Condensed Matter Research Group

The universe within

by Christoph Boehme

The Department of Physics & Astronomy has a dedicated team of Experimental Condensed Matter (CME) Physicists exploring the enigmatic world of condensed matter, in the quest for discoveries that redefine our understanding of nature on the quantum scale.

The University of Utah’s Department of Physics & Astronomy is not just a place of academic inquiry; it is a crucible where the future of science and technology is being forged. The collaborative environment, state-of-the-art facilities, and the visionary leadership of our faculty have created a unique ecosystem for innovation. Here, curiosity-driven research converges with practical problem-solving, leading to discoveries that transcend the traditional boundaries of physics.  

 The CME research laboratories epitomize the department’s commitment to excellence that is not just confined to the CME research laboratories. It extends to the classroom and beyond, where future generations of physicists are nurtured. The department’s educational programs are designed to provide students with a solid foundation in physics and astronomy, while also encouraging them to engage in research projects that contribute to the department’s pioneering work. 

The CME research group, in particular, exemplifies the department's ethos of pushing the frontiers of knowledge while fostering a collaborative and inclusive environment. This group's work, spanning from the study of quantum materials to the development of advanced spintronic devices, is not only a testament to their scientific prowess but also to their commitment to addressing some of the most pressing challenges in physics today.  

A review of the Department's six, celebrated CME laboratory operations reveals a rich landscape where advanced scientific inquiry meets real-world application.

 


 

Distinguished Professor Z. Valy Vardeny revolves around optical, electronic and magnetic properties of novel materials. Using a broad array of materials deposition, electrical, optical and magnetic characterization techniques, including ultrafast transient and steady-state spectroscopy, his work is, both literally and figuratively, shedding light on the behavior of photoexcitations in conducting polymers and hybrid organic-inorganic perovskite materials, which promes candidates for next-generation photovoltaics, lighting, and sensor technologies. The groundbreaking work of Professor  The Vardeny research group’s groundbreaking work on the Rashba effect in hybrid organic-inorganic perovskites, as detailed in a recent article in the Journal Nature Communications, has opened new pathways in understanding and manipulating quantum materials, promising advancements in fields ranging from solar energy to quantum computing. 

 

 

 



Adjacent to Prof. Vardeny’s lab in the basement of the James Fletcher Building, Professor Shanti Deemyad and her research group explore the frontiers of matter under extreme conditions, especially extreme pressure. Her research focuses on the intriguing behavior of quantum materials like superconductors and quantum solids under varying pressures and temperatures. The elucidation of the Fermi surface of lithium under high pressure that she and her coworkers recwently published in the Physical Review, is a testament to the department’s CME research endeavor to push the boundaries of known physics. Prof. Deemyad’s discoveries not only contribute to our understanding of quantum materials, but also pave the way for developing materials with unprecedented properties, potentially transforming industries from energy to aerospace.
 

 


Across from Prof. Deemyad’s lab, Professor Vikram Deshpande’s laboratory is a hub of research activity focusing on atomically-thin nanostructures, so called 2D-materials. This work includes research on Dirac materials like graphene and topological insulators, a cutting-edge area of contemporary condensed matter physics. Professor Deshande’s The group’s landmark study on emergent helical edge states in a hybridized three-dimensional topological insulator, published last year in Nature Communications, not only highlights the department's forefront position in exploring new quantum states but also opens the door to applications in spintronics and quantum computing. This research is a step towards harnessing the unique properties of quantum materials for practical technologies that could revolutionize the electronic and computational landscape. 


Another, cutting edge and just recently (2022) built CME research lab within the Department of Physics & Astronomy is led Professor Eric Montoya’s lab, offering research on an array of magnetic materials and spintronic devices, being another testament to the department’s expertise in the field of magnetism and spin physics. Professor Montoya’s innovative work on the development of the easy-plane spin Hall oscillators, detailed in a recent Communications Physics publication, not only contributes to the fundamental understanding of spin physics but also offers exciting prospects for advancements in telecommunications and spintronics-based computing. The potential of this research in creating more efficient and powerful electronic devices is immense, indicating a future where technology is seamlessly integrated with advanced physics. 


Located next to Professor Montoya’s research laboratories in the Intermountain Network for Scientific Computing Center, is Professor Andrey Rogachev’s research group, who investigates the fascinating world of superconducting nanowires and thin films. Their groundbreaking study titled “Pair‐breaking quantum phase transition in superconducting nanowires” provided crucial insights into the behavior of these low-dimensional structures under external magnetic fields, contributing significantly to our understanding of quantum critical phenomena. This research not only furthers our knowledge of superconductivity but also provides a foundation for future explorations into quantum computing and ultra-sensitive magnetic field sensors.


Finally, there is my own research group which is a place where spin physics, quantum mechanics, and material science converge, with our research focus on the exploration of spin-dependent electronic transitions in condensed matter. The Christoph Boehme lab’s recent breakthrough demonstrating the existence of Floquet spin states in organic light emitting diodes, published in Nature Communications, is representative of how the department's CME research programs succeed in bridging the gap between quantum physics and practical applications. This research holds great promise for the development of new spin-based information technologies and quantum sensors, offering glimpses into a future where even more quantum phenomena are harnessed for technological advancements. 


Engaging with the Community and Beyond 

The department's efforts to engage with the broader community, including visiting students, scholars, but also anyone interested from the broader community, are an essential part of its mission. The department regularly hosts seminars, workshops, and public lectures to disseminate its findings and foster a dialogue with the public. These events provide a platform for sharing the excitement and significance of the research conducted within the department, inspiring not just the next generation of scientists but also the general public. 

 Visiting CME faculty and potential collaborators will find that the department offers a comprehensive overview of its research operations, showcasing its state-of-the-art facilities and the innovative work being conducted. This engagement is not just about showcasing the department’s achievements; it’s about building partnerships and collaborations that can lead to new discoveries and advancements in the field of physics and astronomy. 

 Envisioning the Future: Transformative Developments

The Applied Science Project: new home for Physics & Astronomy, January 2025.

The Department of Physics & Astronomy is on the cusp of a transformative era, marked by significant developments that promise to redefine its CME research landscape. Two pivotal elements shaping this future are the department's relocation to the newly built Applied Sciences Building and the strategic expansion of its faculty, focusing on CME research. 

The upcoming move of the department to the Applied Sciences Building is more than a change of location; it is a leap into a new realm of possibilities. This state-of-the-art facility, currently under construction, is meticulously designed to cater to the advanced requirements of CME research. The building will not only significantly enhance laboratory capacities but also foster an environment conducive to innovative research and interdisciplinary collaboration. 

The building's modern labs, coupled with office and educational spaces, will provide the perfect platform for researchers to delve deeper into the mysteries of quantum materials and phenomena. This new environment is expected to be a catalyst for groundbreaking discoveries, particularly in fields such as semiconductor and quantum physics, which are central to the department's research focus.  

Complementing the physical expansion is the department's ambitious faculty recruitment initiative, a critical component of its multi-year expansion plan in experimental condensed matter physics. This initiative is not just about adding numbers; it's about enriching the department's intellectual fabric with fresh perspectives and cutting-edge expertise. 

 The relocation to the Applied Sciences Building, combined with the strategic faculty expansion, marks the beginning of a new chapter for the Department of Physics & Astronomy at the University of Utah that holds the promise of groundbreaking research, transformative educational experiences, and a continued legacy of scientific excellence. As the department moves forward, it remains committed to exploring the unknown, pushing the boundaries of knowledge, and fostering a culture of discovery and innovation.  

 The Department of Physics & Astronomy at the University of Utah is hiring additional faculty and research staff for the Experimental Condensed Matter Research Group. Contact the department for more information.  

Humans of the U: Ramón Barthelemy

“Ideas of social justice, inclusion and equity have always been at the forefront of my mind.

I’m a first-generation in an immigrant family and this has given me a perspective that most other people in physics don’t have. I noticed that there was a trend in who was in the field, with fewer underrepresented and minoritized students and faculty, and this trend had been confirmed by the data. This is something that caught my attention and I got really excited about how we can change this trend to make physics more inclusive. So, when I started my Ph.D. program, I actually switched from nuclear physics to physics education research and started pursuing this line of inquiry. The reason why this work is needed is that physics is incredibly challenged with representation and the experiences of individuals in the community.

I believe my presence adds to the field of physics scholarship. I don’t use deficit language and I don’t use comparisons when talking about marginalized groups. Making these comparisons is inequitable because you’re defining what is ‘normal’ in one group and saying that the other group should be compared to that normal. Instead, we should talk directly to the people being impacted and learn from their experiences to craft policy in order to make a change in the field.

One of the biggest findings that we’ve had is that inclusivity in physics is much more predictive of people staying in the field than exclusivity is predictive of people leaving. What that tells us is that inclusion is a more powerful experience than discrimination. When we think about the climate of physics, a neutral climate is not enough. We have to create an actively inclusive climate if we want to make a change in this field and make sure that everybody is fully included.

I would love to see a physics community that anybody can come to and participate in. I want them to be able to bring their background, their unique perspective and their full self to physics.”

– Ramón Barthelemy, assistant professor, Department of Physics & Astronomy

This story originally appeared in @TheU.

Lightning, camera, gamma ray!

lightning, camera, gamma ray!

In September 2021, an unprecedented thunderstorm blew across Utah’s West Desert. Lightning from this storm produced at least six gamma ray flashes that beamed downward to Earth’s surface and activated detectors at the University of Utah-led Telescope Array. The storm was noteworthy on its own—the array usually clocks one or two of the lightning-triggered gamma rays per year—but recent upgrades led to a new observation by the Telescope Array scientists and their lightning collaborators.

 

“The ability of the Telescope Array Surface Detector to detect downward TGFs is a great example of serendipity in science,” said John Belz, professor of physics and astronomy at the University of Utah and co-author of the study. “The TASD was designed to do astroparticle physics, by studying the particle showers produced by energetic atomic nuclei from deep space. Purely by happenchance, the astroparticle showers share many properties—including energy, duration, and size—with the gamma ray showers known as downward TGFs. So in a sense, we are able to operate two groundbreaking science facilities for the price of one.”

Telescope Array collaborators from the University of Utah, Loyola University Chicago, the Langmuir Laboratory for Atmospheric Research at New Mexico Tech and the National Institute for Space Research-Brazil (INPE), have installed a suite of lighting instrumentation to the existing Telescope Array, a ground-based grid of surface detectors primarily designed to observe ultra-high energy cosmic rays.

Read the full article by Lisa Potter in @TheU. 

PHOTO CREDIT: RASHA ABBASI Lightning captured with the highspeed camera at 40,000 frames per second.

Cosmic Ray on SciFri

Sci Fri: Cosmic Ray Burst

Around 30 years ago, scientists in Utah were monitoring the skies for cosmic rays when they detected a surprising particle. It struck the atmosphere with much more energy than they had previously seen—enough energy to cause the researchers to dub it the “Oh My God Particle.”

 

John N. Matthews of the U's Department of Astronomy and Physics, standing beside large telescope mirrors at the Telescope Array Project's florescence detector station just outside the Drum Mountains, Millard County, Utah. Photo by Joe Bauman, May 25, 2013. Banner Photo above: The surface detector array of the Telescope Array experiment, deployed by helicopter. Credit: Institute For Cosmic Ray Research, University Of Tokyo

Over the years, a collaboration of researchers in Utah and Japan has detected other powerful rays—about 30 a year—but none that rival the OMG. In 2021, however, a second particle was detected. It was only slightly less powerful than OMG, but still many times more powerful than can be created on Earth. That 2021 particle was named “Amaterasu,” after a sun goddess from the Japanese Shinto religion. The researchers described their observations in a recent issue of the journal Science.

The researchers believe the particle must have come from relatively nearby, cosmically speaking, as otherwise it would likely have collided with something in space and lost its energy. However, when they tried to trace the particle back to its origin in space, they were unsuccessful. Both the OMG particle and the new Amaterasu particle seem to have come from empty regions of space, with no violent events or massive structures to create them.

Dr. John Matthews, a research professor in physics and astronomy and manager of the Cosmic Ray Physics Program at the University of Utah, joins Ira to talk about cosmic rays, how they’re detected, and the challenges of finding the origin of particles like Amaterasu.

Second highest-energy cosmic ray ever

second highest-energy cosmic ray ever

 

In 1991, the University of Utah Fly’s Eye experiment detected the highest-energy cosmic ray ever observed. Later dubbed the Oh-My-God particle, the cosmic ray’s energy shocked astrophysicists. Nothing in our galaxy had the power to produce it, and the particle had more energy than was theoretically possible for cosmic rays traveling to Earth from other galaxies. Simply put, the particle should not exist.

John N. Matthews standing beside large telescope mirrors at the Telescope Array Project's florescence detector station. Credit: Joe Bauman. Banner Photo Aboe: Artist’s illustration of the extremely energetic cosmic ray observed by a surface detector array of the Telescope Array experiment, named “Amaterasu particle.” OSAKA METROPOLITAN UNIVERSITY/L-INSIGHT, KYOTO UNIVERSITY/RYUUNOSUKE TAKESHIGE

The Telescope Array has since observed more than 30 ultra-high-energy cosmic rays, though none approaching the Oh-My-God-level energy. No observations have yet revealed their origin or how they are able to travel to the Earth.

On May 27, 2021, the Telescope Array experiment detected the second-highest extreme-energy cosmic ray. At 2.4 x 1020eV, the energy of this single subatomic particle is equivalent to dropping a brick on your toe from waist height. Led by the University of Utah (the U) and the University of Tokyo, the Telescope Array consists of 507 surface detector stations arranged in a square grid that covers 700 km(~270 miles2) outside of Delta, Utah in the state’s West Desert. The event triggered 23 detectors at the north-west region of the Telescope Array, splashing across 48 km2 (18.5 mi2). Its arrival direction appeared to be from the Local Void, an empty area of space bordering the Milky Way galaxy.

“The particles are so high energy, they shouldn’t be affected by galactic and extra-galactic magnetic fields. You should be able to point to where they come from in the sky,” said John Matthews, Telescope Array co-spokesperson at the U and co-author of the study. “But in the case of the Oh-My-God particle and this new particle, you trace its trajectory to its source and there’s nothing high energy enough to have produced it. That’s the mystery of this — what the heck is going on?”

Watch the video below and read the full article by Lisa Potter in @TheU.

Read additional articles about this story at the following. The Mirror (UK); LBC (UK); USA Today; CNN; India Times; Business Insider.

 

1st detection of heavy element from star merger

first detection of heavy element from star merger

 

“We only know of a handful of kilonovas with any certainty, and this is only the second one for which we have such detailed spectral information” said Tanmoy Laskar, assistant professor at the University of Utah, of the first detection of we have of heavy element from a star merger.

Tanmoy Laskar. Banner photo (above): This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and traveled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later. CREDIT: NASA, ESA, CSA, STSCI, ANDREW LEVAN (IMAPP, WARW)

Tanmoy Laskar and colleagues has used multiple space and ground-based telescopes, including NASA’s James Webb Space Telescope, NASA’s Fermi Gamma-ray Space Telescope, and NASA’s Neil Gehrels Swift Observatory, to observe an exceptionally bright gamma-ray burst, GRB 230307A, and identify the neutron star merger that generated an explosion that created the burst. Webb also helped scientists detect the chemical element tellurium in the explosion’s aftermath.

“Just over 150 years since Dmitri Mendeleev wrote down the periodic table of elements, we are now finally in the position to start filling in those last blanks of understanding where everything was made, thanks to Webb,” said Andrew Levan of Radboud University in the Netherlands and the University of Warwick in the UK, lead author of the study.

While neutron star mergers have long been theorized as being the ideal “pressure cookers” to create some of the rarer elements substantially heavier than iron, astronomers have previously encountered a few obstacles in obtaining solid evidence.

Kilonovas are extremely rare, making it difficult to observe these events. Short gamma-ray bursts (GRBs), traditionally thought to be those that last less than two seconds, can be byproducts of these infrequent merger episodes. In contrast, long gamma-ray bursts may last several minutes and are usually associated with the explosive death of a massive star.

The case of GRB 230307A is particularly remarkable. First detected by NASA’s Fermi Gamma-ray Space Telescope in March, it is the second brightest GRB observed in over 50 years of observations, about 1,000 times brighter than a typical gamma-ray burst that Fermi observes. It also lasted for 200 seconds, placing it firmly in the category of long duration gamma-ray bursts, despite its different origin.

“This burst is way into the long category. It’s not near the border. But it seems to be coming from a merging neutron star,” added Eric Burns, a co-author of the paper and member of the Fermi team at Louisiana State University.

Read the full article by Lisa Potter in @TheU.  Adapted from NASA Webb Space Telescope.

Retroviral Symposium

Developing HIV Anti-virals

The annual Retroviral Symposium held at Snowbird convened a wide-variety of scientists from many disciplines ... along with troupe of actors, a playwright and a dramaturge.

October 10, 2023

Infectious viral cores in the nuclei of infected cells are largely intact and uncoat near their integration sites just before integration. Illustration: The Animation Lab.

In September of 2023 the Department of Physics and Astronomy hosted the 12th International Retroviral Symposium at Snowbird Utah. The retroviral symposium is held bi-annually and is hosted alternatively in US or Europe. This symposium originally initiated from a group of NIH researchers which had strong collaborations with European scientists beginning in 1990’s.  

Fundamental mechanisms that ensure proper assembly, maturation and uncoating of retroviruses remain unclear. Understanding these mechanisms is critical for development of effective antivirals. While HIV antivirals now exists, the rapid evolution of HIV under antiviral selection requires new targets. The 12th Retroviral Symposium was focused on Assembly, Maturation and Uncoating and highlight fundamental biochemical, virological and biophysical mechanisms involved in these processes.

In a novel turn, this year’s symposium also featured a staged reading of an original play, “Emergence” by playwright Gretchen A. Case, professor at the U’s Department of Theatre and Associate Professor in the Division of Medical Ethics and Humanities at the U’s School of Medicine. Set “in the future, but not so far that it is unrecognizable,” the one-act has four characters: three scientists and an “AI,” as in artificial intelligence. The cast includes “Liv” who is saving her reproductive eggs in jars in a futuristic world where retroviral therapy in human reproduction is the norm. (Retroviruses, it turns out, are critical to the formation of the placenta.) The script is based on the book Discovering Retroviruses by Anna Marie Skalka, professor emerita at Fox Chase Cancer Center in Philadelphia. Skalka attended the symposium in a post-play discussion. 

 

 

Taking the leap

Also on-hand during the post-play discussion was Sydney Cheek-O’Donnell, chair of the U’s theater department, a long-time collaborator with symposium organizer and U professor of physics Saveez  Saffarian. Cheek-O’Donnell said that the project is an on-going attempt to understand and develop a way to work across multiple disciplines between science and arts /  humanities “so that others can take the leap… . Stories,” she says, “are one of the best ways to teach people complicated new ideas.” The Play was partially supported by a 1U4U award to Professors Case, Cheek-O’Donnell and Saffarian.

 

By David Pace

You can watch a video of the staged reading of “Emergence” below.

 

Ring-of-fire eclipse: How to see it

Ring of Fire Eclipse

 

“It’s like when you make a circle with your fingers and close one
eye. When you move your hand closer to your face, the circle gets bigger. Move it away, and it appears smaller.”

Paul RIcketts. Credit: Sara Tabin/Park Record

This is what Paul Ricketts has to say about the upcoming eclipse on Saturday October 14. “This will be a cool event. You’ll still see the surroundings get darker, you’ll feel it get colder, but you won’t be able to look at the eclipse without protective glasses,” continued  Ricketts, the director of the University of Utah’s South Physics Observatory. “Plus, this will last way longer than the total eclipse.”

This is a front row seat for Utahns to an annular eclipse the morning of the 14th. The so-called ring-of-fire eclipse is different than the total eclipse of 2017 but will still be spectacular.

A solar eclipse occurs when the moon’s orbit moves between the sun and the earth so that it blocks out the sun’s light and casts a shadow on Earth’s surface. During an annular eclipse, the moon is at a farther distance from the Earth. The distance makes the moon appear smaller, and it fails to block out the entire sun. The moon looks like a large black disk in front of the bright sun disk. This results in a ‘ring of fire’ around the moon’s silhouette.

Every year the moon drifts slowly farther away from the Earth—around one inch farther per year. Ricketts said that’s one reason to take advantage of these astronomical events while you can.

“Right now, our Earth position with the moon and the sun, they appear the same size in the sky, which is why we can enjoy total eclipses. A few billion years down the road, the moon will appear too small and we’d only get these types of annular eclipses.” Ricketts said. “We’re lucky to be alive right now. In the future, we’d only able to see annular eclipses that look like a much smaller black dot crossing the sun’s surface.”

While many will enjoy viewing the solar spectacle, the event is sacred to local Indigenous tribes. For some Indigenous tribes, an eclipse is a time of renewal and reflection through cultural practices that include fasting and meditation. Diné (Navajo) and Ute Indian Tribes do not watch, or even look at images of the eclipse. When posting images on social media, be mindful of people who want to avoid such images. Consider using a filter so your followers can opt-in to view any multimedia of the eclipse.

 

Learn how to see the eclipse by reading the rest of the story by Lisa Potter in @TheU.

outstanding contribution to cosmology

Cocconi Prize, outstanding contribution to cosmology

 

Kyle Dawson (right) and eBOSS co-leadership accept the Giuseppe and Vanna Cocconi Prize. CREDIT: COURTESY OF THE EUROPEAN PHYSICAL SOCIETY

The High Energy and Particle Physics Division of the European Physical Society (EPS) held its award ceremony at their annual conference on August 21, 2023, where they honored the field’s most influential research projects. The SDSS/BOSS/eBOSS collaboration won the Giuseppe and Vanna Cocconi Prize for an outstanding contribution to particle astrophysics and cosmology in the last fifteen years. The University of Utah was a key contributor to the BOSS and eBOSS collaborations.

“I joined the BOSS experiment when moving to the University of Utah. At the time, it felt like a gamble moving into a new cosmology experiment when starting as an assistant professor. It was clearly the right gamble to make as the experience has defined my career and has set me up to help plan large cosmology experiments over the next decade and beyond,” said Kyle Dawson, principal investigator of eBOSS and professor in physics and astronomy at the U.

The SDSS/BOSS/eBOSS projects are international collaborations involving hundreds of scientists that have fundamentally changed our understanding of the universe.

Read the full story in @TheU.

Why Scientists Haven’t Solved the Mystery of the OMG Particle

Solving The Mystery Of The 'OMG Particle'

 

Below the snow-covered peaks of the Andes Mountains, among scattered rocks and the scrub of prairie bushes, there sits at this very moment a 12-ton polyethylene tank holding 3,000 gallons of pure water.

 

All around it, spread out in every direction over an area nearly the size of Rhode Island, are 1,599 more such tanks, each identical to the first. These lonely sentinels have their eyes on the sky, patiently observing what human eyes cannot in the hopes of solving a mystery that began on another continent and more than three decades prior — a mystery that started with the Oh-My-God event.

It was the night of October 15, 1991. The University of Utah had set up an experimental observatory called the Fly's Eye in the isolation of Dugway Proving Ground, a sprawling 800,000-acre tract of land used by the U.S. Army to test biological and chemical weapons since the 1940s. On that night the Fly's Eye detected something called an air shower, a miles-long explosion of streaming particles invisible to the human eye and caused by high-energy interactions in the upper atmosphere. Each of the telescope’s detectors were designed to point at a different part of the field of view, in a similar way to insects’ compound eyes. It was this that earned the telescope its name. “We were hoping we might pick up something really unusual,” says David Kieda at the University of Utah, who worked on the telescope at the time. (Read more about the Fly's Eye Array here.)

Scientists looked at the data they'd collected and worked backward to deduce the properties of the space-borne particle that led to the air shower. The results weren't just shocking — they were thought to be impossible. They called their discovery the Oh-My-God particle.

While the Oh-My-God particle still remains the most energetic cosmic ray ever detected, a handful of others in the off-the-scales range have been observed in the years since, confirming that it wasn't a miscalculation or instrumentation failure, but in fact a real event. This is why 1,600 giant water-filled tanks have been installed in a grid formation across 3,000 square kilometers of the arid Mendoza region of Argentina. These are the specialized detectors of the Pierre Auger Observatory, forming an array designed to capture evidence of other extremely high-energy cosmic rays. "The quest for identifying the sources of the most energetic particles in the Universe continues," says Carsten Rott, chair of the Department of Physics & Astronomy at the U. "[But] not only at the Auger detector in Argentina, but also right here in Utah with the Telescope Array experiment."

 

Read the full story by DAVID ROSSIAKY in Slash Gear.