development that made people’s lives better. So I felt intimidated a little bit, but there was never a time when I felt inferior in terms of my education and preparation.”

Since his days at DuPont, Leach’s career has led him to Viridos, a biotech company focused on algae-based biofuel. For the last few years, Leach has been helping to push the boundaries of renewable energy technology, hoping to create a more sustainable future. Currently a resident of Solana Beach, California, Leach emphasizes the importance of continuing to foster curiosity throughout his career: “The thing that strikes me is how many things we understand today and use today in our daily lives that didn't exist when I was at the University of Utah,” he remarks.

“And the process of keeping yourself relevant as a STEM contributor to society is an exercise in lifelong learning and agility.”
~Julia St. Andre


Mitch Johnson:  reinventing and modernizing formulations

Mitch Johnson first joined the University of Utah as a graduate student in 1994 after finishing his undergraduate degree from Concordia College in Moorhead, Minnesota. He knew he was interested in doing research and was drawn by the U’s outstanding research facilities and small university feel. During graduate school, Johnson worked in Joel Miller’s lab where he gained valuable skills in problem-solving and perseverance. “If I had like four or five ideas, Dr. Miller was very patient and listened to all of them,” Johnson recalls. “I learned that you have to put the work in. You really do have to spend the time and invest yourself completely into solving the problem.” 

For Johnson, chemistry truly runs in the family. His father, a chemical engineer, sparked his interest in the subject at a young age. Later, at the U, he met his wife, who was also pursuing a degree in chemistry. Their shared passion for the field often sparks discussion over dinner, and they even keep a whiteboard nearby for spontaneous problem-solving. Fascinated with creating things and solving problems, synthetic chemistry was the ideal path for Johnson. His career took him to General Plastics, developing specialized thermoplastic materials for use in aerospace engineering and satellite work. He started at the company in 2008 as a product development chemist, with the mission of reinventing and modernizing their formulations. Since then, the company has expanded significantly, and Johnson made his way through the ranks, eventually taking over the company as President and CEO in 2017. 

Looking back on his education, Johnson emphasizes the lasting impact of his time at the U: “The staff and faculty here are fantastic. They really do cultivate very good students and very well-trained professionals.” he says. “A lot of the success I’ve had over my career, it all started here at the U.”
~ Julia St. Andre

 

Biochar Robots win $500K Wilkes Climate Launch Prize

Biochar Robots win $500K Wilkes Climate Launch Prize


Sep 25, 2024
Above: Applied Carbon’s pyrolyzer. PHOTO CREDIT: Applied Carbon

Applied Carbon, formerly known as Climate Robotics, has developed a mobile, in-field solution that picks up crop waste left after harvesting and converts it into carbon-rich biochar in a single pass.

The resulting product is deposited back onto the field, simultaneously increasing soil health, improving crop yields, reducing fertilizer needs, and providing a carbon removal and storage solution that lasts millions of years.

Jason Aramburu, CEO and co-founder Applied Carbon, receives Wilkes Climate Launch Prize in September 2024. CREDIT: University of Utah

The 2024 Wilkes Climate Launch Prize is one of the largest university-affiliate climate awards in the world and is geared to spur innovation and breakthroughs from organizations at all stages, both for-profits and nonprofits—anywhere in the world—to help fund and accelerate solutions to climate change.

“People talk about the ‘missing middle’ of funding in climate tech. For early-stage research, you use government grants to prove the science. Once you have a working design, you might get VC money. But when it comes to building your first few prototypes, investors can’t take the risk,” said Jason Aramburu, CEO and co-founder Applied Carbon. “Programs like the Wilkes Climate Launch Prize are really important to fill a crucial funding gap.”

William Anderegg, director of the Wilkes Center for Climate Science & Policy, awarded the prize to Aramburu during an evening reception held in partnership with the Southwest Sustainability Innovation Engine (SWISIE), a multi-institutional enterprise in which the U and collaborators confront climate challenges facing the desert Southwest and spur economic development in the region.

“Applied Carbon’s bold climate solution addresses a major opportunity for agriculture to contribute to removing carbon from the atmosphere, benefiting farmers and soil health at the same time,” said William Anderegg. “It’s exactly the type of scalable and impactful solution that the Wilkes Climate Launch Prize seeks to supercharge.”

Aramburu and Applied Carbon COO and co-founder Morgan Williams dreamed of a better system that could pick up crop waste and produce and distribute biochar in one pass. Now, they’ve developed an agricultural robot called a pyrolizer that does it all in-field, in one pass.

Read the full article by Lisa Potter in @TheU.

Scientists awarded 1U4U Seed Grants

scientists awarded 1U4U Seed Grants


Above: Microbiolites at Bridger Bay on the northwest corner of Antelope Island. Credit: Utah Geological Survey. Biologists Jody Reimer and Michael Werner are part of a 1U4U team that study microbiolites.

Six College of Science faculty members are members of winning teams awarded seed grants of up to $50,000 as part of the 1U4U Seed Grant Program.

Six faculty members in the College of Science are members of winning teams awarded seed grants of up to $50,000 as part of the 1U4U Seed Grant Program.

The program supports cross-campus/cross-disciplinary research teams to solve some of the greatest challenges of our local, national, and global communities. College of Science faculty among the winning teams included Jon Wang, (biology), Colleen Farmer (biology), John Lin (atmospheric sciences), Jody Reimer (biology & mathematics), Michael Werner (biology) and Qilei Zhu (chemistry).

Bonderman Field Station at Rio Mesa (Photo courtesy of Zachary Lundeen)

The theme of the 2024-2025 program was “The Future of Sustainability.” Sustainability is a foundational goal that cuts across multiple intellectual topic areas (e.g., healthcare, water, energy, wildfire, critical minerals, education, food security) and can be interpreted widely.

At the University of Utah, faculty have engaged sustainability across a wide range of domains, including but not limited to environmental, social, communal, health, economic, technical, and legal.

Some of the topics of winning projects include the impact of air quality on elite athletic performance, study of suicide behaviors, and improving health by linking silos.

“It is exciting to fund so many teams working on sustainability projects,” said Dr. Jakob Jensen, associate vice president for research at the U. “The teams are considering sustainability across a wide range of topics from forest management and urban heat islands to physical therapy and mental health. These seed projects will drive significant innovation and impact communities throughout the region.”

Winning teams with College of Science faculty include the following:

Research Team: John Pearson (medicine) & Jonathan Wang (College of Science — biology)
Application Title: Heat and Healing: The Influence of Urban Heat Islands on Postoperative Outcomes

Research Team: Colleen Farmer (College of Science — biology), Ajla Asksamija (Architecture & Planning), Zach Lundeen (Bonderman Field Station), Jorg Rugemer (Architecture & Planning), Atsushi Yamamoto (Architecture & Planning)

Research Team: John Lin (College of Science — atmospheric sciences) & Tanya Halliday (Health)
Application Title: Impact of Air Quality on Elite Athletic Performance:  from Salt Lake to Beyond

Research Team: Jody Reimer (College of Science — biology and mathematics), Brigham Daniels (Law), Beth Parker (Law), Michael Werner (College of Science — biology)
Application Title: Understanding Great Salt Lake microbialite ecology to inform sustainable water management policy

Research Team: Qilei Zhu (College of Science — chemistry) & Tao Gao (Engineering)
Application Title: Ion-Conductive Membrane-Enabled Sustainable Industrial Electrochemical Production

 

For more information about the 1U4U Seed Grants and a complete list of this year's awardees click here.

Cool Science Radio: Luisa Whittaker-Brooks

cool science on the Nanoscale


September 6, 2024
Above: Luisa Whittaker-Brooks

Our modern society faces many challenges, two of which being alternative energy sources and low cost electronics for daily use.

Solutions for these issues, and many others, can be found in the materials used in the products we create.

Luisa Whittaker-Brooks, assistant professor of chemistry at the University of Utah is on the leading edge of these technologies and developments.

Whittaker-Brooks' research group at the U focuses on the study and manufacture of ultra-thin electronics materials and nanoscale circuits, while she encourages women and minorities to choose careers in STEM disciplines.

Whittaker-Brooks was awarded the L’Oreal-UNESCO For Women in Science Award for her work and was recently feature on KPCW's Cool Science Radio.

Listen to the podcast here.