Former Space Researcher and Analyst
Pens Gripping Mystery
Sep 24, 2024
Above: Elizabeth Heider
Utah native Elizabeth Heider BS'00 physics is set to sign copies of her debut mystery novel, “May the Wolf Die,” at Dolly’s Bookstore in Park City on Sept. 29 at 12 p.m.
Heider’s novel, set in Naples, Italy, follows a female detective investigating organized crime and its connections to the U.S. military presence in the city.
“The inspiration for ‘May the Wolf Die’ came from my diverse experiences,” Heider said. She explained that after completing her degree at the University of Utah, she worked as a deployed civilian analyst with the U.S. Navy, including three years stationed in Naples. Her work took her to 15 African countries, saw her training troops in Senegal, Gabon, and Cameroon, and even lecturing at INTERPOL headquarters in France.
Heider’s Utah roots run deep. “I’m a Utah Native – raised in South Jordan Utah,” she said. “Although I left the state for work in 2008, I regularly return; my parents, two sisters, and brother, are still living here.”
The author’s background spans physics, military analysis, and space research. After earning her Physics degree from the University of Utah she completed her PhD at Tufts University. Her career includes work with the European Space Agency’s Human Spaceflight program and her current role as a program manager for Microsoft’s AI4Science program in the Netherlands.
Heider's writing isn’t limited to novels. Her credits include a play produced at the U, a chemistry patent and even a comic series for the European Space Agency. For years, her science writings were regularly read by astronauts aboard the International Space Station.
Fuller, a seasoned marketing executive with over two decades of experience in high-performance organizations, brings in-depth global marketing experience to Nature’s Sunshine.
His deep understanding of the dietary supplement industry combined with his experience launching new products, building powerful brands, and driving customer growth strategies make Fuller an ideal fit for Nature’s Sunshine.
"We are very pleased to welcome Kevin to Nature’s Sunshine,” said Terrence Moorehead, Chief Executive Officer. “He brings a wealth of experience and a proven track record of developing successful marketing strategies. Kevin will be instrumental in helping take our brand to the next level, and we look forward to his many contributions.”
Fuller holds an MBA from Brigham Young University, a B.S. in Biology from the University of Utah, and was a member of the Kellogg school’s Executive Education Program for Digital Marketing. He is also an accomplished triathlete, competing in four Ironman World Championships, was selected as a member of the USA World Championship Triathlon Team in 2023 and is a current 3-time All American. He is also a member of the Advisory Board of Unleash Health.
Ed Catmull doesn’t have the intense presence one might expect from a man with his resume.
Not only has Catmull [BS’69, physics] won five Academy Awards, he’s also received an ACM A.M. Turing Award — considered the Nobel Prize of computing — has rubbed shoulders with George Lucas and Steve Jobs, co-founded Pixar and co-created the first computer-animated film (and the technology that made it possible).
Catmull is the 2024 winner of The Leonardo Award, an award that seeks to honor individuals who have made “contributions (that) exemplify the blend of art and science,” per The Leonardo.
To receive his Leonardo Award, Catmull returned to Salt Lake City — the very place his impressive career started.
“(Catmull) credits the atmosphere and the work that he did at the University of Utah with some of his early success,” Virginia Pearce, director of the Utah Film Commission, said during Thursday night’s ceremony. “We are so proud about your start in Utah and the deeply grateful for the mark that you’ve made on (the film industry) industry and beyond.”
‘It was amazing’: How the University of Utah shaped Catmull’s career
As a kid, Catmull balanced his interests in both art and science. He never saw the subjects as being inharmonious.
“Growing up, I didn’t know that (science and art) were considered to be not compatible with each other. Nobody told me that,” Catmull said Thursday night at The Leonardo Museum. Animation fascinated him, but there was no college for it. So when he started his Bachelor’s degree at University of Utah, he fell back on science.
“There were no tools for it, for animation, so I switched over into physics when I went to college,” Catmull said. This revelation prompted laughter from the audience — how can the man who co-founded Pixar be a physicist?
Read the full article by Margaret Darby in DeseretNews.
September 4, 2024
Above: Ron Perla in the 1960s at a creep gage, built by U Geophysics' Bob Smith and team, ready to be covered with snow on a test slope next to the Alta Avalanche Study Center.
“I out-swam a size three avalanche down a gulley that had been artillery blasted,” reports Ron Perla to Wildsnow, a ski and snow reporting site. “It was my introduction to the post-control release.”
Ron Perla working on slab above Alta village, 1968. Credit: Charles Bradley, Montana State University
Recipient of the 2024 Distinguished Alumni award from the Department of Atmospheric Sciences, Perla graduated in 1971 with his PhD from the University of Utah in meteorology. As a snow scientist, he conducted research into avalanches and is well-known for discovering “the thirty-degree threshold,” where slopes of thirty degrees or more are much likelier to cause avalanches.
Perla worked at Alta Ski Resort as a member of the ski patrol and in 1966 became a part-time snow ranger and part-time research assistant at the U.S. Forest Service (USFS) Alta Avalanche Study Center. As a research assistant to Ed LaChapelle, Perla researched slab properties, factors that contribute to an avalanche and rescue methods, among other things.
Early in the morning and during intense storms, snow rangers blast the mountain to reduce the risk of avalanches. Between these times, Ed LaChapelle allowed Perla to take classes at the U. From 1967 to 1971 Perla commuted between Alta and the university. He split his time between snow rangering and his PhD program supervised by Professor Shih-Kung Kao and included classes in meteorology and applied mechanics. These classes are fundamental disciplines for avalanche research.
Perla’s advisor, along with the Department of Meteorology's chair Don Dickson, understood the unique combination of university study and avalanche study. Kao was a world-class specialist in atmospheric dynamics, turbulence and diffusion while Dickson was a highly decorated World War II pilot with hands-on meteorology experience. He helped Perla obtain a research grant from the Rockefeller Foundation and arranged for the donation of an old Alta ski lifts building which was turned into a mountain meteorology lab.
Models of moving avalanches
Perla has also extensively researched snow structure as well as models of moving avalanches. His current research involves quasi-three-dimensional modeling of the internal structure of a moving avalanche, from start to stop and has modeled moving snow in many different ways. His first model (1980) followed the mass-center of moving snow, and in 1984 his model assumed the avalanche as a collection of starting particles. The current model assumes the avalanche consists of snow parcels moving turbulently in three layers.
Ron Perla, U.S. Forest Service, 1968.
Along with his research, Perla has spent a lifetime in the snow. An avid skier and mountaineer, he partnered with Tom Spencer (U alum in mathematics) in 1961 for the first ascent of Emperor Ridge on Mt. Robson, the highest point in the Canadian Rockies. He also established a new route on the north face of the Grand Teton in Wyoming and a first ascent of the popular “Open Book” route on Lone Peak in the Wasatch Mountains.
“In 1967, I was working as a USFS Snow Ranger near the top of Mt. Baldy,” Perla says. “The cornice broke off prematurely, and I fell into a Baldy chute. The cornice blocks triggered a large avalanche. I was tumbled around with no chance of 'swimming,' and somehow I missed all of the rocks. Just before I lost consciousness under the snow, I managed to thrust an arm up to the surface. I was found quickly.”
After earning his PhD at the U, Perla moved to Fort Collins, Colorado as a research meteorologist for the USFS. In 1974, he moved to Alberta, Canada to work for the National Hydrology Research Institute. He has remained in Alberta since.
Perla is a significant reason why we understand snow science and avalanches and why backcountry education has improved to help keep those who recreate in areas with snowfall — skiers, mountaineers, snowshoers and ice climbers — safe.
“Despite the enormous increase in backcountry use, despite increasing behavior to ski and ride lines we could never imagine in the 1960s, avalanche fatalities are not increasing to match those trends,” Perla says in an interview with Wildsnow. "Surely, associations, centers, websites, and educators, in general, are responding to match those trends. Surely it’s also because today’s risk-takers are increasingly more skillful backcountry skiers, riders, and [,as in Perla's harrowing experience on Mt. Baldly,] escape artists."
He continues, adding that "[e]quipment is improving. ...But there’s something else: call it collective consciousness in the backcountry. An increasing number of backcountry users correlates with increasing observations and tests. Thus, safety can be enhanced by numbers if there is increased communication... ."
You can read Ron Perla's interview with Wildsnow here.
Spotlight on the first woman chair of the Mining Engineering Department’s Industrial Advisory Board — Denee Hayes.
Denee Hayes with her father at the Mining Engineering Department's award ceremony 2023.
“The work I’ve done both within and outside of the mining industry has helped me understand what the outside community thinks about mining,” says Denee Hayes BSME’02. She explains that there is a misunderstanding about how mining contributes to green energy, sustainability and the environment. Through her diverse work experience, she developed the talking points and negotiating skills to be a moderator and mediator between mining and environmental groups. “It really shaped the work that I’m doing today in mining, manufacturing as well as utilities and other sectors.”
While not on the trajectory of the late Loretta Lynn, whose 1971 Grammy-winning song “Coal Miner’s Daughter” (and later, the Academy Award-winning bio-pic starring Sissy Spacek) told the story of the country singer’s upbringing in Butcher Hollow, Kentucky and her elevation into stardom, Hayes’ journey is no less auspicious. In fact, Hayes’ career may end up having a profound impact on the defining issues of our times. Arguably, it already has.
Hayes was raised in Farmington, NM by parents who owned an oil and gas business. Her father was from Carbon County, Utah and not only worked in oil and gas as well as in mining sales. He also drove a truck for the coal mines in Wyoming. Both of her grandfathers also worked in oil/gas, construction and mining in Utah, New Mexico, and Arizona. Even before high school graduation, Hayes showed an interest in getting a degree in mining engineering. Poised to swoop in, the University of Utah offered a full-ride scholarship and, critically, the industry offered internships and industry experiences starting the summer before she arrived on campus in 1994.
Thought leader
Since graduation in 2002 Hayes has become a thought leader in the necessary convergence of mining and the new green economy. This, while working for nine years in-house with Utah’s Kennecott Copper until 2020 when she pivoted to private consulting, which she continues to this day. On the academic side, she was the first woman chair of the Mining Engineering department’s industrial advisory board.
The stakes right now in reimagining the mining sector as it relates to a green economy could not be higher. Regarding the climate challenge at large, we really only have one chance to get it right, according to New York Times’David Wallace-Wells. In a recent Tanner Humanities Lecture at the U, the climate journalist reported that half of all carbon emissions have come about in just the last 25 years. Even more startling, the weight of that carbon (yes, there are methods of measuring it), is more than the total mass of everything ever built by humans and still standing on earth.
Hayes and her colleagues and collaborators may well be up to the herculean task as they look more closely at the complexity of the mining/environment conundrum, and to find allies. “I like the ability to pull together — the interdisciplinary approach — to solving these problems and issues,” she says. “Diversity of thought and mining engineering gave me the technical knowledge and the language to work between the parties.” She views her training at the U as forging her into a “jack of all trades,” earning a degree that crosses various kinds of engineering — mechanical, civil, electrical — with the pure sciences of physics, chemistry and high-level mathematics. This interdisciplinary approach has threaded through her training and work experience via software development, utilities, manufacturing, architecture, mining engineering, integrated operations, and corporate leadership, all while deploying her signature bridge-building skills.
The span between mining and the environmental ethic is not a small one, and it is by dint of Hayes’ experience in a variety of sectors that she has forged her current work as a consultant. “The work I think I did [at Kennecott and elsewhere] gave me a view of two sides, really seeing how the industry has a PR problem and that mining [professionals] have really pitted themselves against environmentalists and other industries, and how we really need to show that if you are pro-green energy you have to be pro-mining.”
At first blush, such a statement seems counterintuitive, but she continues. “If you think about the trajectory society is currently on “there are ebbs and flows in everything for green energy” whether it’s photovoltaic materials to convert sunlight into electric energy or other sources of renewable energy, like wind and hydro power.
The greening of America
To keep up with green economy demands, Hayes explains that the world “will need to mine the same amount of copper between now and 2030/40 as we have in all of humanity,” And that is an example of just one metal. “Because there’s that much copper that goes into those things [i.e., green technologies, coupled] with population growth, even power transmission — from coal or a green energy source — you still utilize copper and a whole host of other critical minerals within that energy transmission and distribution.”
Do you rely on a mobile phone? Hayes is quick to remind us that more than half of the periodical table goes into producing and running your cell phone. Furthermore, “anything in the periodic table needs to be mined.”
The challenge of greening America is not just about extraction of critical metals from new as well as historical mines (known as brownfield sites) which are being re-opened and are using new technologies to re-mine, for example, tailings. It’s also about water use, of particular concern to those of us in the West. Part of building a consensus between two opposing sides is to hold a space for both without papering over reality, on either side.
“I think that we now have an opportunity to right some of the wrongs of mining in the past and some of the ways that we didn’t understand how we were harming the Earth,” she says, not only referencing Environmental Protection Agency-designated superfund sites of mines but seeing the sector from the view of digital optimization of the entire value chain. These involve standards, both enforced by governmental regulations as well as industry best practices that don’t exist outside the U.S. which is why Americans have relied on questionable extraction services outside the country, something that Hayes finds unacceptable. “If we want to continue leading the lives we are leading, we have to do our own extraction operations of critical materials ethically.”
Ethical practices extend as well to current mining employees and can only add to efficiencies that stakeholders demand. Hayes values “helping connect the executive level strategy to the front line, figuring out how to get the front line activated to enact that strategy.” In other words, it's not just about getting employee “buy-in” but demonstrating the “how,” to all of them — operators, maintainers, samplers and surveyors on site — of deploying lofty executive team decisions. “You’re leading people and focused on their safety and well-being and not just managing the tasks at hand,” she says.
It's all part of Hayes’ “holistic” approach to the issues, of thinking outside the blast hole, as it were, and through the “muck” (a general term in the industry of blasted rock that is ready to be loaded). A thoughtful intervention characterized by the belief that the parts of something are interconnected and can be explained only by reference to the whole is how “defining problems” of our age get solved . . . or at least managed.
Moving the needle
In the field.
And clearly for Hayes, it’s not just about operations, safety and profit — or even of financial stakeholders for that matter. It’s about moving the needle in the industry towards not only a greener way of doing things, but a more just and equitable way of doing those things as well.
The systemic reimagining of mining is a daunting proposition, and it requires bringing in diverse voices to inform, what Hayes calls, the “broader topics of that broader conversation.” She well remembers being an undergraduate — one of only three or four women in the department. That hasn’t changed much in the last 30 years with most mining organizations reporting only 7-10 percent of a work force made up of women.
“The real work needs to be for everyone to understand that a career in mining is a career for the environment, for green energy, and having that will be an attraction for people to come in. [We need to] make it psychologically safe to work in this industry, which it hasn’t always been. It’s work that we all have to do . . . .When you’re trying to tackle these large problems in industry you really need the diversity of thought that comes out of these different mining programs.”
The U’s program is no different. As with other institutions of higher education, its metrics of success are research, funding, student enrollment, and student success. “Industry needs to do its part to help create a pipeline of students to the U as well as look to the university to do some of their important research.” “The same holds true in reverse, universities need to be asking industry what will be most impactful for mining of the future.” If things don’t change, mining engineering departments across the country like the U’s will dwindle and die. “We’ve seen that in West Virginia,” she says, referencing beleaguered West Virginia University. In August the flagship Morgantown campus proposed eliminating nine percent of the majors and seven percent of its full-time faculty members.
Critical materials, critical thought
Fewer and fewer programs in all academic fields means less and less diversity of thought, which is critically needed. Hayes intends to advocate for better associations between industry and the university for this very reason. It’s a personally held mission that might have not only a macro difference but a micro one as well in these challenging times. She and her husband are the proud parents of another proverbial “miner’s daughter,” and her daughter is likely to be better positioned to consider a degree and a career in mining engineering because of her mother’s continuing hard work in the sector.
When Denee Hayes recently won an honorary alumna award at the department’s most recent awards ceremony, the coal miner’s daughter had her dad in the room. “He was ecstatic to come and see me.” she says with a smile.
Booming growth is driving more demand for water, but climate change, aridification and an over-allocated system ensure a short supply.
Lily Bosworth. Banner Photo Credit: US National Park Service
State lawmakers have looked to farmers to solve Utah’s mounting water issues, hoping they’ll lease water to save the Colorado River and Great Salt Lake.
So far, almost no irrigators have signed up. Their reasons vary, but a pilot program on central Utah’s Price River shows farmers are willing to lease their water if it makes economic sense and if they trust the process. And the state has a lot of hurdles to overcome before water leasing makes a measurable difference.
“If we can generate the revenue we need with water versus putting something in the ground, it works,” said Kevin Cotner, a hay farmer near Price. “It’s yet another cash crop.”
Cotner just wrapped up his third season participating in the Upper Colorado Basin Commission’s water leasing project, called the System Conservation Pilot Program. He irrigated 450 acres this year and left 530 acres fallow. He got paid up to $650 per acre-foot left in-stream.
But Cotner’s participation in the pilot water leasing plan isn’t purely based on economics.
“This is a hard ag area to make a living. Things are pretty severe,” he said. “We’re transforming the desert. Water is one of the big issues.”
Cotner serves as the president of the Carbon Canal Co., and policing use is part of his daily life.
“I’m the bad cop,” he said. “I’m the water guy.”
Even after Utah saw record-breaking snowpack and runoff last winter, Cotner said drought is becoming the norm rather than an exception. Last year, his canal company could only deliver shareholders 38% of the water they’re entitled to on paper.
“That was a hard summer,” he said. “A lot of unhappy people.”
Booming growth in the West is driving more demand for water, but human-fueled climate change, aridification and an over-allocated system have ensured it remains in short supply.
The water leasing pilot is one strategy Upper Basin states identified to get demand back in sync with reality in the Colorado River system.
All the water Cotner conserved by fallowing his fields stayed in the Carbon Canal, making its way back to the Price River, eventually flowing to the Colorado River and Lake Powell reservoir. It will then flow to thirsty Lower Basin states like Arizona and California, helping the Upper Basin fulfill its obligations under the century-old Colorado River Compact.
At least that’s how it’s supposed to work. As of now, Utah and other Upper Basin states don’t have the ability to track where the saved water goes, or ensure another irrigator downstream doesn’t divert it away.
“We want to get there,” said Lily Bosworth, a U alumna from geology & geophysics and now a staff engineer with the Colorado River Authority of Utah. “That’s our goal.”
Read the full article in the Salt Lake Tribune (subscription required).
More about Lily Bosworth BSG, HGE, '20
Bosworth is a Staff Engineer for the Colorado River Authority of Utah. Born and raised in Ogden, Utah, Lily has observed Utah's dynamic water systems throughout her life and developed an interest in water systems that combine natural and engineered elements with supporting water quality and quantity for all stakeholders. Lily completed bachelor's degrees in Honors Geological Engineering and Environmental Geoscience at the University of Utah, with a thesis on changes in hydrology when beaver dam analogs are installed during the riparian restoration. Lily also completed a master's degree in Hydrologic Science and Engineering at the Colorado School of Mines, with a thesis focusing on water treatment with engineered wetlands. Outside of work, Lily loves to mix and match birding, backpacking, water coloring, yoga, trail running, hiking, biking, and ballet with friends and family.
In December 2022, Andrew Thliveris BS’83 made a special trip to Salt Lake City with his wife Lauren. They joined the School of Biological Sciences in a belated (due to the pandemic) remembrance of K. Gordon Lark who had passed away more than two-and-a-half years earlier in April 2020.
Vice Chair and Ophthalmology Residency Training Program Director at the University of Wisconsin-Madison’s Department of Ophthalmology and Visual Sciences, Thliveris, until his retirement in September, was also Chief of Ophthalmology at the W.S. Middleton VA and holds the rank of Professor at the School of Medicine in Madison. At the event “Andy” remembered that as an undergraduate he worked in the Lark lab for five years and that Lark had a profound impact on him. “He changed my life,” reported Thliveris whose main message to the faculty and friends who had gathered was “Remember the undergraduate students.”
Thliveris also surprised many by announcing that through his affiliation with the Carl Berg Foundation he had arranged to fully fund the Lark Endowed Chair with a check for $430,000. The Lark fund was established in 2017, followed in July 2022 with a campaign to “re-boot.” The ambition was to achieve the level of endowed professorship through an anonymous, matching donation of $250,000. But with Thliveris’ brokered gift—added to many others from generous individual donors—the K. Gordon Lark Endowment was elevated to the more prestigious level of endowed chair.
'Get this guy under control'
K. Gordon Lark. Credit: Ben Okun
With his characteristic humor, Thliveris was eager to recall his time in Lark’s lab. He confessed to being that “pesky nerdy undergrad, high-maintenance, known to call Gordon at 11 pm on several occasions, [until] finally, Gordon, then speaking to his post-doc Paul Keim, [said], ‘You’ve got to get this guy under control because I have no idea what the hell I told him last night.’”
Lark wasn’t the only one who mentored, managed and otherwise inspired that “pesky” undergrad. Addressing Nobel laureate and Lark colleague Mario Capecchi who was at the event as well, Thliveris remembered how “you spent many hours with me in your office when you taught biochemistry. I was always in there.” He also recalled Baldomero “Toto” Olivera and his amazing cone snails which would later prove critical in the advance of alternatives to opioid pain relievers, as well as the late Naomi Franklin who helped bring sequencing to Lark’s lab and its occupants.
Regarding Martin “Marty” Rechsteiner, now in the U’s Spencer Fox Eccles School of Medicine, Thliveris recounted his professor “who on the first day of his class of trembling undergrads told us that if we memorized every word out of this mouth then we might just pass his class.”
Clearly, Thiliveris’ sojourn at the U as an undergraduate where he majored in biology and geology & geophysics, and later attended the U’s medical school where he earned his MD, prepared him well. Following his ophthalmology residency at Wisconsin in 1998, he was a postdoctoral research fellow as a launch to his auspicious 28-year career. After joining the faculty in 2000, he took on the position of Veterans Affairs Hospital service chief and later, in 2014, vice chair of resident education and residency director — roles he held until his retirement and during which time he trained countless physicians, including many of the department’s own faculty.
'Ball of energy'
At the announcement of his retirement, Thilveris said, “Our residents are beyond amazing, and the dedication from the faculty to our program has made short work for our education team. We have a very proud tradition here and are poised to continue for generations to come.” In hearing the news, many in Wisconsin responded with memories of his meticulous teaching, patience, wisdom, and, of course, his delightful sense of humor.
“I am beyond grateful to Andy for his role in my own training and in my recruitment back to UW-Madison,” said Evan Warner, MD. “His kindness, openness, and genuine concern for each and every colleague, trainee, and staff member has been foundational to our department culture, and it is such a privilege to be a part of it. As residency program director, he has been a ball of energy with so many ideas and such passion for seeking feedback and making things better for the residents.”
Thliveris will also be remembered for his work as director of the department’s cataract extraction phacoemulsification course. In this three-year progressive course, medical and veterinary ophthalmology residents, UW and visiting medical students, and pre-residency fellows from around the country learn the latest cataract surgical techniques. Daniel Knoch, MD who will assume the role of veterans affairs service chief following Thliveris' retirement recalled how “There are dozens of residents, numerous faculty, and thousands of patients that Andy has helped through his after-hours videos, toolbox approach to surgical teaching, probing questions, and high standards.” Anna Momont, MD who has assumed the role of ophthalmology residency training program director acknowledged that because of Thliveris’ “unwavering dedication to our residents and their training,” is leaving the department nationally recognized and a “highly sought-after residency program.”
'Full steam ahead'
To recognize Thliveris’ lasting legacy, the department dedicated its new Surgical Skills Training Facility in his honor. The new space, which expands the department’s training capacity by providing 10 training pods, each outfitted with state-of-the art equipment, will be instrumental in training the next generation of eyecare specialists. “While the decision to retire was a very emotional one,” says Thliveris, it comforts me greatly to know that I am leaving things in such capable hands. Full steam ahead.”
Whatever Gordon Lark said during those 11 pm phone calls to Andrew Thliveris must have been spectacular. And now with the K. Gordon Lark Endowed Chair poised to announce its first recipient soon, the undergraduate has made sure the legacy of founder of the School of Biological Sciences will continue.
By David Pace
Read more about Dr. Thliveris' retirement at UW-Madison website from which some of this article and photos were taken.
“Some of the most fundamental and complex research problems in climate and weather centers on our poor understanding of basic properties of clouds and and our inability to determine quantitatively the many effects cloud and precipitation processes have on weather and climate.”
Recipient of the 2022-23 Distinguished Alumni from ATMOS, Nesbitt leads a research group that makes stunning observations of the troposphere. These include the remote sensing of precipitation using radar and passive microwave sensors as well modeling of cloud dynamics and microphysics, land-atmosphere interaction, as well as data science and high-performance computation.
The uncertainty is complicated by global warming. “In the future,” he says, “my goal is to continue to contribute important advances in this area as the complex challenges that involve flows of water and energy through the earth system.”
Ed Zipser
A native of the snow belt, Nesbitt first took an interest in the weather as a nine-year-old when he would slide off the roof of his parents’ house into massive snow drifts. Transfixed by the Weather Channel he called the local NWS bureau on his own and asked for a tour. They complied. Many years later, mentored by Ed Zipser at Texas A&M, Nesbitt followed him to Utah when the storied observational meteorologist accepted a position at the U. Nesbitt earned his own PhD in 2003.
“You get goosebumps,” Nesbitt says about his current work at the University of Illinois Urbana-Champaign where he is the associate head and director of graduate studies. “When you go out and plan an experiment about the things that already excite you and collect data with these amazing instruments to quantify how these things work, I sometimes pinch myself: how do I get paid to do this?”
This kind of research has come a long way since the ‘90s. Nesbitt recalls the five to six hours it took to read one summary report off of magnetic tapes from NASA’s first satellite-derived data. “We had no idea what we’d see,” he says. No longer were they only seeing pictures but vertical x-rays inside of clouds. Of course, twenty of those tapes he and his team painstakingly read back in the day could now be stored on an iPhone. Even so, “it was a real breakthrough,” Nesbitt says of satellite technology.
NASA also funded major field campaigns to validate what data researchers were studying from satellites. A U2 spy plane was converted into research aircraft and piloted at seventy thousand feet to probe through storms, collecting visual and hands-on experiences as corroboration. Technology has not only assisted Nesbitt in collecting data, but analyzing it through sophisticated artificial intelligence models to predict impacts from large data sets with large uncertainties.
In Cordoba, Argentina the uncertainties of storms have real-life consequences–just as they do in Buffalo, where last December, lake-effect snow and wind combined in an unusually catastrophic combination. Nesbitt and collaborators were funded $20 million to stage the largest land-based field campaign effort ever conducted outside of the U.S. in the atmospheric sciences. They set up observation sites and dispatched radar trucks (that decades ago inspired the movie “Twister”) on the eastern foothills of the Andes where thunderstorms develop rapidly, some of them twenty-one kilometers tall with an updraft chimney fifty kilometers wide. The confluence of data from multiple dimensions allows for greater predictability of future weather events even with the chaotic nature of convective storms. The impact of global warming on precipitation processes remains a critical research area, and Nesbitt’s work is at the center of that.
In Cordoba, Argentina with the C-band doppler on wheels.
Nesbitt’s time in Utah was complemented by the 2002 Winter Olympics. “It was a really exciting time,” he says, remembering the weather observing ATMOS did for the games as well as the invitation to see the dress rehearsal of the opening ceremonies. And then there was the lake-effect snow stemming from the Great Salt Lake though not quite as extreme as Buffalo’s. He learned to ski and found faculty members’ passion for Utah’s winter sports and the “interesting weather” along the Wasatch Front infectious. He also married a local.
Of late, Nesbitt has trained his sights on the representation of ice clouds, which produce the majority of earth’s precipitation, yet are the most difficult to simulate and observe due to their complex microphysical nature.
Steve Nesbitt’s arrival in Salt Lake earlier this year to accept his award was a homecoming in multiple ways. He got to experience again the campus and its setting which first “sold” him on attending the U. It validated the work he’s been engrossed in ever since he slid off the roof into those Buffalo snow drifts. It was also a reunion of many fellow atmospheric scientists.
In the Utah desert, a treeless expanse of pristine white salt crystals has long lured daredevil speed racers, filmmakers and social media-obsessed tourists. It's so flat that on certain days, visitors swear they can see the curvature of the earth.
The glistening white terrain of the Bonneville Salt Flats, a remnant of a prehistoric lakebed that is one of the American West's many other-worldly landscapes, serves as a racetrack for land speed world records and backdrop for movies like "Independence Day" and "The World's Fastest Indian."
But it's growing thinner and thinner as those who cherish it clamor for changes to save it.
Research has time and again shown that the briny water in the aquifer below the flats is depleting faster than nature can replenish it. As nearby groundwater replaces the mineral-rich brine, evaporation yields less salt than historic cycles of flooding and evaporation left on the landscape.
It's thinned by roughly one-third in the last 60 years. The overall footprint has shrunk to about half of its peak size in 1994. The crust keeps tires cool at high speeds and provides an ideal surface for racing — unless seasonal flooding fails to recede or leaves behind an unstable layer of salt. Racers struggle to find a track long enough to reach record speeds with only 8 miles of track compared to 13 miles several decades ago.
Scientists largely agree that years of aquifer overdraws by nearby potash mining have driven the problem, yet insist that there's no hard evidence that simply paying the mining company to return water to the area will solve it amid detrimental human activity like extracting minerals or driving racecars.
Potash is potassium-based salt primarily used throughout the world as a fertilizer for crops such as corn, soy, rice and wheat. It's extracted in more than a dozen countries throughout the world, mainly from prehistoric lakebeds like Bonneville's.
It's mined from other iconic salt flats, including in Chile, where the thickness is not shrinking in a similar manner.
Collecting water samples near Wendover, Utah, Sept. 13, 2022. (AP Photo/Rick Bowmer)
In Utah, after three decades of studies examining the salt flats, nothing has slowed the deterioration. But officials are funding a new study as they try to find a solution. Researchers are seeking to pinpoint why the salt is fading and what can be done to stop it. Under a $1 million research project spearheaded by the Utah Geological Survey, scientists are gathering data to understand the effects climate change, racing, repaving the salt and operating the mine on leased federal land have on preserving the Salt Flats.
The salt is thinning as climate change drags the West into its third decade of drought, yet it's unclear how that affects the seasonal flood patterns the landscape relies on to maintain its size and footprint.
Frustration is boiling over for Dennis Sullivan, a car-builder and racer who set a land speed record in his 1927 Model T street roadster. His organization, the Salt Flats Racing Association, is convinced the potash mining company that extracts minerals from the flats is the primary reason that the aquifer is being depleted. But rather than point fingers that direction, he and other racers blame the U.S. Bureau of Land Management, which oversees the area and is required by federal law to balance multiple uses and preserve it now and into the future.
The Blue Flame at Bonneville Salt Flats on Nov. 4, 1970.
To save the landscape, Sullivan says, the U.S. government needs to find $50 million over 10 years to pay Intrepid Potash, the mining company, to pour briny water it's drawn from the land back on to the flats. He bristles at seeing more time and money spent on research when to him the solution is clear.
"In the world I came from, you study something, you figure out what changes you need to make, you make the changes and then you go back and study it again to see if your changes had an effect on it," said Sullivan. "It's ludicrous to just keep studying it until you do something."
The fragile landscape has become less reliable for racers, who had to cancel "Speed Week" events scheduled for this fall after the salt flats flooded and left them without enough space to drive on.
Though racers insist the answer is obvious, scientists contend that there's no hard evidence that simply returning briny water will reverse the effects of extraction and maintain the salt flats.
Sullivan doesn't blame Intrepid Potash; it has a leasing agreement with the federal government. He says land managers haven't invested in preserving the landscape or replenishing the salt taken off of it.
Intrepid Potash did not respond to questions from The Associated Press.
Jeremiah Bernau, a geologist working on the study with the Utah Geological Survey, said the mining company has already been pouring salt and it's unclear if that's the answer.
A 2016 study found that the areas most susceptible to thinning were places where races are organized. In simple terms, it changes how water can flow through the crust, Bernau said.
"Every use is going to have some sort of impact upon it. It's just trying to rank those, understand how much that impact is and what we can do to mitigate or understand it," Bernau said on a recent tour of the area, where reporters accompanied him as he measured the thickness of the salt and depth of the aquifer.
"My work is trying to understand how is that working and what are the actions that we can do in terms of helping to preserve this landscape," he said.
Backers of the study currently underway hope, if successful, the federal government will consider returning more salt in order to preempt conflict and allow the racers and miners to continue as they have been.
If the study shows salt laydown is effective, Utah state geologist Bill Keach said he expects racers will use the information to push for federal funding to keep up the project.
In 2019, when Utah lawmakers greenlit the initiative, they allocated $5 million, on the condition that the federal government would also provide funding, to return the briny water needed to preserve the salt crust.
Rep. Steve Handy, a Republican who spearheaded the effort, said the racers' lobbyists initially suggested the federal government would meet Utah's investment with an additional $45 million, giving the program the $50 million that Sullivan and other racers say is needed to maintain the status quo.
U.S. Rep Chris Stewart, who represents the area, assured Handy his office was working to secure the funds. Without hard evidence the salt laydown would restore the crust, the $45 million hasn't materialized but Stewart said in a statement that he "remains absolutely committed to finding science-based solutions" to save the crust.
Utah clawed back the majority of the funding after it got no matching federal funds.
"They're doing what they can with $1 million, which has not spread nearly far enough," Handy said, noting that it was ultimately the job of the federal government, not Utah, to manage the land.
But while solutions and the extent to which different parties are responsible is debatable, nobody disagrees that the landscape is a jewel worth preserving. Kneeling down, the crust of fused crystals looks like popcorn. From afar, the surface is moon-like, and draws hundreds of visitors daily, some coming in brightly colored dresses at sunset in search of the perfect picture.
"The fact that you can go out here and see this vast, white expanse with such a beautiful texture on the crust. It unleashes something, maybe more primal in yourself," Bernau said, looking off into the distance.
by Sam Metz and Brady McCombs, first published @ KSL.com.
Describing himself as one of the world’s few “quantum dentists,” David T. Chuljian, PhD’84 in Chemistry, has an unusual perspective on dental decay rates, and particle-hole interactions.
Chuljian grew up in Port Townsend, Washington, until age 14. His father, G. T. “Chuck” Chuljian, had settled there in 1947 and opened a dental practice near the Keystone Ferry Terminal.
“Port Townsend was a very sleepy town in the 1960s. During summer, our day would be chores in the morning, then off on our bicycles and returning for dinner after spending the day with friends,” says Chuljian.
“We owned a small beach cabin on Discovery Bay, so many of our bike rides ended there to go fishing, swimming, or beach walking. Grade school was mostly at a one-room private school, with teachers of varying quality.”
“I had a couple of good teachers in elementary school, one of which was extremely varied in his knowledge and interests and he taught us a wild mix of things for science class – how airplanes work, astronomy, ecology, you name it. Math and science were fun for me after that,” says Chuljian.
“Like many dentists, my dad hoped at least one of us would go into dentistry, and it was assumed that all five of us kids would go on to college,” says Chuljian.
“But the local high school was not very academic – kids in town expected to work at the paper mill after graduation – so my parents sent us to a church-run high school, Auburn Academy, near Tacoma.”
After high school, Chuljian enrolled in Walla Walla College, a private Adventist school in College Place, Washington. He earned a bachelor’s degree in chemistry in 1978. During his senior year at Walla Walla he applied to medical school and to various graduate schools around the country.
“At the time, the chairman of our chem department, Barton Rippon, was collaborating with some folks doing bioengineering type stuff, and he encouraged me to apply at Utah,” says Chuljian.
Remarkably, Chuljian did not actually apply to the chemistry department for graduate school.
“In fact, I applied to Utah’s bioengineering program. But my application packet somehow wound up at the chemistry department, where Jack Simons saw it before forwarding it to bioengineering,” says Chuljian.
“Jack then called me and asked if I was interested in interviewing in Chemistry as well as Bioengineering, and said they’d pay for my plane ticket. This seemed like a great deal, so I wound up doing both interviews on the same trip,” says Chuljian.
“As it turned out, Jack’s theoretical chemistry work was extremely interesting, close to physics which I also enjoyed. So, in the end, I went with the chemistry department.” Jack Simons later served as Chuljian’s research advisor.
However, after two years of graduate school, Chuljian’s research wasn’t progressing as he wanted and tenure-track jobs around the country were extremely limited in number.
“I’m reasonably intelligent, but not Einstein, and I could tell I wasn’t really cut out for an academic position in theoretical chemistry,” says Chuljian.
So, in 1980, he applied to dental school at the University of Washington in Seattle and started that program in fall semester 1981.
“Since I already had more than three years towards my chemistry doctorate, I worked on both degrees in parallel, coming back to Utah during summers and Christmas vacations, and working remotely, mostly finishing up papers. Of course, this was all pre-Internet so there were some real challenges.”
“I remember most of my Utah research group: Ajit Banerjee, Deb Mukherjee, Judy Ozment, Gina Frey, Jim Jenkins, Ron Shephard, Rick Kendall, and Hugh Jenkins. I haven’t seen most of them since graduating, although in 2005 Jack had a reunion in Park City and I saw several of them there,” says Chuljian.
Chuljian took a sabbatical during his senior year in dental school to finish up and defend his doctorate thesis in December 1984, then returned to Washington and finished up his clinical requirements and dental licensing exam in August 1985.
That same year, Chuljian moved back to Port Townsend and began working with his father as an associate in the dental practice. He later purchased the office in 1987 and his father retired in 1990.
Chuljian with one of many parrots he has rescued
“It was a standard small-town practice, doing everything including orthodontics and surgery since no specialists were available nearby. When I retired in 2017, I sold the practice which represented 70 years of family-owned dentistry, the oldest business in town I think,” says Chuljian.
Chuljian stays busy with a range of activities and interests, including forestry, flying, and rescue care of birds, in particular parrots. Over the years, Chuljian has rescued and cared for two African Grays, a couple of Amazons, several conures, and three Pionus species of parrots.
Today, Chuljian still resides in Port Townsend, which is no longer a sleepy bywater but has a vibrant arts and boating community. His typical day might include several hours working in his forest tracts, irrigating newly planted trees or removing invasive species, or milling lumber for the local animal shelter’s building projects. Or it could be a 10-hour day drilling and filling at the local public health dental clinic. He enjoys mountain biking, but when he qualified for Medicare he upgraded to an eBike!