2024 College of Science Awards


2024 College of Science AWARDS

The College of Science is committed to recognizing excellence in education, research, and service. Congratulations to all our 2024 College of Science award recipients!


Student Recognition

Research Scholar:
Leo Bloxham, BS Chemistry

Outstanding Undergraduate Student:
Muskan Walia, BS Mathematics

Outstanding Graduate Student:
Santiago Rabade, Geology & Geophysics

Faculty Recognition

Excellence in Research: Zhaoxia Pu, Professor, Department of Atmospheric Sciences

Excellence in Teaching and Mentoring: James Gagnon, Assistant Professor, Biological Sciences

Distinguished Educator:
Diego Fernandez, Research Professor, Geology & Geophysics

Distinguished Service:
Marjorie Chan, Distinguished Professor, Geology & Geophysics

Postdoc Recognition

Outstanding Postdoctoral Researcher:
Rodolfo Probst, Science Research Initiative

Staff Recognition

Staff Excellence Award:
Maddy Montgomery, Sr. Academic Advisor, College of Science

Staff Excellence:
Bryce Nelson, Administrative Manager, Physics & Astronomy

Safety Recognition

Excellence in Safety:
Wil Mace, Research Manager, Geology & Geophysics

Outstanding Undergraduate Research Award

Outstanding Undergraduate Researcher (College of Science):
Dua Azhar, Biological Sciences

Outstanding Undergraduate Researcher (College of Mines & Earth Sciences):
Autumn Hartley, Geology & Geophysics

Outstanding Undergraduate Research Mentor Award

Office for Undergraduate Research Mentor (College of Science):
Sophie Caron, Associate Professor, Biological Sciences

Outstanding Undergraduate Research Mentor (College of Mines & Earth Sciences):
Sarah Lambart, Assistant Professor, Geology & Geophysics

>> HOME <<


William Anderegg Receives Blavatnik Award

William Anderegg RECEIVES Blavatnik Award

On July 26, the Blavatnik Family Foundation and the New York Academy of Sciences announced that Dr. William Anderegg is one of three national laureates to receive the 2023 Blavatnik National Awards for Young Scientists. A video announcing Anderegg’s selection for the Blavatnik Award  is available here.

Dr. Anderegg is an associate professor of Biological Sciences at the U and director of the Wilkes Center for Climate Science & Policy. As the 2023 Laureate in Life Sciences, he is being awarded $250,000 for his work on “revealing how trees absorb and release carbon dioxide amidst a changing climate.” This is the largest unrestricted scientific award for America’s most innovative, faculty-ranked scientists and engineers who are under the age of 42.

Anderegg’s recent publications have examined the interaction of plant ecology and climate change, from the scale of cells to forest ecosystems. Specifically, he addresses how drought and climate change affect Earth’s forests and the manifold benefits they bring to society. His work overturns a 50-year foundational theory on how stomata—pores on leaves that facilitate photosynthesis—behave in order to improve carbon gain and minimize water loss, and in turn, how this affects global forests’ response to climate change.

 As a leading voice in the field of climate change, Anderegg’s discoveries are already informing climate solutions, global policies, and public health. He is the first ever winner of the Blavatnik Regional Awards to be awarded the Blavatnik National Award Laureate. 

 “I am thrilled that our important work continues to be recognized,” said Anderegg. “I hope that our contributions to this field of research can help illuminate the future of Earth’s forests and provide urgently-needed tools to tackle climate change and increase resilience in ecosystems and communities in the US and across the globe.”

 The 2023 Blavatnik National Awards received 267 nominations from 134 institutions in 38 U.S. states. Nominees must be faculty-level scientific researchers, 42 years of age or younger. Three independent juries —one each for life sciences, chemistry, and physical sciences and engineering —were composed of some of America’s most distinguished scientists. The juries selected three winning laureates and 28 finalists.  

The Blavatnik National Awards for Young Scientists will celebrated the 2023 laureates and finalists in a ceremony on September 19 at the American Museum of Natural History in New York. (See banner photo above: William Anderegg with Sir Leonard Valentinovich Blavatnik)

In April, Anderegg was one of three 2023 recipients of the National Science Foundation’s prestigious Alan T. Waterman Award for his contributions to ecosystem and climate change science.



Bones of the Earth

“There’s always been this idea that my family has a relationship with the bones of the Earth,” says Kevin Mendoza.

The graduate student in the Department of Geology & Geophysics descended from the developers of the Nacia mine in Chihuahua Province. He recalls as a child his grandmother showing him jars of rocks from the mine given to her by her father, one of the only possessions she took with her when she immigrated to the states. A Ph.D. candidate in geophysics, Mendoza is the recipient of the 2023 University of Utah Teaching Assistantship Award: Pythonizing Geoscience Instruction. Mendoza received the award for his contributions to geoscience undergraduates. He used the assistantship to develop python programming-based core curriculum.

Mendoza joined the U after attending the University of California, Merced for his undergraduate degree where he double-majored in physics and Earth systems science. His passion for studying the deep Earth came both from his early geology lessons with his grandmother, as well as the active outdoor lifestyle his dad cultivated in him from an early age. “It was rare for any of my classmates to like even the more accessible activities like hiking, and for the Latinx students such as myself, [it was] completely unheard of at that time. I’m grateful both my parents encouraged exploration of what was then an unconventional hobby.” In high school, Mendoza was particularly passionate about gold prospecting, which he did almost every weekend in the nearby San Gabriel Mountains. He continued his wilderness ramblings in the Sierra as a park ranger in Yosemite National Park during college.


Although his ancestors have been students of the Earth for generations, Mendoza is the first in his family to study it academically. His background prepared him to do a different type of prospecting: for electrical fields within the Earth. His research under the late Philip Wanamaker operates in the niche field of magnetotellurics (MT), which uses natural underground electrical currents to study the structure of the Earth. MT is such a specific subfield of geophysics that there are only a handful of programs across the country, including at the U. “What I do is use solar wind and lightning to basically CT scan the deep Earth,” summarizes Mendoza. From the results of this “CT scan” he can measure the water contained in the geologic water cycle, which has important consequences for plate tectonics. One of the advantages of MT is that it is more sensitive than other techniques such as seismology. “In some situations, like looking for critical battery metals and hidden geothermal resources, MT is one of the best methods for exploring mineral structures.”

Mendoza’s data comes from monitoring the voltage and magnetic field in the deep Earth with sensors deployed on the surface. In the field, these sensors are set up by placing magnetic coils and wires stretching along cardinal directions, and occasionally a coil pointing upwards. These sites are left to collect data for a few months at a time before they are relocated. Since the equipment is portable and non-invasive, MT sites are placed virtually anywhere that’s interesting geologically.

One of the main challenges with MT is visualizing the high dimensionality of the data. While common to other fields, like data science and machine learning, it takes on a unique flavor within MT. Each MT station produces nearly four times more data dimensions than seismic stations do. Complex mathematics are needed to transform this data to usable geologic models. One of the models that Mendoza works with uses over 2.5 million parameters. Analyzing the data and models is only possible using cutting-edge supercomputing tools. As part of his dissertation, Mendoza plans to provide a massive Python codebase that will help other researchers explore similar datasets.

Putting carbon back underground

While his dissertation is focused on more fundamental aspects of plate tectonics across the western U.S., Mendoza believes these findings can have application elsewhere. “Two of the biggest challenges we face with climate change are how to transition to a carbon-free economy and how to put carbon back underground. The tools I’ve developed and am developing can directly help these efforts by monitoring how stable our sequestered carbon is, or assessing the likelihood that critical metals like copper, cobalt, and lithium are in rocks hidden by deep sediment cover. These efforts require the same 2D, 3D, and 4D geophysical modeling, visualization, and evaluation techniques I’m currently using in my own research.”

That codebase will also be helpful for industry, which is possibly the endgame for Mendoza.  Having briefly worked as a geotechnician after graduating with his bachelor’s, he understands that a career in academia is not a realistic or desirable path for every student. “My personal philosophy is that universities are hybrids between a job training program and a liberal education. So, we can’t just teach students general critical thinking; we also have a moral obligation to give them some tools so that they can come into the workforce ready.”

Mendoza knows from firsthand experience that mastering the science is only half the battle for many students from underrepresented backgrounds. He grew up in East LA where he learned how to reach across cultural divides from his Hispanic background to connect with others. “Learning to ‘go-between’ is a skill that’s essential for just having a community, and I think bringing that here made it really easy for me to understand when students are struggling,” Mendoza says. He asks himself questions like, How do you reach out to a student who’s not responding in a normal way? How do you make geology instruction more accessible? How do you engage students in the coursework? With this approach to teaching, Mendoza is able to connect with his students to enhance their experience and has earned multiple prior teaching awards in the process, including the National Association of Geoscience Teachers Outstanding TA Award, 2022.

Hidden curriculum

The obstacles for underrepresented students in academia don’t end after earning a bachelor’s; they just aren’t widely discussed. On top of regular classwork, first generation graduate students have to tackle the “hidden curriculum” within academia. This includes issues such as figuring out how to write a dissertation, what the college’s practices are, how to handle advisor conflict and other difficult-to-ask (and -answer) questions.

The overarching difficulty is determining what graduate school is supposed to look like in the first place, which Mendoza says is almost by design. “Grad school is very heterogeneous. Part of that is good because science looks different across disciplines, but that is [also] confusing for first gen grad students who don’t know how to navigate this unknown academic culture.” It’s a problem that is systemic, and not unique to the U.

To succeed in grad school, he says, “you can’t use the old paradigm, pushing boundaries like you did in undergrad and high school won’t necessarily result in the same success as a grad student. The cultural setting is different.” Even outside of academia, underrepresented scientists face many of these challenges. According to Mendoza, geoscience is the least diverse subfield of STEM. Nature Geoscience reported that the last 40 years has seen zero progress with respect to minority representation within geoscience. The United States Geological Survey has the poorest track record of minority employees of all the federal government agencies and is nearly half as diverse as the next ranked federal agency. The lack of diversity is mostly due to the niche nature of the discipline. Unlike, for example, computer science, there is a relatively finite employment pool. 

Kevin Mendoza has come a long way since his geology lessons with his grandmother’s Chihuahuan rocks, and it has informed the legacy he is now leaving with students familiar with the challenges he has faced. The teaching award is an acknowledgement that the paradigm can shift, that the Earth can move.


By Lauren Wigod
Science Writer Intern

2023 Outstanding Undergraduate Research Mentors

The Office of Undergraduate Research has created a faculty award to honor mentors for their work with students. The Outstanding Undergraduate Research Mentor Award, now in its inaugural year, is given to those who were selected by their college leadership and peers for their dedicated service to mentorship.

Of the 420 mentors across campus who worked with the Office of Undergraduate Research this year, two of the 2023 winners of the Outstanding Undergraduate Research Mentor Award are seated in the College of Science: Ofer Rog (biology) and Gannet Hallar (Atmospheric Sciences).

Dr. Ofer Rog’s research focuses on the complex regulation of chromosomes during meiosis. Dr. Rog and his assembled team of top-notch researchers have developed new methods, used innovative approaches, and carried out meticulous studies that are now revealing key elements of this complex process. The work conducted by him and his research group has provided stunning insights into the fundamental cellular processes explaining the origin and maintenance of different sexes, including our own. As Director Frederick Adler states, “Dr. Rog is also an extraordinary communicator with a dedication to helping colleagues and students find new ways to communicate.”

The Mario Capecchi Endowed Chair in the School of Biological Sciences (SBS), Rog was a catalyst in forming and managing the LGBTQ+ STEM interest group in the College of Science. The group seeks to create change in our campus community with an inclusive environment for LGBTQ+ individuals and allies.

You can read about Rog’s work with condensate illustration in a recent feature in SBS’s OUR DNA here.


Dr. Gannett Hallar has been successfully mentoring undergraduate researchers at the University of Utah since 2016. Her mentees participate in the Hallar Aerosol Research Team (HART) making connections between the atmosphere, biosphere, and climate. Her mentees have successfully received awards such as the Undergraduate Research Opportunity Program and Wilkes Scholars. Her commitment to mentoring includes her role as a faculty fellow with Utah Pathways to STEM Initiative (UPSTEM), training in inclusive teaching and mentoring strategies.

As stated by Dean Darryl Butt, “Dr. Hallar is a world-class mentor. Her dedication to our undergraduate students comes naturally, but she is also very deliberate in creating a structure of experiential learning that is inherently unforgettable.”

Director of the Storm Peak Lab, the premier, high-elevation atmospheric science laboratory in the Western U.S., Hallar says the facility atop Steamboat Springs Ski Resort is “the perfect place, to have your head in the clouds.” The laboratory sits in the clouds about 40 percent of the time in the winter. “That allows us to sample clouds and the particles that make clouds at the same time. And from that, the lab has produced about 150 peer-reviewed publications.”

Celebrating Our Exceptional Faculty 2023

4 College Faculty Receive 2023 U Awards

Each year, the University of Utah recognizes the achievements of exceptional faculty members in teaching, research, mentorship and service. Below are the College of Science honorees for this year, with excerpts from their nomination letters.



Calvin S. and JeNeal N. Hatch Prize in Teaching

Kenneth Golden
Distinguished Professor of Mathematics

“Having more than 40 years of classroom experience to perfect the art of teaching, 80-plus publications in academic and scientific journals, more than 500 invited lectures and having presented three times in front of the United States Congress, Dr. Golden has amplified what it means to be a teacher by not only being at the top of his field but also by creating a safe and inclusive environment where students can be challenged to reach their full potential.”



Distinguished Professor

Michael Morse, professor
Department of Chemistry

“Professor Morse’s substantial work exemplifies the highest goals of scholarship and research and he is internationally viewed as a leading expert in the experimental study of small transition metal, lanthanide and actinide molecules. His most recent work is setting the standard for these species and is crucially needed for benchmarking computational chemistry. At the same time, he is dedicated to teaching, mentoring and providing service to the profession and the local community at the highest level.”



Early Career Teaching Award

Claudia De Grandi, associate professor (lecturer)
Department of Physics & Astronomy

“Dr. De Grandi is an outstanding educator because of her persistent aspiration to evolve her teaching practice. I know from experience that she gives students many opportunities throughout the semester to provide feedback regarding the class. Furthermore, I know that she uses this information to shape how she proceeds in the classroom. Her commitment to enhancing her classrooms is one of the many ways that she is able to accommodate a wide range of student needs. As a future educator myself, I admire her devotion to education and her perspective on education as a constantly developing process. Dr. De Grandi’s willingness to adapt is something that all educators could benefit from.”




Early Career Teaching Award

Sean Howe, assistant professor
Department of Mathematics

“During my undergraduate career, Dr. Howe has been instrumental in my success by advising my applications for scholarships, graduate schools and research experiences; and by providing individual instruction on an advanced research project and related topics. I am extremely fortunate and grateful for Dr. Howe’s constant support and the positive impact he has had on my life and academic career. The personal impact of his guidance truly cannot be understated—he has proven to be an outstanding mentor in every manner possible, exhibiting extraordinary character and compassion for his students.”



Celebrate all faculty awards given this year by the University of Utah here:


Lissy Coley Elected to National Academy of Sciences

“I first stepped foot in a tropical rainforest in 1975 and have been back every year doing research on how plants defend themselves against getting eaten by insects,” says Phyllis “Lissy” Coley, distinguished professor emerita of biology at the U. She is newly elected member of the National Academy of Sciences (NAS).

NAS Members are elected to the National Academy of Sciences in recognition of their distinguished and continuing achievements in original research. Membership is a widely accepted mark of excellence in science and is considered one of the highest honors that a scientist can receive. Current NAS membership totals approximately 2,400 members and 500 international members, of which approximately 190 have received Nobel prizes. This year, Coley is the sole U faculty member to receive the honor and is the 12th College of Science faculty member to be elected.

Coley’s colleague and current Director of the School of Biological Sciences Fred Adler said of the news, “The National Academy of Sciences was established by President Abraham Lincoln to advise the nation about science and technology, and membership recognizes extraordinary achievement in research. When it comes to understanding the complexity of ecosystems and the risks they face in today’s world, Distinguished Professor Lissy Coley is the expert I turn to get to the heart of the question.”

Coley’s expertise will now be more accessible. Concluded Adler, “I am delighted that this inspirational scientist, teacher and mentor will have the opportunity to share her wisdom with our nation at large.”

 A Dynamic Duo

Phyllis “Lissy” Coley and Tom Kursar

With the late Tom Kursar, Coley’s partner-in-life and in work, the couple blended her training in ecology and his in biophysics to work in multiple countries in both the African Congo and the Amazon as well as in Panama, Borneo and Malaysia.

Coley’s signature work on understanding the complexity of ecosystems is due to her focus on why tropical forests are so spectacularly diverse. “How can 650 tree species–more than in all of North America–live together in a single hectare of tropical forest?” she asks. Another question related to the first includes what drives speciation. “We have shown that the arms race with insect herbivores leads to extraordinarily rapid evolution of a battery of plant defenses,” she continues, “particularly chemical toxins, such that a given species of herbivore has evolved counter adaptations that allow it to feed on only plant species with similar defenses.”

It turns out that plant species with different defenses do not share herbivores and therefore can co-exist, promoting high local diversity. The concept that the high biodiversity of tropical forests is due to these antagonistic interactions is now widely accepted by her colleagues in the forest ecology sector and now acknowledged by the NAS.

“I am truly honored that my scientific research and conservation efforts are recognized,” said Coley, “but they would not have been possible without wonderful collaborators. And I am happy that the young scientists I have mentored are continuing to explore the many remaining questions in evolutionary ecology.”

Making it personal

To know Coley and Kursar (who died in 2018) is to know that their research is and has been highly personal. And their ambitions would naturally extend to beyond field research to economic opportunity for their friends and associates in Central America, linking even to social justice. Their concern about forest destruction and the peoples who live in those sites has led to bioprospecting. “We used our curiosity-driven (basic) research to create ways to have benefits from intact forests via drug discovery,” explains Coley. Young, expanding tropical leaves invest fifty percent of their dry weight in hundreds of chemicals. “We thought they could be an undiscovered source of pharmaceutical medicines.”

The duo set their project up in Panama, with the majority of the work being done by local scientists. It has resulted in $15 million of seed money to Panama. Their discoveries have led to promising patents, research experiences for hundreds of students and the creation of more jobs than the country’s ubiquitous and potentially destructive logging.

Left to right: Mayra Ninazunta, Dale Forrister, Yamara de Lourdes Serrano Añazco, Lissy Coley, Tom Kursar

Furthermore, the project has established the island of Coiba as a protected World Heritage Site and created a new voice of Panamanian scientists helping to shape government policy and appreciation of their natural treasures.

While Coley retired from teaching in 2020, her lab and its research, until very recently, continues at the School of Biological Sciences. “I think one of the unifying principles that made our department interesting to me,” she concludes, “is that many faculty were interested at some level in evolution.”

The late K. Gordon Lark, department chair in the 70s, was the impetus for that. “Whether we’re talking about molecular or ecological systems, evolutionary/ecological interactions shape all of that. This has been an important unifier of research interest in the School,” Coley says in tribute of Lark. Along with recent hires of outstanding young faculty researchers, which she hopes will continue, this “unifier” has helped keep such a large academic unit intact. “It has been the glue.”

As Lissy Coley always cared deeply about graduate students, she established the Coley/Kursar Endowment in 2018 to fund graduate student field research in ecology, evolution and organismal biology. The endowment is indicative of her dedication, corroborated by Peter Trapa, dean of the College of Science: “Distinguished Professor Coley has advanced our understanding of plant-animal interactions and tropical ecology in spectacular ways. Election to the National Academy is a fitting recognition of her deep and impactful contributions.”


by David Pace

2023 College of Science Awards


2023 College of Science AWARDS


The College of Science is committed to recognizing excellence in education, research, and service. Congratulations to all our 2023 College of Science award recipients!


Student Recognition

Research Scholar:
Alison Wang, BS Chemistry

Research Scholar:
Yexalen Barrera-Casas, BS Chemistry

Outstanding Graduate Student:
Dylan Klure, PhD Biology

Faculty Recognition

Excellence in Research: Gabriel Bowen, Department of Geology and Geophysics

Excellence in Teaching and Mentoring: Sophie Caron, Associate Professor of Biology

Distinguished Educator:
Kevin Davenport, Physics and Astronomy

Distinguished Service:
Selvi Kara, Postdoctoral Scholar, Mathematics

Postdoc Recognition

CoS Outstanding Postdoctoral Researcher:
Effie Symeonidi, Biology

Staff Recognition

CoS Staff Excellence Award:
Karen Zundel, Biology

Excellence in Safety:
Maria Garcia, Atmospheric Sciences

College of Mines and Earth Sciences Awards

Outstanding Research Faculty:
Pratt Rogers, Mining Engineering

Outstanding Teaching Assistant:
John Otero, Materials Science Engineering

>> HOME <<


Spirit of Salam

Spirit of Salam

Tino Nyawelo

Tino Nyawelo Wins 2023 Spirit of Salam Award.

The family of International Centre for Theoretical Physics (ICTP) founder and Nobel Laureate Abdus Salam announced that Tino Nyawelo, associate professor of physics at the University of Utah, is a recipient of the 2023 Spirit of Salam Award. Revealed annually on Abdus Salam’s birthday, the award recognizes those who, like Salam himself, have worked tirelessly to promote the development of science and technology in disadvantaged parts of the world.

Nyawelo was recognized for founding Refugees Exploring the Foundations of Undergraduate Education in Science (REFUGES), a program to help historically excluded students to pursue STEM education at the university level. Nyawelo, who in 1997 left his home country of Sudan to complete a postgraduate program at the ICTP in Italy, considers the award a full circle moment.

“This award is very special to me because my time at the center put me directly on the path that I’m following today,” Nyawelo said.

Abdus Salem

Salam, a theoretical physicist from Punjab, Pakistan, received a bachelor’s and doctorate degree from the University of Cambridge due to Pakistan’s lack of scientific infrastructure at the time. Salam was a passionate advocate for boosting science in developing countries and lived by his conviction that science is the common heritage of humankind. In 1964, he founded the ICTP in Trieste, Italy, as an “international scientific hub of excellence linking scientists from developing countries with their colleagues worldwide, overcoming intellectual isolation and helping build a strong scientific base around the world so that all countries can play their rightful role in the global science community and in the family of nations,” according to the ICTP. He won the 1979 Nobel Prize in physics, becoming the first Pakistani and the first Muslim from an Islamic country to receive the prestigious prize in science.

In 1996, Nyawelo was unsure of his next move. He had completed a bachelor’s degree in physics from the Sudan University of Science and Technology in Khartoum, Sudan and was appointed as a teaching assistant. At the time, there were no Sudanese physics PhD programs, and he was considering switching to computer science. Luckily, Marten Durieux, a renowned Dutch physicist from the University of Leiden, Netherlands, intervened. Durieux, who passed away in 2011, traveled to Sudan every year to teach physics courses. His first-ever PhD student was a brilliant scholar from Sudan, and Durieux fell in love with the country. Over his career, Durieux mentored 11 Sudanese students through their PhDs. Nyawelo was admitted to a year-long intensive program at the ICTP.

Marten Durieux

“The ICTP diploma program was eye-opening, but difficult,” said Nyawelo. “It was the first time I’d left my country, the first time I’d learned science in a language other than Arabic, I didn’t know anybody, and Italy was a culture shock.”

Through Durieux, Nyawelo met Jan-Willem van Holten, a theoretical physicist at the Dutch the National Institute for Nuclear Physics and High Energy Physics (NIKHEF), with whom Nyawelo continues to collaborate to this day. After he completed his PhD in 2004, he returned to the ICTP for his postdoc. During his time in Europe, Nyawelo traveled frequently to Utah to visit his girlfriend, now wife. They started dating in Sudan, but she and her family were relocated to Salt Lake City after fleeing violence at the outbreak of the Sudanese civil war. Many of Nyawelo’s friends and classmates had also relocated—and the community felt like coming home.

“Durieux—that’s the connection that helped me, and motivated me to help others. I benefited a lot from support to pursue physics without paying a cent,” Nyawelo said. “I was planning on giving something back.”

While in Utah, colleagues in the Department of Physics & Astronomy gave Nyawelo a desk to continue his research, eventually offering him a post-doc position in 2007. By 2009, he and other members of the refugee community became alarmed at the high rates of school dropouts. They realized that many refugee youth come to Utah with little English and intermittent formal schooling. When they arrive in Utah, the school system places them in a grade based on their age, leaving many feeling overwhelmed and left behind. Nyawelo and partners founded REFUGES, an after-school program to help refugee students in middle and high school thrive in STEM subjects. The U has housed REFUGES since 2013 where it has expanded to include a summer bridge program for incoming first-year students at the U, and non-refugee students who are underrepresented in STEM fields.

Receiving the Salam Award in Trieste, December 2023

“I related to the Utah newcomers. It reminded me of when I went to Italy for the first time, science was taught in different language in a very different system,” said Nyawelo. “That’s how the whole afterschool program started. Because I remember the feeling of being that vulnerable.”

In 2020, the National Science Foundation awarded Nyawelo and collaborators $1.1 million over three years to study how refugee teenagers construct self-identities related to STEM across settings, such as physics research and creating digital stories, across relationships, such as peer, parent, and teacher, and across the languages they speak. Embedded in REFUGES, the first-of-its-kind project is titled “Investigating the development of STEM-positive identities of refugee teens in a physics out-of-school time experience.”

A cohort of teens learned the principles of physics and computer programming by building detectors for cosmic rays. The detector technology is adapted from HiSPARC (High School Project on Astrophysics Research with Cosmics), a program founded by Nyawelo’s former advisor, van Holton. van Holton and his students have flown to Utah several times to help Nyawelo adapt the program.

“I still have a big connection with the Netherlands— van Holten and his colleques at Nikhef has donated a lot of the equipment for free, to work and build cosmic ray detectors with high schools student here in Utah, and they handed me the project that they started more than 20 years ago,” said Nyawelo. “It’s been an exciting project that can serve as a model for other places who want to support students from these backgrounds succeed in STEM in higher education. Just like I was at ICTP and the Netherlands.”

Other Awardees
The two other Spirit of Salam awardees Hugo Celso Perez Rojas of the Instituto de Cybernetics Mathematics and Physics in Cuba, who has worked intensely to persuade Cuban policy makers that basic science is by no means a luxury but a crucial need for the development of third-world economies; and Federico Rosei, Institut National Recherche Scientifique in Montréal, Canada, has shown outstanding international leadership, spanning from research, to education to building capacity and mentoring.

“We are delighted to recognize the contribution of these three fine humanitarians, who have taken the spirit and example of Abdus Salam to serve humanity and promote education to the most deserving in the developing countries. They have worked tirelessly to support those, who purely by the accident of their birth do not have access to those born in the developed countries.”

by Lisa Potter, first published @ theU


>> HOME <<


Clarivate’s Most Cited

Peter Stang

Distinguished Professor Peter J. Stang.

Peter Stang & President Obama.

Seated in the Great Hall of the People in Beijing, China.

Chinese International Science & Technology Cooperation Award.

Peter Stang One of Clarivate's Most Cited Scientists.

Each year, Clarivate identifies the world’s most influential researchers ─ the select few who have been most frequently cited by their peers over the last decade. In 2022, fewer than 7,000, or about 0.1%, of the world's researchers, in 21 research fields and across multiple fields, have earned this exclusive distinction.

Peter Stang is among this elite group recognized for his exceptional research influence, demonstrated by the production of multiple highly-cited papers that rank in the top 1% by citations for field and year in the Web of Science.

Peter Stang was born in Nuremberg, Germany to a German mother and Hungarian father. He lived in Hungary for most of his adolescence. In school, he took rigorous mathematics and science courses. At home, he made black gunpowder from ingredients at the drugstore, and developed a pH indicator from the juice of red cabbage that his mother cooked, and sold to his "fellow chemists".

In 1956, when Stang was in the middle of his sophomore year in high school, he and his family fled the Soviet invasion of Hungary and immigrated to Chicago, Illinois. Not speaking English, Stang failed his American history and English courses but scored at the top of his class in science and math. His teachers were confused by his performance and gave him an IQ test. Stang was confused by the unfamiliar format of the test and scored a 78. In spite of this, Stang was admitted to DePaul University and earned his undergraduate degree in 1963. He received his Ph.D. in 1966 from the University of California, Berkeley.

After a postdoctoral fellowship at Princeton Universitywith Paul Schleyer, he joined the chemistry faculty at the University of Utah in 1969. He became dean of the College of Science in 1997 and stepped down as dean in 2007. He is a member of the National Academy of Sciences, The American Academy of Arts and Sciences and a foreign member of the Chinese Academy of Sciences. He was editor-in-chief of the Journal of Organic Chemistry from 2000 to 2001, and Editor-in-Chief of the ACS flagship journal, Journal of the American Chemical Society (2002-2020).

Awards & Honors

  • Priestley Medal, (2013)
  • National Medal of Science, (2010)
  • Paul G. Gassman Distinguished Service Award of the ACS Division of Organic Chemistry, (2010)
  • F.A. Cotton Medal for Excellence in Chemical Research of the American Chemical Society (2010)
  • Honorary Professor CAS Institute of Chemistry, Beijing, Zheijiang U; East China Normal U and East China U of Science and Technology, (2010)
  • Fred Basolo Medal for Outstanding Research in Inorganic Chemistry, (2009)
  • Foreign Member of the Hungarian Academy of Sciences, (2007)
  • ACS Award for Creative Research and Applications of Iodine Chemistry, (2007)
  • Linus Pauling Award, (2006)
  • Foreign Member of the Chinese Academy of Sciences (2006)
  • Fellow of the American Academy of Arts and Sciences (2002)
  • Member of the National Academy of Sciences.
  • ACS George A. Olah Award in Hydrocarbon or Petroleum Chemistry, (2003)
  • Member, AAAS Board of Directors, (2003–2007)
  • Robert W. Parry Teaching Award, (2000)
  • ACS James Flack Norris Award in Physical Organic Chemistry, (1998)
  • University of Utah Rosemblatt Prize for Excellence, (1995)
  • Utah Award in Chemistry, American Chemical Society, (1994)
  • Utah Governor's Medal for Science and Technology, (1993)
  • Honorary Doctorate of Science (D. Sc. honoris causa) Moscow State University, Moscow, Russia (1992)
  • Fulbright Senior Scholar, (1987–1988)
  • Univ. of Utah Distinguished Research Award, (1987)
  • Fellow AAAS, JSPS Fellow (1985, 1998)
  • Lady Davis Fellowship (Visiting Professor), Technion, Israel, (1986, 1997)
  • Humboldt "Senior U.S. Scientist" Award, (1977, 1996, 2010)
  • Associate Editor, Journal of the American Chemical Society (1982–1999)
  • National Organic Symposium Executive Officer (1985)


first published @ chem.utah.edu

>> HOME <<

APS Fellows

APS Fellows

Physics Professors Named APS Fellows

Two professors in the U’s Department of Physics & Astronomy—Christoph Boehme, Professor and Chair of the department, and Ramón Barthelemy, Assistant Professor, have been elected fellows of the American Physical Society (APS). The APS Fellowship Program was created to recognize members who may have made advances in physics through original research and publication, or made significant innovative contributions in the application of physics to science and technology. They may also have made significant contributions to the teaching of physics or service and participation in the activities of the society.

Election to the APS is considered one of the most prestigious and exclusive honors for a physicist—the number of recommended nominees in each year may not exceed one-half percent of the current membership of the Society. APS is a nonprofit membership organization working to advance the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy, and international activities. The APS represents more than 50,000 members, including physicists in academia, national laboratories, and industry in the United States and throughout the world.

Christoph Boehme

Christoph Boehme

“I am profoundly honored by my selection as an APS Fellow. Receiving this recognition is an excellent opportunity to look back at my research career, starting with my first experiments as an undergraduate researcher more than 25 years ago. When I think about all the discoveries and inventions I have had the chance to contribute to, I realize that none of them would have happened without the collaboration, support, and collegiality of many others. These include my former research advisors, all the students and postdocs who have worked in my research labs, my colleagues at the University of Utah (both staff and faculty), and other institutions. I am very much indebted to all these wonderful people.”

Boehme was born and raised in Oppenau, a small town in southwest Germany, 20 miles east of the French city of Strasbourg. After obtaining an undergraduate degree in electrical engineering, and committing to 15 months of civil services caring for disabled people (chosen to avoid the military draft), he moved to Heidelberg, Germany in 1994 to study physics at Heidelberg University.

In 1997 Boehme won a German-American Fulbright Student Scholarship, which brought him to the United States for the first time, where he studied at North Carolina State University and met his spouse. In 2000 they moved to Berlin, Germany, where they lived for five years while he worked for the Helmholtz-Zentrum Berlin, a national laboratory. He finished his dissertation work as a graduate student of the University of Marburg in 2002 and spent an additional three years working as a postdoctoral researcher.

Boehme moved to Utah in 2006 to join the Department of Physics & Astronomy as an Assistant Professor. He was promoted to Associate Professor and awarded tenure in 2010; three years later, he became a professor. During his tenure at the U, Boehme received recognition through a CAREER Award of the National Science Foundation in 2010, the Silver Medal for Physics and Materials Science from the International EPR Society in 2016, as well as the U’s Distinguished Scholarly and Creative Research Award in 2018 for his contributions and scientific breakthroughs in electron spin physics and for his leadership in the field of spintronics.

He was appointed Chair of the department in July, 2020 after serving as interim chair. Previously, Boehme served as associate chair of the department from 2010-2015. His research is focused on the exploration of spin-dependent electronic processes in condensed matter. The goal of the Boehme Group is to develop sensitive coherent spin motion detection schemes for small spin ensembles that are needed for quantum computing and general materials research.

Ramón Barthelemy

Ramón Barthelemy

“When I started graduate school you couldn’t even ask the LGBT question in physics without ending your career,” said Barthelemy. “Although homophobia and transphobia are still rampant in physics, a few of us are lucky enough to ask the question and still continue in the field. It is amazing to get this recognition for my work considering the history of queer people in physics, from Alan Turing‘s death to the ending of Frank Kameny‘s astronomy career, and the inability of people like Sally Ride and Nikola Tesla to be public with all of their relationships. I am both humbled and full of gratitude to pursue funded work giving voice to queer people in physics and, importantly, changing policy.”

Barthelemy is an early-career physicist with a record of groundbreaking scholarship and advocacy that has advanced the field of physics education research as it pertains to gender issues and lesbian, gay, bisexual, and transgender (LGBT)+ physicists.

The field of physics struggles to support students and faculty from historically excluded groups. Barthelemy has long worked to make the field more inclusive—he has served on the American Association of Physics Teachers (AAPT) Committee on Women in Physics and on the Committee on Diversity—and was an early advocate for LGBT+ voices in the AAPT. He co-authored LGBT Climate in Physics: Building an Inclusive Community, an influential report for the American Physical Society, and the first edition of the LGBT+ Inclusivity in Physics and Astronomy Best Practices Guide, which offers actionable strategies for physicists to improve their departments and workplaces for LGBT+ colleagues and students. He also recently published the first peer reviewed quantitative study on LGBT+ physicists which received national attention.

In 2019, Barthelemy joined the U’s College of Science as its first tenure-track faculty member focusing on physics education research (PER), a field that studies how people learn physics and culture of the community. Since arriving, he has built a program that gives students rigorous training in physics concepts and in education research, qualities that prepare students for jobs in academia, education policy, or general science policy. He founded the Physics Education Research Group at the University of Utah (PERU), where he and a team of postdoctoral scholars and graduate and undergraduate students explore how graduate program policies impact students’ experiences; conduct long-term studies of the experience of women in physics and astronomy and of Students of Color in STEM programs; and seek to understand the professional network development and navigation of women and LGBT+ PhD physicists.

In discussing Barthelemy’s election as a fellow to the APS, two of his mentors, Geraldine L. Cochran and Tim Atherton, commented on his work: “Barthelemy has provided an excellent example for how research on the educational experiences of people from marginalized groups can center the voices of the research participants,” said Cochran, Associate Professor at Rutgers University. “Indeed, Dr. Barthelemy was among the first—if not the first—in physics education research to use Feminist Standpoint Theory in his research.”

“Fellowship is one of the highest honors that that American Physical Society can bestow and is normally reserved for scientists much further along in their careers,” said Atherton, Associate Professor of Physics at Tufts University. “Ramón’s election is a signature of the incredible esteem in which his fellow physicists hold him and points to the significance of his work. This kind of work is necessary to transform the culture of physics to fully include LGBTQ+ people. As one of these people myself, and as someone who has not always been included by the academic community, I’m thrilled that Ramón has been given this incredible honor.”

Barthelemy earned his Bachelor of Science degree in astrophysics at Michigan State University and received his Master of Science and doctorate degrees in PER at Western Michigan University. “Originally, I went to graduate school for nuclear physics, but I discovered I was more interested in diversity, equity, and inclusion in physics and astronomy. Unfortunately, there were very few women, People of Color, LGBT or first-generation physicists in my program,” said Barthelemy, who looked outside of physics to understand why.

Other awards:
In 2022, Earlier he received the 2022 WEPAN (Women in Engineering ProActive Network) Betty Vetter Research Award for notable achievement in research related to women in engineering.

In 2021, Barthelemy received the Doc Brown Futures Award, an honor that recognizes early career members who demonstrate excellence in their contributions to physics education and exhibit excellent leadership.

He received the 2020 Fulbright Finland award but wasn’t able to travel to Finland to give his lectures until 2022.

In 2020, he and his U colleagues Jordan Gerton and Pearl Sandick were awarded $200,000 from the National Science Foundation to complete a case study exploring the graduate program changes in the U’s Department of Physics & Astronomy. In the same year, Barthelemy received a $350,000 Building Capacity in Science Education Research award to continue his longitudinal study on women in physics and astronomy and created a new study on People of Color in U.S. graduate STEM programs. Later, he received a $120,000 supplement to continue the work.

He also co-received a $500,000 grant with external colleagues Dr. Charles Henderson and Dr. Adrienne Traxler to study the professional network development and career pathways of women and LGBT+ PhD physicists in academia, the government, and private sectors. Lastly, Barthelemy was selected to conduct a literature review on LGBT+ scientists as a virtual visiting scholar by the ARC Network, an organization dedicated to improving STEM equity in academia.

In 2014, Barthelemy completed a Fulbright Fellowship at the University of Jyväskylä, in Finland where he conducted research looking at student motivations to study physics in Finland. In 2015, he received a fellowship from the American Association for the Advancement of Science Policy in the United States Department of Education and worked on science education initiatives in the Obama administration. After acting as a consultant for university administrations and research offices, he began to miss doing his own research and was offered a job as an assistant professor at the University of Utah.

first published @ physics.utah.edu


>> HOME <<