Accessibility Menu
Press ctrl + / to access this menu.

Widening Our Cosmic View

Widening our Cosmic View


Above: Nancy Grace Roman Space Telescope. Photo credit, NASA
February 6, 2025

In a field of groundbreaking discoveries and analytical research papers, it's easy to lose sight of the humanity behind the STEM fields. This includes the meticulous organization that goes into every project, the countless sleepless nights seeking their completion and the individual lives supporting every major breakthrough.

Gail Zasowski

 

Teams are valued within scientific communities, but when it comes to broader public recognition it’s rare for anything more than an organization or singular leader to step into the spotlight.

But times are changing at breakneck speeds, the value of these enablers of science becoming more and more apparent as the spotlight grows to encompass them. With the upcoming launch of the Roman Space Telescope we are seeing a shift towards broader perspectives, bringing more voices into decision-making processes to optimize the pursuit of scientific advancement.

Taking a novel approach for NASA’s missions, where observations with telescopes like Hubble and James Webb were largely proposal-based (scientists writing competing proposals to win time using the telescopes’ instruments), Roman will be predominantly driven by surveys designed by the astronomical community as a whole. That community is made up of an extensive structure of committees involving hundreds (if not thousands) of astronomers who have spent years analyzing which observational designs would be the most useful for their community at large. This will create an archive of data which anyone in the world can access to do science.

A wider range of expertise

An undertaking like this requires organizational expertise which is where Gail Zasowski, an associate professor in the Department of Physics & Astronomy, comes into play. Co-chairing the Roman Observations Time Allocation Committee (ROTAC) alongside Saurabh Jha (Rutgers University), she and the committee of 13 scientists are tasked with taking all of these proposed survey designs and constructing a plan that best balances the scientific goals of the astronomical community. For example, some time will be spent studying black holes and stellar explosions dating back to the early universe, while other observations will focus closer to home, on stars and planets in our own Milky Way and even asteroids in our Solar System. Thus the ROTAC is faced with the challenge (or opportunity) to plan a multi-year observing program that includes everything from solar system formation to dark matter and dark energy.

“Our committee was deliberately chosen to span a wide range of science expertise,” Zasowski explains. “It’s our job to evaluate from a scientific perspective how to maximize the observational output of the telescope. Is there somewhere everybody wants to look, where an observation could kill two birds with one stone? Given other telescope missions around the world, where can Roman have the largest unique impact?” 

It’s an impressive task to keep all these plates spinning at once, but that’s the beauty of moving these decisions to a communal level. By enabling collaboration, the community can plan far more efficiently than any one individual team or project could do on its own.

A wider range of voices

Yerkes Observatory Roman Workshop. Zasowski is pictured center left. Credit: Yerkes Observatory. Inset: Nancy Roman.

Zasowski was chosen for her background in ground-based astronomy surveys, a priority shared by the U’s Department of Physics and Astronomy. She explains that “Where many larger institutions will devote their time and money buying into one large telescope, we have elected to spend our time and energy participating in surveys. We feel it gets more bang for your buck, more photons per dollar, as being in these surveys not only grants access to data, but also access to the scientific community who makes the survey happen.” 

This pattern repeats across campus, investing in building core skills and wider networking to get a foot into every door, rather than definitively propping only one open. Everything from the Science Research Initiative which builds research connections for students far earlier than most; to the Early Exploration Scholars which broadens those connections for all campus students; and to  the ACCESS Scholars program working to eliminate social barriers that have traditionally existed in STEM. 

By investing in the community aspect of science so early, the U’s students and faculty are perfectly suited to fill these organizational roles, bring people together and lay the groundwork that enables future science to be conducted.

Zasowski describes an inspiring experience at Yerkes Observatory last year. “We were at the observatory where Nancy Grace Roman [the telescope’s namesake] did her Ph.D.” she describes. ”We were in the rooms where she worked, talking about designing a survey to study the science she was interested in while using a space telescope named after her.”

As a woman in astronomy starting in the 1940s, Roman had faced significant uphill battles in securing her place in the astronomical community. For the “Mother of Hubble” to be honored in such a way — for the first telescope named after a woman to be so organized around working together — it's a beautiful full-circle moment. It's a symbol of progress, of our expanding view of the night sky mirrored in a scientific field expanding to include and celebrate those who historically struggled to find their place within it.

The Roman Telescope is scheduled to be launched in October of next year, to journey around the Sun for at least five years and provide the astronomical community with data to study for many more years to follow.

by Michael Jacobsen

Tino Nyawelo, Presidential Societal Impact Scholar

Presidential Societal Impact Award


Above: Tino Nyawelo
February 3, 2025

Tino Nyawelo, physics, is one of five faculty members named by University of Utah President Taylor Randall  as 2025-26 Presidential Societal Impact Scholars for exemplary public engagement, from eliminating health inequities to helping communities plan and prepare for disasters and mentoring STEM education students.

 

Nyawelo is a professor (lecturer) in the Department of Physics & Astronomy. His main area of research is physics education with the focus on equity/access in education. He is the Director of Undergraduate Research and coordinates the NSF Summer Research Experiences for Undergraduates (REU) Program.

In 2012, he founded the REFUGES program, a robust STEM-focused refugee and minority student support program with two distinct components: 1) an after-school program for middle- and high-school students; and 2) a summer bridge program for students transitioning to the University of Utah. REFUGES addresses the academic and cultural challenges of refugee youth in fifteen hours of programming per week on the U of U campus. Participants receive individual tutoring and mentoring, science enrichment activities, college and career readiness interventions, and workshops promoting healthy lifestyles. The program has impacted the lives of over 1,000 refugee youth living in the Salt Lake Valley.

In 2020, he joined the High School Project on Astrophysics Research with Cosmics (HiSPARC), a project in which high schools and academic institutions join forces and form a network to observe and measure ultra-high-energy cosmic rays with a ground-based scintillation detector. HiSPARC project started in the Netherlands in 2003, and in 2024 HiSPARC moved to University of Utah under his leadership and provided the initial infrastructure to imagine new research opportunities in K-12 science education. There are currently two projects that deploy HiSPARC cosmic ray detectors with high school students and teachers in Utah: 1) The InSPIRE Program (Investigating the Development of STEM-Positive Identities of Refugee Teens in a Physics Out-of-School Time Experience); and 2) A Research Experiences for Teachers (RET).

He obtained his master’s degree in theoretical high energy physics at the Abdus Salam International Center for Theoretical Physics (ICTP) in Trieste, Italy. He received his Ph.D. in theoretical physics from the Free University of Amsterdam.

Other awardees include David Wetter, professor, population health sciences and adjunct professor, psychology, and director of the Center for Health Outcomes and Population Equity (HOPE); Matthew Basso, associate professor, gender studies and history; Divya Chandrasekhar, associate professor, Department of City and Metropolitan Planning; and Sameer Rao, assistant professor, mechanical engineering.

'Incredible impact'

"As Presidential Societal Impact Scholars, these exceptional faculty demonstrate how public engagement and scholarship can have a broad impact on the world around us,” said President Taylor Randall. “As one of the nation’s leading research universities, we aim to improve the communities we serve by sharing our research and expertise in meaningful ways. The recipients of this award embody this mission, translating their work into efforts that not only shape their fields but also positively transform society.”

Each scholar will receive a one-time cash award of $10,000 and support from University Marketing & Communications to promote their research, scholarship and initiatives.

To be considered, the faculty member’s area of focus must address a major societal issue, such as physical health and well-being, mental illness, poverty, the housing crisis, an environmental problem, etc. The nominee’s work should have the potential to inform public debate and positively impact individuals, institutions and communities.

“This year’s scholars represent the incredible impact that faculty can have beyond the classroom through service and public engagement,” said law professor Randy Dryer, who established the award in 2022 through a gift to the university. “Their work not only advances their respective fields but also demonstrates a deep commitment to improving the lives of individuals and communities. These scholars translate their research and expertise into real-world solutions, making a tangible difference in society, using their knowledge to create a more just and equitable world for all.”

The 2025-26 Presidential Societal Impact Scholars will serve through May 2026 and then continue as members of the permanent scholars’ network. All scholars are highlighted here.

Former Space Researcher and Analyst Pens Gripping Mystery

Former Space Researcher and Analyst
Pens Gripping Mystery


Sep 24, 2024
Above: Elizabeth Heider

Utah native Elizabeth Heider BS'00 physics is set to sign copies of her debut mystery novel, “May the Wolf Die,” at Dolly’s Bookstore in Park City on Sept. 29 at 12 p.m.

Heider’s novel, set in Naples, Italy, follows a female detective investigating organized crime and its connections to the U.S. military presence in the city.

“The inspiration for ‘May the Wolf Die’ came from my diverse experiences,” Heider said. She explained that after completing her degree at the University of Utah, she worked as a deployed civilian analyst with the U.S. Navy, including three years stationed in Naples. Her work took her to 15 African countries, saw her training troops in Senegal, Gabon, and Cameroon, and even lecturing at INTERPOL headquarters in France.

Heider’s Utah roots run deep. “I’m a Utah Native – raised in South Jordan Utah,” she said. “Although I left the state for work in 2008, I regularly return; my parents, two sisters, and brother, are still living here.”

The author’s background spans physics, military analysis, and space research. After earning her Physics degree from the University of Utah she completed her PhD at Tufts University. Her career includes work with the European Space Agency’s Human Spaceflight program and her current role as a program manager for Microsoft’s AI4Science program in the Netherlands.

Heider's writing isn’t limited to novels. Her credits include a play produced at the U, a chemistry patent and even a comic series for the European Space Agency. For years, her science writings were regularly read by astronauts aboard the International Space Station.

Read the full article by Laura M in TownLift.

Tony Hawk : The Intuitive Physicist of Vert Skating

The Intuitive Physicist of Vert Skating


June 13, 2024
Above: Tony Hawk executing an impressive aerial maneuver on his skateboard.

'Would you consider Tony Hawk a physicist?'

'I would consider Tony Hawk a physicist. If nothing else, he’s an intuitive scientist, right?'

Before you go, watch Kevin Davenport, assistant lecture professor in the Department of Physics & Astronomy at the U, break down the physics that allows vert skaters to huck themselves into the stratosphere—learn why he calls Tony Hawk an intuitive scientist.

Read the rest of the story by Lisa Potter at @The U. 

 

The collapse and subsequent explosion of a massive star: B.O.A.T.

The collapse and explosion of a massive star: B.O.A.T.


April 19, 2024

Above: Artist’s visualization of GRB 221009A showing the narrow relativistic jets (emerging from a central black hole) that gave rise to the gamma-ray burst and the expanding remains of the original star ejected via the supernova explosion. CREDIT: AARON M. GELLER / NORTHWESTERN / CIERA / IT RESEARCH COMPUTING AND DATA SERVICES

In October 2022, an international team of researchers, including University of Utah astrophysicist Tanmoy Laskar, observed the brightest gamma-ray burst (GRB) ever recorded, GRB 221009A. Now, physicists have confirmed that the phenomenon responsible for the historic burst — dubbed the B.O.A.T. (“brightest of all time”) — is the collapse and subsequent explosion of a massive star.

Tanmoy Laskar, assistant professor, Department of Physics & Astronomy, University of Utah

The team discovered the explosion, or supernova, using NASA’s James Webb Space Telescope (JWST).

While this discovery solves one mystery, another mystery deepens. The researchers speculated that evidence of heavy elements, such as platinum and gold, might reside within the newly uncovered supernova. The extensive search, however, did not find the signature that accompanies such elements. The origin of heavy elements in the universe continues to remain as one of astronomy’s biggest open questions.

Tanmoy Laskar, coauthor on the study that published in Nature Astronomy on April 12, spoke with AtTheU about why GRB 221009A was the B.O.A.T.

We have seen gamma-ray bursts before, but this one was so bright that its light blinded our gamma-ray telescopes in space and even shook the Earth’s upper atmosphere! Several dedicated people worked very hard to reconstruct the original gamma-ray signal and found that this gamma-ray burst was by far the brightest of all time (B.O.A.T) we have ever recorded. It has been exciting to study the B.O.A.T. over the last couple of years to try to figure two big mysteries: What kind of star is responsible for this powerful light display, and what produces the heavy elements in the universe?

How can finding a supernova help in solving these mysteries?

There are two theories to what makes these powerful, gamma-ray bursts—one is the collapse of massive stars at the ends of their lives (which also results in an explosion of the star as a supernova), and the other is a merger of two neutron stars, which are dense remnants of dead stars. We looked for the signature of a supernova, which would definitively tell us which theory was responsible for the B.O.A.T. explosion.

The other reason we wanted to search for the supernova was to solve the mystery of what produces heavy metals. Supernovae are factories that manufacture many elements in the universe—could a supernova powerful enough to create the gamma-ray burst also produce heavy elements in the explosion, like platinum and gold?

Read the entire interview conducted by Lisa Potter in AtTheU.
Watch a video about BOAT by Astrum below:

 

 

>> HOME <<


Utah Refugee Teens Build Cosmic Ray Detectors

Utah Refugee Teens Build Cosmic Ray Detectors


April 11, 2024

This collaborative cosmic ray project connects refugee youth to science

 

On April 9, 2024, a community of refugee students and their families, scientists, educators and policymakers will celebrate an event three years in the making—the installation of five cosmic ray detectors atop the Department of Workforce Services Refugee Services Office (also known as the Utah Refugee Center) in downtown Salt Lake City. The detectors, which measure echoes of cosmic particles bombarding Earth’s atmosphere, were built by nearly 60 participants in a program called “Investigating the Development of STEM-Positive Identities of Refugee Teens in a Physics Out of School Time Experience (InSPIRE)”, which brings science research—in this case particle physics—to teenagers and contributes to a worldwide effort to measure cosmic ray activity on Earth.

“Refugee youth often encounter many challenges related to STEM, including restricted exposure to STEM education, language barriers, cultural adjustments and a history of interrupted schooling, resulting in a low rate of high school completion and college matriculation among refugee students,” said Tino Nyawelo, principal investigator of InSPIRE and professor of physics and astronomy at the U. “The project conducts research to better understand these challenges and how to best broaden access to and engagement in STEM for refugee youth and other historically disenfranchised populations.”


Tino Nyawelo kicks off the cosmic ray detector installation celebration at the Utah Refugee Services Center on April 9, 2024. (Photo: Todd Anderson)

InSPIRE brings together the University of Utah, Utah State University, Utah Department of Workforce Services Refugee Services Office, as well as the Dutch National Institute for Subatomic Physics (Nikhef) in Amsterdam, to involve teens in real science. Data from the students’ cosmic rays detectors helps us understand the origins of the universe. The celebration is on Tuesday, April 9, at 1:30 p.m. at the Refugee Services Office at 150 N. 1950 W., Salt Lake City, UT 84116. A short ceremony will include speakers from the U, USU and the Refugee Services Office, and two student-participants will be available with research posters to talk about their cosmic ray detection projects.

Funded by a $1.1 million grant from the U.S. National Science Foundation in 2020, InSPIRE explores how refugee teenagers identify with STEM subjects while they participate in a cosmic ray detector-building and research project. Fifty-seven refugee teens spent one-to two-days a week for nearly three years building the detectors while learning the principles of particle physics and computer programming. The students designed their own research projects, posing questions such as whether the moon impacts cosmic rays. While some participants focused on the detectors, others focused on crafting short films on their fellow students’ research journeys. These students are working on a documentary, in partnership with the ArtsBridge America program at the U’s College of Fine Arts.

Neriman (left) and Lina Al Samaray with a poster of their research project, Effect of the Moon on Cosmic Ray Detectors. The high highschoolers used data from existing HiSPARC detectors to investigate whether the moon’s position from the horizon impacted the rate of cosmic rays hitting Earth’s surface.(Photo: Lisa Potter)

InSPIRE is embedded within Refugees Exploring the Foundations of Undergraduate Education In Science (REFUGES), an after school program that Nyawelo founded to support refugee youth in Utah’s school system, who are placed in grade levels corresponding to their ages despite going long periods without formal education. The U’s Center for Science and Mathematics Education (CSME) has housed the REFUGES program since 2012, where it has expanded to include non-refugee students who are underrepresented in STEM fields. Since then, REFUGES has worked closely with the state of Utah’s Department of Workforce Services Refugee Services Office, which serves as a critical link to the refugee community by coordinating comprehensive services to refugees resettled in our state.

“For the past 12 years, the Refugee Services Office has collaborated with the REFUGES program to identify refugee students and their families who need academic assistance and support. Participation in REFUGES keeps these students engaged in their community while also promoting their access to educational opportunities,” said Mario Kligago, director of the Utah RSO. “It’s amazing—what started as a small project funded by a Refugee Services Office grant has grown into a multi-million dollar endeavor backed by national organizations.”

The detector technology is adapted from HiSPARC (High School Project on Astrophysics Research with Cosmics), a collaboration between science institutions that started in the Netherlands, aimed at improving high schoolers’ interest in particle physics. There are now more than 140 student-built detectors on buildings in the Netherlands, Namibia, and the United Kingdom that upload their data 24/7 to publicly available databases. Nikhef in Amsterdam coordinated the project from 2003-2023 and created the initial worldwide network of cosmic ray detection data. Starting in 2024, data on extensive cosmic air showers and the digital HiSPARC infrastructure will be hosted and maintained by the U’s Center for High Performance Computing (CHPC), led by professor Nyawelo.

Read the full article in @TheU.

Watch below the video of the cosmic ray detector deployment in Salt Lake City facilitated by Tino Nyawelo through his REFUGES and INSPIRE programs.

 

 

>> HOME <<


Spectrum 2023

Spectrum 2023


Down to Earth 2024

The 2024 edition of Down to Earth, official magazine for the Dept of Geology & Geophysics.

Read More
Our DNA 2024

The 2024 edition of Our DNA, official magazine for the U School of Biological Sciences.

Read More
Catalyst 2024

The 2024 edition of Catalyst, official magazine for the U Department of Chemistry

Read More
Air Currents 2024

The 2024 edition of Air Currents, magazine for the U Department of Atmospheric Sciences

Read More
Synthesis 2024

SRI inaugural cohort, the U in biotech and stories from throughout the College of Science

Read More
Aftermath 2024

The official magazine of the U Department of Mathematics.

Read More
Common Ground 2023

The official magazine of the U Department of Mining Engineering.

Read More
Down to Earth 2023

The official magazine of the U Department of Geology & Geophysics.

Read More
Our DNA 2023

The official magazine of the School of Biological Sciences at the University of Utah.

Read More
Catalyst 2023

The official magazine of the Department of Chemistry at the University of Utah.

Read More
Synthesis 2023

Wilkes Center, Applied Science Project and stories from throughout the merged College.

Read More
Aftermath Summer 2023

Anna Tang Fulbright Scholar, Tommaso de Fernex new chair, Goldwater Scholars, and more.

Read More
Air Currents 2023

Celebrating 75 Years, The Great Salt Lake, Alumni Profiles, and more.

Read More
Spectrum 2022

Explosive neutron stars, Utah meteor, fellows of APS, and more.

Read More
Aftermath 2022

Arctic adventures, moiré magic, Christopher Hacon, and more.

Read More
Our DNA 2022

Chan Yul Yoo, Sarmishta Diraviam Kannan, and more.

Read More
Spectrum 2022

Black Holes, Student Awards, Research Awards, LGBT+ physicists, and more.

Read More
Aftermath 2022

Student awards, Faculty Awards, Fellowships, and more.

Read More
Our DNA 2022

Erik Jorgensen, Mark Nielsen, alumni George Seifert, new faculty, and more.

Read More
Notebook 2022

Student stories, NAS members, alumni George Seifert, and Convocation 2022.

Read More
Discover 2021

Biology, Chemistry, Math, and Physics Research, SRI Update, New Construction.

Read More
Our DNA 2021

Multi-disciplinary research, graduate student success, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

New science building, faculty awards, distinguished alumni, and more.

Read More
Notebook 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Spectrum 2021

Student awards, distinguished alumni, convocation, and more.

Read More
Aftermath 2021

Sound waves, student awards, distinguished alumni, convocation, and more.

Read More
Our DNA 2021

Plant pandemics, birdsong, retiring faculty, and more.

Read More
Discover 2020

Biology, Chemistry, Math, and Physics Research, Overcoming Covid, Lab Safety.

Read More
AfterMath 2020

50 Years of Math, Sea Ice, and Faculty and Staff recognition.

Read More
Our DNA 2020

E-birders, retiring faculty, remote learning, and more.

Read More
Spectrum 2020

3D maps of the Universe, Perovskite Photovoltaics, and Dynamic Structure in HIV.

Read More
Notebook 2020

Convocation, Alumni, Student Success, and Rapid Response Research.

Read More
Our DNA 2020

Stories on Fruit Flies, Forest Futures and Student Success.

Read More
Catalyst 2020

Transition to Virtual, 2020 Convocation, Graduate Spotlights, and Awards.

Read More
Spectrum 2020

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Discover 2019

Science Research Initiative, College Rankings, Commutative Algebra, and more.

Read More
Spectrum 2019

Nuclear Medicine, PER Programs, and NSF grant for Quantum Idea Incubator.

Read More
Notebook 2019

The New Faces of Utah Science, Churchill Scholars, and Convocation 2019.

Read More
Catalyst 2019

Endowed Chairs of Chemistry, Curie Club, and alumnus: Victor Cee.

Read More
Our DNA 2019

Ants of the World, CRISPR Scissors, and Alumni Profile - Nikhil Bhayani.

Read More
Catalyst 2019

Methane-Eating Bacteria, Distinguished Alumni, Student and Alumni profiles.

Read More
Spectrum 2019

Featured: Molecular Motors, Churchill Scholar, Dark Matter, and Black Holes.

Read More
Our DNA 2019

Featured: The Startup Life, Monica Gandhi, Genomic Conflicts, and alumna Jeanne Novak.

Read More
AfterMath 2018

Featured: A Love for Puzzles, Math & Neuroscience, Number Theory, and AMS Fellows.

Read More
Discover 2018

The 2018 Research Report for the College of Science.

Read More
Spectrum 2018

Featured: Dark Matter, Spintronics, Gamma Rays and Improving Physics Teaching.

Read More
Catalyst 2018

Featured: Ming Hammond, Jack & Peg Simons Endowed Professors, Martha Hughes Cannon.

Read More

SRI Stories

Information Engines Pay the Piper

 

Physicists sometimes get a bad rap. Theoretical physicists even more so. Consider Sheldon Cooper in the TV sit-com The Big Bang Theory:


Sheldon
: I’m a physicist. I have a working knowledge of the entire universe and everything it contains.
Penny: Who’s Radiohead?
Sheldon: (after several seconds of twitching) I have a working knowledge of the important things in the universe.

Mikhael Semaan

But a working knowledge of anything is always informed and arguably improved — even transformed — by robust and analytical “thought experiments.” In fact, theoretical physics is key to advancing our understanding of the universe, from the cosmological to the particle scale, through mathematical models.

That is why Mikhael Semaan, Ph.D. and others like him spend their time in the abstract, standing on the figurative shoulders of past giants and figuring out what could happen . . . theoretically. That Semaan is also one of the celebrated postdoctoral researchers/mentors in the Science Research Initiative (SRI), is a coup for undergraduates at the University of Utah who “learn by doing” in a variety of labs and field sites.

“The SRI is awesome,” Semaan says. It’s “a dream job where I can continue advancing my own research while ‘bridging the gap’ in early undergraduate research experiences, giving them access to participation in the cutting edge alongside personalized mentoring.”

Want to learn how to bake something? Hire a baker. Better still, watch the baker bake (and maybe even lick the bowl when allowed). And now that Semaan’s second first-author paper — done with senior investigator Jim Crutchfield of UC Davis, his former PhD advisor — has just “dropped,” students get to witness in real time how things get done, incrementally adding to the trove of scientific knowledge that from past experience, we know, can change the world.

Theory’s abstraction lets us examine certain essential features of the subjects and models we study, which in Semaan and Crutchfield’s case concern the first and second laws of thermodynamics. Is it possible to run a car from the hard drive of a computer? In the parlance of this brand of physics, the short answer is, “Yes, theoretically.”

Thermodynamics of Information Processing

From that question as a jumping off point, Semaan explains further. “The primary impact of our contribution is, for now, mostly to other theorists working out the thermodynamics of information processing. … [W]e suggest a change in viewpoint that simplifies and unifies various preceding lines of inquiry, by combining familiar tools to uncover new results.”

The physicist and writer C.P. Snow said that the first three laws of thermodynamics can be pithily summarized with, “You can’t win. You can’t even break even. You can’t stay out of the game.” Semaan elaborates on the second law, “the universe must increase its entropy — its degree of ‘disorder’ — on average…[b]esides offering an excuse for a messy room, this statement has far-reaching implications and places strict limits on the efficiency of converting one form of energy to another … .”

These limits are obeyed by everything from the molecular motors in our bodies to the increasingly sophisticated computers in our pockets to the impacts of global industry on the Earth’s climate and beyond. Yet in the second law’s case, there’s a catch: it turns out that information in the abstract is itself a form of entropy. This insight is key to the much-celebrated “Landauer bound:” stated simply, learning about a system — going from uncertainty to certainty — fundamentally costs energy.

But what about the converse situation? If it costs energy to “reduce” uncertainty, can we extract energy by “gaining” it — for example, by scrambling a hard drive? If so, how much?

Ratchet Information

To answer this question, previous researchers, including Crutchfield, imagine a “ratchet” which moves in one direction along an “information tape,” interacting with one “bit” at a time. As it does so, the ratchet modifies the tape’s statistical properties. That “tape” could be the hard drive in your computer or could be a sequence of base pairs in a strand of DNA.

“In this situation, by scrambling an initially ordered tape, yes: we can actually extract heat from the environment, but only by increasing randomness on the tape.” While the second law still holds, it is modified. “The randomness of the information in the tape is itself a form of entropy,” explains Semaan further, “and we can reduce the entropy in our thermal environment as long as we sufficiently increase it in the tape.”

In the literature, the laws bounding this behavior are termed “information processing second laws,” in reference to their explicit accounting for information processing (via modifying the tape) in the second law of thermodynamics. In this new paper, Semaan and Crutchfield uncover an “information processing first law,” a similar modification to the first law of thermodynamics, which unifies and strengthens various second laws in the literature. It appears to do more, too: it also offers a way to tighten those second laws — to place stricter limits on the allowed behavior — for systems which have “nonequilibrium steady states.”

Non-equilibrium steady state systems — our bodies, the global climate, and our computers are all examples — need to constantly absorb and dissipate energy, and so stay out of equilibrium, even in “steady” conditions (contrast a cup of coffee left out: its “steady” state is complete equilibrium with the room).

“It turns out,” says Semaan, “that in this case we must ‘pay the piper’:  we can still scramble the tape to extract heat, but only if we do so fast enough to keep up with the non-equilibrium steady states.” To demonstrate their new bound, the authors cooked up a simple, tunable model to visualize how much tighter the new results are with concrete, if idealized, examples. “This sort of idealization is a powerful tool,” says Semaan, “because with it we can ‘zoom in’ on only those features we want to highlight and understand, in this case what having nonequilibrium steady states changes about previous results.”

This uni-directional “ratcheting” mechanism may, in fact, someday lead to engineering a device that harnesses energy from scrambling a hard drive. But first, beyond engineering difficulties, there is much left to understand about the mathematical, idealized limits of this behavior. In other words, we still have a ways to go, even “in theory.” There are plenty of remaining questions to address, the fodder for any theoretical physicist worth their salt.

Complex Systems

However, far from being “only” a theoretical exercise, says Semaan, “these continued extensions, reformulations, and corrections are necessary for us to be able to understand how real-world, highly interconnected, complex systems,” like the human body, forest ecosystems, the planetary climate, etc., “exploit (or don’t) the dynamical interplay between energy and information to function. Since so many of the intricate systems we see in nature (including ourselves) exhibit non-equilibrium steady states,” he continues, “this is a [required] step to understanding how they [do this].”

Information ratchet system: At each time step, the ratchet moves one step to the right along the tape, and interacts with one symbol at a time. As it does so, it exchanges energy in various forms with its environment — signified by the T, aux, and λ bubbles in the picture. After running for a long time, the “output tape” generated by the interactions with the ratchet has different statistical properties compared to the “input tape” it receives. The information processing first and second laws are statements about the fundamental relationship between the energy exchanged with the environment and the information processing in the tape. Credit: Semaan and Crutchfield.

This is heady stuff, and the Southern California native is positively thrilled to be sharing it with young, eager undergraduates at the U through the SRI. Semaan is keenly aware of how critical the undergraduate experience in research needs to be to turn out future physicists. A son of Lebanese immigrants who both attended college in the U.S., neither were research scientists and no one he knew had studied physics. At California State University, Long Beach, where Semaan first declared electrical engineering as his major, he was “seduced into physics” through a series of exceptional and inspirational mentors. In the SRI, he hopes to carry this experience forward, and open new doors for undergraduate students.

It was the Complexity Sciences Center at UC Davis, when he applied to graduate school, that caught his attention because of its interdisciplinary nature and concern with systems in which “the whole appears to be greater than the sum of its parts.” The study of emerging systemic behaviors, helmed by Crutchfield, the Center’s Director, ultimately inspired both his PhD and his decision to join the SRI, working with students across the entire College of Science.

Following the third law of thermodynamics, Mikhael Semaan clearly “can’t stay out of the game” (nor would he want to), but one could argue he’s more than breaking even at it.

The release of this paper, titled “First and second laws of information processing by nonequilibrium dynamical states” in the journal Physical Review E is proof of that.


by David Pace