Teaching Assistantship

2022 Teaching Assistantship


Seungsu Lee Awarded Teaching Assistantship from the University of Utah

Graduate student Seungsu Lee has received a Teaching Assistantship Award from the University of Utah. The award is designed to bolster undergraduate education while providing graduate students with experience teaching in undergraduate environments. The opportunity is for full-time graduate teaching assistants.

“Receiving the award means a lot to me in different ways,” said Lee. “It tells me that my proposal is effective and will help many people who study math. Also, the award ensures support from the department and my mentor in implementing my proposal into an actual class. In terms of my career, the award confirms my teaching skills. I learned English as a second language, and I have a strong Korean accent, so receiving the award proves that one can develop communication and teaching skills to teach mathematics efficiently regardless one’s background.”

"When I teach, I love to communicate with students, tell them what they’re doing correctly, and teaching them how to do mathematical reasoning. In particular, I like the moment when students understand what I’m teaching about a mathematical concept, and I can see the “aha” moment in their faces."

 

Lee will be teaching an asynchronous online class for Math 2270—Linear Algebra--and will have responsibility for creating lecture videos for the department website. Asynchronous learning allows an instructor flexibility in creating a learning environment that will allow for different kinds of learners and learning styles. Lee’s academic advisor is Professor Karl Schwede, and his mentor for the project is Assistant Professor (Lecturer) Matt Cecil.

“I like to chat about mathematics with other people,” said Lee. “When I teach, I love to communicate with students, tell them what they’re doing correctly, and teaching them how to do mathematical reasoning. In particular, I like the moment when students understand what I’m teaching about a mathematical concept, and I can see the “aha” moment in their faces.”

When Lee was a child, his father showed him the magic square. The magic square is a square array of numbers in which all the rows, columns, and diagonals add up to the same sum, which is called the magic constant. This is the fun part in working through the square—you get the same number when you add numbers for each row, column, or even diagonals. “As far as I can remember, the magic square marked the first time that I ever saw a mathematical puzzle,” said Lee.  He was very interested in the algorithm to solve the magic square. As he got older, he started to do more and more math.  When he was in high school, he had a great math teacher, who showed him rigorous ways to think about calculus by using epsilon and delta. This was a turning point for Lee that made him decide to forge a career in math.

He completed his undergraduate degree at Yonsei University in South Korea. “I got interested in algebraic geometry when I was an undergraduate,” he said. “Unfortunately, my university’s graduate school didn’t focus on this area of math, so I searched online and was excited to see that the U’s Math Department has a huge research group in algebraic geometry. I was so happy to be accepted to the department’s program.” After he earns a Ph.D., he plans to seek a research position.

 

by Michele Swaner, first published at math.utah.edu.

 

Graduate Research Fellowship

2022 Graduate Research Fellowship


Sanghoon Kwak has been awarded a Graduate Research Fellowship (GRF) from the University of Utah.

Sanghoon Kwak, a third-year Ph.D. candidate in the Department of Mathematics, has been awarded a Graduate Research Fellowship (GRF) from the University of Utah. The purpose of the GRF is to provide graduate students with an opportunity to do full-time research during an academic year. Recipients are selected and evaluated on the quality and impact of their research or creative project, their achievements, and their potential for success.

“I am tremendously honored and humbled to receive a GRF,” said Kwak. “It’s a huge affirmation of the work I’ve done for last three years and an encouraging nod to my future work. The fellowship will allow me to have more solid blocks of time to dedicate to my research. I also want to recognize the support, trust, and patience I’ve received from my advisors, Distinguished Professor Mladen Bestvina, and Assistant Professor Priyam Patel.”

"I also want to recognize the support, trust, and patience I’ve received from my advisors, Distinguished Professor Mladen Bestvina, and Assistant Professor Priyam Patel."

 

Kwak studies geometric group theory, which is an area of mathematics devoted to studying groups, endowing them with a metric, and treating them as geometric objects. Geometric group theory is a relatively new area of mathematics, providing a variety of applications to geometry, topology, group theory, number theory and graph theory.Many junior researchers have been drawn to this field, and the Math Department at the university has one of the leading groups.

In his research, Kwak works on the group of symmetries of infinite graphs that correspond to infinite-type surfaces. In the fall of 2021, Dr. Bestvina and Dr. Yael Algom-Kfir, a lecturer at the University of Haifa in Israel who received her Ph.D. in mathematics from the U in 2010,  conducted a pioneering study on the symmetry group of infinite-type graphs. Based on this study, Kwak and other colleagues in the Math Department were able to develop a complete classification, of which infinite-type graphs have symmetry groups with “interesting” geometry. The GRF will allow him to continue his work in this area.

Kwak has always enjoyed the beauty, simplicity, and universality of math. “One of the things I like about mathematics, compared to the other sciences, is that mathematical knowledge has no expiration date,” he said. “An established fact in mathematics, as long as it is rigorously proved, rests forever. For me, publishing a paper is like putting a small stone out there that will last. The stone could be a part of a cornerstone of a castle to build on; it could be placed on top of a pyramid of stones; or it could serve as a kind of Rosetta stone that unlocks understanding between different fields; or it could contribute to a mosaic of stones that helps us understand a larger piece of a picture.”

He received a bachelor’s degree in mathematics from the Korea Advanced Institute of Science and Technology (KAIST) in South Korea. During his undergraduate education, Dr. Bestvina visited KAIST and gave a lecture on geometric group theory. Kwak attended his presentation and wanted to learn more about the correspondence between surfaces and graphs. Following graduation, Kwak was accepted to the U for graduate school. After he receives his Ph.D., he hopes to continue his research and teach at a university.

Below is an example of Kwak’s work.

 

 

 

 

by Michele Swaner, first published at math.utah.edu.

 

Research Scholar

2022 Research Scholar


Tyler Ball named 2022 Research Scholar by the University of Utah - College of Science.

Tyler Ball is a first-generation college student who grew up in Salt Lake City. She enrolled at the University of Utah in 2018 and participated in the ACCESS Scholars program as a member of the 2018-2019 cohort. Through the ACCESS program, Tyler was introduced to broad topics related to sustainability which cemented her desire to pursue a degree in chemistry. The program also enabled her to get involved with research during the second semester of her freshman year – she joined Dr. Matt Sigman’s lab in January 2019.

Her first research project was a mechanistic study of the oxidative addition of cobalt complexes into benzyl bromides using electroanalytical techniques, which was published in the Journal of the American Chemical Society in October 2019. She was hoping to expand on this project using different substrates, but the COVID-19 pandemic pushed her to start a fully computational project in the spring of 2020. Tyler began a project using Symmetry-Adapted Perturbation Theory to study trends within and between different types of non-covalent interactions. She is currently working toward publishing this effort in the near term. In an effort to expand the breadth of her research experience, Tyler participated in an NSF-funded REU program at the University of Minnesota during the summer of 2021. Working with Professor Ian Tonks, she evaluated cobalt catalysts for the hydroesterification of small molecules.

Tyler Ball

Tyler’s learning is propelled by her passion for sustainability. During her sophomore year, Tyler became involved with our American Chemical Society Student Chapter’s Green Chemistry Committee (GCC).

 

During the fall of 2020, Tyler applied for the Goldwater Scholarship and earned the award in March 2021. Alongside the prestigious Goldwater Scholarship, Tyler has earned various awards through the Department of Chemistry and the College of Science, including the College of Science Dean’s Scholarship and the Leon Watters Memorial Award.

Tyler’s learning is propelled by her passion for sustainability. During her sophomore year, Tyler became involved with our American Chemical Society Student Chapter’s Green Chemistry Committee (GCC). The GCC helped to introduce Kimberly Clark’s glove recycling program into teaching and research labs in the chemistry department and recently worked with the College of Science to introduce mask recycling into lab spaces. Tyler’s involvement in the GCC has also helped her to focus on outreach efforts – she has organized multiple outreach events this year, with the hope of earning a Green Chemistry Award for the student chapter through the national ACS organization.

Going forward, Tyler will be pursuing her PhD in chemistry at Cornell University. Her emphasis will likely be in green catalysis with an application to polymer synthesis and her studies will be funded by the NSF Graduate Research Fellowship Program. She is incredibly grateful for all the opportunities the College of Science has afforded her during her undergraduate studies and the supportive community of scientists she has been able to surround herself with.

Outside of the lab, Tyler enjoys hiking and rock climbing. She is always looking for vegan recipes to cook and loves trying new restaurants around SLC.

 

 

National Academy of Sciences

National Academy of Sciences


Valeria Molinero elected as a member of the National Academy of Sciences.

Molinero is the Jack and Peg Simons Endowed Professor of Theoretical Chemistry and the director of the Henry Eyring Center for Theoretical Chemistry. She is a theoretical chemist and uses computer and statistical models to explore the science of how crystals form and how matter changes from one phase to another down to the atomic scale.

Much of her work has involved the transition between water and ice and how that transition occurs in the formation of clouds, in insects with antifreeze proteins, and in food products, especially those containing sugars. Her work has implications for any process in which control of the formation and growth of ice crystals is critical, including snowmaking at ski resorts, protection of crops from freezing, preservation of human organs and tissue for transplant, and production of ice cream and gelato, her favorite food. In 2020, she and her international colleagues demonstrated that the smallest possible nanodroplet of water that can freeze into ice is around 90 molecules, a finding that earned them the 2020 Cozzarelli Prize from the journal Proceedings of the National Academy of Sciences.

She is a fellow of the American Academy of Arts & Sciences and recipient of several U awards, including the Distinguished Scholarly and Creative Research Award in 2019, the Extraordinary Faculty Achievement Award in 2016, the Camille Dreyfus Teacher-Scholar Award in 2012 and the College of Science Myriad Faculty Award for Research Excellence in 2011. She has also been honored by the Beckman Foundation with its Young Investigator Award, and by the International Association for the Properties of Water and Steam with its Helmholtz Award.

Valeria Molina

"There’s satisfaction that comes from seeing someone grow from the beginning of the Ph.D. into an accomplished researcher."

 

Valeria heard about her election between the news of a new publication with postdoctoral scholar Debdas Dhabal and preparations for a doctoral student’s dissertation defense. She received a phone call from colleague Dale Poulter, a distinguished professor emeritus and National Academy of Sciences member, to announce her election. “I was shocked,” she says. “To say it was a surprise would not do it justice. It was fantastic.”

Minutes later, she went into the dissertation defense, reflecting on the range of accomplishments represented by the publication, the election and the defense. “All the research is made essentially there, in the work of the students and postdocs,” she says. “There’s satisfaction that comes from seeing someone grow from the beginning of the Ph.D. into an accomplished researcher.”

Molinero is among 120 U.S. scientist-scholars and 30 foreign associates elected at the Academy’s Annual Meeting in Washington, D.C. She joins 16 other current University of Utah researchers who’ve been elected to the Academy. The National Academies, which also include the National Academy of Engineering and National Academy of Medicine, recognizes scholars and researchers for significant achievements in their fields and advise the federal government and other organizations about science, engineering and health policy. With today’s elections, the number of National Academy of Sciences members stands at 2,512, with 517 foreign associates.

Read more at nasaonline.org.

 

Past & Present

  • National Academy of Sciences:
    Brenda Bass, Cynthia Burrows, Mario Capecchi, Dana Carroll, Thure Cerling, James Ehleringer, Kristen Hawkes, James O’Connell, Baldomero “Toto” Olivera, C. Dale Poulter, Peter Stang, Wesley Sundquist, Polly Wiessner, Henry Harpending, Jesse D. Jennings, Erik Jorgensen, Cheves Walling, Sidney Velick, John R. Roth, Josef Michl, Ray White, Julian Steward, Jeremy Sabloff, Henry Eyring and Louis Goodman and Mary C. Beckerle.
  • National Academy of Engineering:
    Jindrich Kopecek, R. Peter King, Adel Sarofim, Sung Wan Kim, Gerald Stringfellow, Donald Dahlstrom, George Hill, Jan D. Miller, Milton E. Wadsworth, Thomas G. Stockham, John Herbst, Stephen C. Jacobsen, Willem J. Kolff, Alex G. Oblad, Anil Virkar and William A. Hustrulid.
  • National Academy of Medicine:
    Mario Capecchi, Wendy Chapman, Sung Wan Kim, Vivian Lee, Baldomero “Toto” Olivera, Stephen C. Jacobsen, Eli Adashi, Paul D. Clayton and Homer R. Warner.

National Academy of Sciences

National Academy of Sciences


Erik Jorgensen elected as member of the National Academy of Sciences.

When explaining his work, Erik Jorgensen, a geneticist who studies the synapse, can transport you to an almost galactic place–the observable universe of the brain. “Synapses are contacts between nerve cells in your brain,” says the School of Biological Sciences’ distinguished professor and Howard Hughes Medical Institute Investigator who May 3, 2022 was elected to the National Academy of Sciences (NAS).

“You have trillions of them. Think of all the stars you can see on a moonless night on Bald Mountain,” he continues, referring to the 11,949-foot peak in the nearby Uinta Mountains. ‘Multiply that by 100 billion. I will give you a few minutes to do the calculation. …That’s how many synapses you have – the brain can hold and process a lot of information with all of those synapses. Your grandmother lives there.” Scientists want to know how synapses work, says Jorgensen, “understand how they change to store a memory, and how they become corrupted when we forget, or why they die as we pass into dementia.”

Lighting the way for a future scientist.

"It ends up that light is too big to see the structure of a synapse. That is why we use a different subatomic particle-an electron-to visualize the structure of the synapse. We use electron microscopes."

 

As of 2020, Jorgensen has been a collaborator in the National Science Foundation-funded Neuronex 2 Project, and he knows what it takes to understand these elusive, minute gaps between nerve cells. “We need to be able to see them,” he says, “to study their architecture, and track the proteins in the synapse. How can we do that? It ends up that light is too big to see the structure of a synapse. Light is made of photons, and photons are–well, too light–they have no mass; they vibrate too much to detect objects smaller than their vibrations. That is why we use a different subatomic particle-an electron-to visualize the structure of the synapse. We use electron microscopes.”

Along with Jorgensen, the international consortium includes scientists at the University of Texas in Austin and the UofU’s Bryan Jones who studies neural connections in the retina at the Moran Eye Center’s Marclab for Connectomics. The four interdisciplinary teams share reagents, methods and data to work together to characterize the formation of synapses, their function and their decline using electron microscopes.

“Biology is experiencing a great expansion in electron microscopy,” says Jorgensen,”because of some quite amazing improvements in the capabilities of electron microscopes. We can move in closer-advancements in resolution allow us to determine the atomic structure of protein complexes. Or we can stand back to see vast fields of synapses and their interconnections.

“The University of Utah and its leadership have invested in these new technologies, and we have become a leading institution in the world exploring this new terrain of biology.” Jorgensen and Jones are part of a collection of teams receiving more than $50 million over five years as part of the NSF’s Next Generation Networks for Neuroscience program (NeuroNex). A total of 70 researchers, representing four countries, will investigate aspects of how brains work and interact with the environment around them.

Erik Jorgensen's election to the NAS, arguably the most prestigious award of its kind, speaks to the kind of mind-blowing inquiry into neurology he's known for. It also validates Jorgensen's inner galactic allusion to locating where your grandmother suffering from severe dementia lives along with "your childhood friends, embarrassment, fear, love, and hate."

Read more at nasaonline.org.

 

By David Pace, first published @ biology.utah.edu.

 

NSF Fellowship

NSF Postdoctoral Research Fellowship


Eamon Quinlan-Gallego, receives a Mathematical Sciences Postdoctoral Research Fellowship from the National Science Foundation.

The three-year fellowship is awarded to support future leaders in mathematics and statistics by helping them participate in postdoctoral research that will enhance their development. “Receiving this fellowship is an incredible honor, and it will allow me to dedicate myself to research full-time for four semesters and extend my stay in Utah for an extra year. It will also give me funds to travel to conferences and visit collaborators,” he said.

Quinlan-Gallego studies solutions to polynomial equations and their singularities. For example, in pre-calculus, the equation y = x^2 defines a parabola in the plane. This parabola is smooth—it doesn’t have any sharp corners; however, occasionally, polynomial equations can fail to be smooth. These non-smooth points, called singularities, are ubiquitous across mathematics, and their study is a fundamental problem.

Eamon Quinlan-Gallego

"Receiving this fellowship is an incredible honor, and it will allow me to dedicate myself to research full-time for four semesters and extend my stay in Utah for an extra year."

 

Typically, Quinlan-Gallego uses two different techniques to study these singularities. First, he can associate certain differential equations to them whose behavior allows them to be classified in different ways. Second, he can study singularities using “modulo-p.” He fixes a prime number (usually denoted by p, but in this case, for example, we could use p = 5). Working “modulo-5” means that when he looks at a polynomial equation, like y^3 = x^2, instead of thinking about it in the real-number system (as you would in pre-calculus), he thinks of it in clock arithmetic. This means that he does all of the algebra using a clock with 5 hours. For example, if our clocks had 5 hours, and it was 4 o’clock and 2 hours pass, it is 1 o’clock. In clock arithmetic, we would say that 4 + 2 = 1. Similarly, 4 x 2 is usually 8 but in our clock, we have 4 x 2 = 3. “By working in this clock arithmetic, we lose all of the “geometry,” but we gain a host of other tools we can use, and the hope is that as the prime p selected gets larger and larger, the behavior of the singularity modulo-p approaches the real behavior,” he said. He also likes to combine these two techniques and think about differential equations modulo-p.

He was good at math as a kid but until he was a senior in high school, he thought he would become a biologist. Then two things happened: he realized he only wanted to study biology because the idea of going to remote islands to look at creatures no one had seen before sounded cool, but learning about all the chemical reactions going on in the mitochondria wasn’t so exciting--and he read Stephen Hawking’s book A Brief History of Time and became fascinated by how mathematics is used to learn about things that are far away in space and time. At that point, he switched from studying biology to physics. The jump from physics to mathematics was much more straightforward when he realized he was enjoying his math classes more than experimental physics.

Quinlan-Gallego was raised in Spain—his mother is Spanish and his father is American. After high school, he left Spain to study in Scotland at the University of Glasgow. “There was this great program for citizens of the European Union that allowed me to study in Scotland for free,” he said. “I had a wonderful time in Glasgow, and I was given so many amazing opportunities.” During his undergraduate years, he also participated in an exchange program at the National University of Singapore for a year.

Once he completed his bachelor’s degree, he knew he wanted to come to the U.S. for graduate school. He was accepted to the University of Michigan and began working under Professor Karen Smith, who serves as the William Fulton Distinguished University Professor of Mathematics. He also spent more than a year in Tokyo, again as an exchange graduate student, at the University of Tokyo.

He’s looking forward to continuing his work at the U. “The department has many experts in modulo-p methods and a host of other very interesting topics, so I’m looking forward to learning as much as possible from them and moving forward in my research.”

 

by Michele Swaner, first published @ math.utah.edu

 

NSF Fellowship

NSF Postdoctoral Research Fellowship


Alex Rasmussen receives a Mathematical Sciences Postdoctoral Research Fellowship from the National Science Foundation.

The three-year fellowship is awarded to support future leaders in mathematics and statistics by helping them participate in postdoctoral research that will enhance their development.

Rasmussen is a Research Assistant Professor in the department. “I’m very grateful to be recognized for my research and to the people who helped me along the way, including my advisors, collaborators, mentors, and teachers,” he said. “The award will allow me to devote more time to my research program. In addition, it will enable me to take on more activities to serve the math community, such as mentoring undergraduates and organizing conferences.”

Rasmussen’s work focuses on symmetries of geometric objects. Specifically, he’s interested in symmetries of spaces that are “negatively curved.” “The geometry of negatively curved spaces is quite unlike that of our own space, and it makes them exotic and also very beautiful,” he said.

A bunch of symmetries form a group, and a group can be thought of as symmetries of many different negatively curved spaces at the same time. A large part of Rasmussen’s research is spent on classifying the different spaces associated to one group. He finds the subject interesting because it allows him to draw pictures, engage his creative and aesthetic senses, and use tools from other fields, such as commutative algebra.

Alex Rasmussen

"I’m very grateful to be recognized for my research and to the people who helped me along the way, including my advisors, collaborators, mentors, and teachers."

 

In high school, he wasn’t especially interested in math. He did well at it but found it somewhat dry and mechanical. His first math class at Colby College was a multivariable calculus class taught by Scott Taylor, Associate Professor and Department Chair. Taylor used pictures of curves and surfaces in his teaching. This was a revelation to Rasmussen, who began to discover the beauty, depth, and creativity of math. From that point on, he took more math classes.

He received a bachelor’s degree in mathematics and began a graduate program at the University of California Santa Barbara, where he received a master’s degree. He obtained a Ph.D. in mathematics from Yale University in 2020.

He has a few research goals he’d like to work on over the next few years. These include classifying hyperbolic actions of metabelian groups and classifying geodesic laminations on infinite type surfaces. Metabelian groups are a wide class of relatively simple groups that can still have complicated hyperbolic actions. Geodesic laminations are 1-dimensional objects on surfaces consisting of long straight lines interacting in complicated ways. “These are pretty hard problems that will keep me busy for a while. Along the way, many other related problems will pop up naturally,” he said.

 

by Michele Swaner, first published @ math.utah.edu

 

Outstanding Post-Doc

Outstanding Post-Doc


Amir Hosseini has received an Outstanding Post-Doctoral Fellow Award from the College of Science.

Amir received his PhD in Chemistry from Indiana University, where he trained with one of the world’s premier organic electrochemists (Dr. Dennis Peters). He then joined the University of Utah in December 2020, as a Postdoctoral Research Fellow in the NSF Center of Organic Synthetic Electrochemistry (CSOE) where he is working in Prof. Henry White’s laboratory.

Amir’s research project is focused on the discovering novel electroorganic transformations and using variety of electroanalytical tools to explore the mechanism of the reaction at the molecular level. Recently, he developed a new synthetic strategy for electrooxidation of alcohols that is refer to as electroreductive oxidation. The general idea is to electrochemically generate highly oxidizing radicals by reduction of a sacrificial reagent, i.e., reduction is used to initiate a desired oxidation reaction. Amir has demonstrated that this process is effective for selective oxidation of alcohols to aldehydes and acids.

Amir Hosseini

Amir is greatly passionate about mentoring and education of the next generation of scientists. He participated in the Science Research Initiative (SRI) program during the 2021 spring semester when he mentored undergraduate students.

 

This mentorship activity included defining research projects, teaching each student the basic knowledge relevant to their research project, and supervising the progress of research projects. Additionally, he has been part of ACCESS program working with other CSOE volunteers to assist students in performing at-home chemistry experiments. Finally, he mentors graduate students, teaching them the fundamentals of electrochemistry and laboratory safety, and advising them on their graduate research.

Equity and inclusion in academic setting is a very important matter for Amir. He is currently serving as the post-doc representative on the DEI committee of the Department of Chemistry. However, his outreach activities are not limited to academia. He volunteers to help new Iranian and Afghan families settling in Salt Lake City. In this role, he assists families who need a translator for taking care of paperwork, enrolling their children in school, and communicating with federal and state officials regarding their urgent needs.

MAA Teaching Award

MAA Teaching Award


Kevin Wortman, an Associate Professor and Director of Undergraduate Studies in the University of Utah Department of Mathematics, has been honored with the 2022 Mathematical Association of America (MAA) Distinguished Teaching Award for the Intermountain Region.

Kevin Wortman

The award honors professors of mathematics whose efforts have been recognized as influential beyond their own institutions. Since 2004, Wortman is the fifth U mathematics faculty member to receive this MAA award. Previous U math faculty recipients include Don Tucker, Nicholas Korevaar, Peter Alfeld, and Anne Roberts. Wortman joined the U's Math Department in 2007.

The Mathematical Association of America, with more than 25,000 members, is the primary professional organization for teachers of undergraduate mathematics. The MAA Intermountain Region includes all colleges and universities in Utah and southern Idaho.

by Michele Swaner, first published @ math.utah.edu

 

>> HOME <<

 

NSF Fellowship

NSF Graduate Research Fellowship


Kaitlin O'Dell awarded a Graduate Research Fellowship from the National Science Foundation (NSF).

“I feel so honored to receive such a prestigious award,” said O’Dell. “I never imagined I would receive the amazing feedback I got while I was applying for the fellowship. The research I plan on doing is groundbreaking work in numerical methods, so to have that recognized is beyond exciting! The fellowship is really going to allow me to focus on my research and hopefully give not only the numerical community—but the science and engineering community—a great way
to model high-dimensional equations.”

O’Dell’s work is primarily focused on the numerical modeling of high-dimensional partial differential equations. She and her team specifically are developing a particle method that will preserve the energy dissipation structure of the physical systems. Once the actual numerical procedure is developed and analyzed for validity, the team hopes to test it on many physical models to gain a better understanding of these higher-order systems. These physical models can range from materials science to fluids, mechanics, and engineering.

Kaitlin O'Dell

“I never imagined I would receive the amazing feedback I got while I was applying for the fellowship. The research I plan on doing is groundbreaking work in numerical methods, so to have that recognized is beyond exciting!"

 

She excelled at math as a kid, but it wasn’t until she began doing research as an undergrad that she realized how much she enjoys math. “I was able to do research on engineering topics that I was already familiar with and combine them with my two favorite subjects—numerical analysis and ordinary differential equations,” she said. “This really opened my eyes as to what I could be doing in the field of math and the broad range of research I could perform as an applied mathematician.”

O’Dell started out studying engineering at the University of New Mexico (UNM) because of her love for space and science. She enjoyed internships and had the opportunity to work at NASA Ames Research Center. However, she began to find that she was enjoying the math modelling aspect of engineering more than the actual engineering. She decided to switch her major to applied math during her senior year, and she began doing research with Professor Emeritus Deborah Sulsky on beam theory (a way of calculating the load-bearing and deflection characteristics of beams) as part of her honors thesis.

“Dr. Sulsky is an amazing mentor, and she’s very much the reason that I’m now doing a Ph.D. in mathematics.” After O’Dell graduated from UNM in 2020, with honors from the university and honors in mathematics, she decided to apply to the U because of the reputation of the Math Department and the fact that the graduate students seemed happy. “At the time I wasn't sure what I would research, but I found a project that I absolutely fell in love with, and now I couldn’t be happier,” she said. After she obtains her Ph.D., O’Dell would like to stay in academia, but she also envisions working in industry. “I’ll most likely apply to a wide variety of things and choose which I think will be the best fit for me.”

by Michele Swaner, first published @ math.utah.edu