TreeNote

TreeNote

by Dr. Nalini Nadkarni, professor emerita, School of Biological Sciences


Introduction - October 6, 2022
For forty years, I’ve documented the ecological values that trees provide, like stabilizing soils and providing wildlife habitat. Listen

Autumn Colors - October 13, 2022
The process of moving out the chlorophyll reveals the yellow and orange of other leaf pigments. Listen

Why Apples? - October 20, 2022
Flowering plants have evolved so that their seeds will land in the best place to flourish, the very definition of biological fitness. Listen

The Wonders of Cork - October 28, 2022
Humanity has used cork for millennia. It's light, buoyant, and elastic, thanks to the 40 million air cells per cubic inch. Listen

Body Language - November 3, 2022
I noticed an odd branch on a small maple tree that started growing horizontally but then took a sharp vertical turn. Listen

Baseball Bats - November 10, 2022
Baseball bats use wood from ash trees to provide just the right feel for hitting homers. Listen

Symbolic Power - November 17, 2022
Why do trees pop up on our flags, stamps and money? Listen

Sycamore Trees - November 23, 2022
These trees thrive in city settings because of their rapid growth and tolerance of pollution. Listen

Good Old Trees - December 1, 2022
Habitats thrive when they have plenty of veterans trees in the mix. Listen

Music - December 8, 2022
The conductor’s baton is the smallest instrument in the orchestra pit and it makes no sound.   Listen

Holiday Wreaths - December 15, 2022
With the holidays come evergreen wreaths on people’s doors and windows. Where does all of this holiday greenery come from? Listen

Mistletoe - December 20, 2022
Given the biological purpose of mistletoe it is pretty strange that this parasite is also a symbol of love. Listen

Hermann Hesse - December 29, 2022
One of my favorite books is an essay by the German writer Hermann Hesse, who received the Nobel Prize for Literature in 1946. Listen

Petrified Trees - January 5, 2023
On a recent camping trip in Nevada, I visited a display of petrified wood. Listen

Trees and Trains - January 12, 2023
Each mile of train track passes over 3,000 railroad ties – nearly all of them made from trees. Listen

Into the Canopy - January 19, 2023
It wasn’t all that long ago that scientists called the tree canopy "the last biotic frontier." Listen

Trees and Money - January 26, 2023
I recently discovered that not a single tree is cut down to make America's money! Listen

Tu BiShvat - February 2, 2023
One of my favorite ways to honor trees is celebrating Tu BiShvat, the Jewish holiday that commemorates the “New Year for the Trees.” Listen

Tree Architecture - February 9, 2023
The diversity in tropical forests is mind-boggling. Costa Rica alone hosts nearly 2,000 types of trees! Listen

Gambel Oaks - February 16, 2023
We know that when it comes to people, unassuming doesn’t mean uninteresting. The same holds true for trees.Listen

Originally published @ https://www.kuer.org/podcast/treenote

Jessica Venegas

Humans of the U: Jessica Venegas


Jessica Venegas

I’ve always wanted to go to the U because that’s where I was born.

“I was born prematurely at the University of Utah Hospital. My parents would tell me stories about how the doctors had to save my life. Growing up and carrying that really inspired me to be a doctor.

I’ve always wanted to go to the U because that’s where I was born and ever since I was young, my dad would make such a big deal about the Utes. When I got accepted and I had the opportunity to get the For Utah scholarship, it honestly changed my life.

My parents are immigrants, so I would have had to go into a lot of student debt to get my undergraduate degree and struggle with keeping multiple jobs and helping my family as well. So getting the opportunity to have this scholarship really changed my life. It also gave me the chance my first year at the U to be on the University of Utah spirit team. I had the opportunity to go to the Rose Bowl and go to the games and really get that college life I always imagined. I feel like that wouldn’t have been possible without the scholarship.

Utes Spirit Team

Growing up, I lived with my grandma for a long time and one day she bought this pop-out coloring book and it was about the human body. I remember looking at this and being really fascinated by this. My grandma was the one who taught me how to draw. We would go over the anatomy book together and we would draw. For me, it was really eye-opening. It was like, ‘Oh my god, this is amazing! I want to learn more about this.’ That’s when it really clicked for me.

That passion and that love for science came back when I was in seventh grade and I had the opportunity to take Introduction to Biology. My biology teacher that year when I was in middle school was really impactful for me.

I chose biology as my major because I’ve always loved biology and I feel this connection with it. The same with anatomy. I want to be a cardiothoracic surgeon. I’ve always been obsessed with the heart. As I was getting older and taking more advanced classes, my sophomore or junior year of high school I took a certified nurse assistant course and I really fell in love with that. But then I got into a really competitive medical assisting course my senior year of high school and that’s where they taught me how to do EKGs and draw blood and give shots and all of that. When I had the chance to work at a clinic alongside doctors, I worked alongside someone who specialized in the heart. That’s something I’ve always been really fascinated with. Working alongside him made me realize that it could potentially be a path that I would want to take.

Over the summer, I got an internship through the PathMakers Scholars and I am currently doing cancer research at the Huntsman Cancer Institute. I also had the opportunity to write a book with M.D.-Ph.D. students. In that book, I wrote about how growing up doing art and connecting that with medicine and the human body was impactful for me. For me, medicine is art.”

by Jessica Venegas, first published @ theU.

>> HOME <<

Collaboration of the Cited

Collaboration of the Cited


The cover of Philosophical Transactions, 1665.

Philosophical Transactions, 1665.

Biology’s ‘highly cited’ researchers collaborate in forest science.

The first scientific journal, still in print, was launched in 1665 by the Royal Society in London, but peer review and the ubiquitous citations we’ve come to expect in research documents are a relatively recent innovation. According to the Broad Institute, it began as late as the mid-1970s.

To distinguish high-level “influencers” in research, Clarivate, a company that provides insights and analytics to accelerate the pace of innovation, annually announces the most “highly cited” researchers. This year, three of those are located at the University of Utah, and all of them are based in the College of Science: Peter Stang (chemistry), John Sperry (biology) and William “Bill” Anderegg (biology).

Sperry and Anderegg have worked closely together, publishing multiple papers over the course of about six years in the areas of plant hydrology and forest stress. Their research is an auspicious example of how, in the tradition of peer-reviewed research, scientists routinely stand on the shoulders of others to move forward human understanding of life sciences. This is, of course, especially critical during an era when global warming demands that we have innovative solutions now.

Vascular health and function

When Sperry started working on plant hydro-vascular systems and their failure by cavitation more than forty years ago, he was one of only a small handful of people who knew it was an important topic. “Scientifically, the field was a goldmine,” said Sperry, “wide open with no competition. Once I’d developed a simple method for measuring cavitation in plant xylem as a grad student, I was off to the races.”

Sperry’s acknowledgment as a highly cited researcher would suggest he ran that race well before retiring in 2019. “I’ve always been thankful to Utah biology for going out on a limb with my hire,” he reports. “Once at Utah, the discoveries about cavitation and its consequences for plant ecology and evolution steadily drew more attention and the field grew.”

 

Sperry holding a custom rotor.

“Once at Utah, the discoveries about cavitation and its consequences for plant ecology and evolution steadily drew more attention and the field grew.”

 

New method developments by his lab helped acquire larger data sets on how plant form and function have evolved. Sperry custom designed centrifuge rotors to quickly expose the vascular system of plants to a known negative pressure. This in turn allowed him to create the kinds of vulnerability curves, which improve prediction of plant water use and to help move his research toward macro applications in forests to predict plant responses to climate change.

Demonstrating the linkage between the physics of water transport and the physiological regulation of plant gas exchange and photosynthesis via stomata was key to better understanding how plants respond to environmental change. This is because transport physics is easier to measure and model than the physiology underlying stomatal behavior. “I always knew that vascular health and function had to be at least as important to plants as it is to animals, and so it has proven to be.”

Scaling up through computation

While necessity is the mother of invention—as in Sperry’s early centrifuge–computational power, one could argue, is the mother of scaling up research impacts. As a post-doctoral researcher in the lab of Mel Tyree at the University of Vermont, Sperry learned early on the utility of blending theoretical modeling with empirical work. “Decades of weather parameters can [now] be converted into continuous half-hourly predictions of photosynthesis, transpiration, xylem pressures and so forth in a matter of hours,” he explains of how big data revolutionized his work. “In my case, modeling converts the measured cavitation response. . .. This paved the way for improved predictions of responses to climate change. The utility of this approach has gradually become appreciated . . . hence the number of citations.”

It is no coincidence that Sperry and Anderegg who both share a research interest in plant hydraulics are cited frequently. But while Sperry’s work focused on physiological fundamentals, Anderegg’s ongoing forest research is more wide-ranging and focuses on ecological consequences at often large scales. Said Sperry of his colleague, “his measurements helped explain the drought-induced mortality he had observed in the field. … What Bill has done, in spades, is to realize the potential of plant hydraulics for improving large-scale (landscape to globe) understanding of forest health.”

He continues to watch with interest Anderegg’s research which he said, “stimulated the leap from vascular physiology at the whole-plant scale to the forest as a whole and into a future of climate change. He played a key role in identifying how to model the trade-off between transpiration and photosynthesis, which was crucial for bridging the gap between vascular health and photosynthetic health.”

For Anderegg, who first met Sperry when he was a graduate student studying cavitation in Colorado aspens, the feeling of admiration is mutual. While attending a major conference in the field, Anderegg remembers an artistic set of wooden branches—a “mentor tree.” There, “young scientists anonymously wrote the name of someone who had changed their career. John’s name was all over the tree and was the most frequent name by far.”

Sperry would agree with Anderegg when the latter explains how “climate change is already having major impacts on our landscapes, forests, and communities, and thus scientific research to help us understand, mitigate, and adapt to climate change is growing rapidly.” As director of the new Wilkes Center for Climate Science and Policy housed in the College of Science, Anderegg is at the forefront of trying to understand more fully the western United States’ forest environments calling it “a global hotspot for climate impacts.” His aim both within the Wilkes Center and without is “to make our research in this region useful, timely, and relevant.”

“John’s work in the field of plant water transport was seminal and at the vanguard of the field,” said Anderegg, “So it’s not a surprise at all to me that it continues to be widely cited even after his retirement.”

The defining issues of our age

At the helm of the Wilkes Center, Anderegg is keen to collaborate with stakeholders and multiple partners to analyze and innovate on climate solutions. The Center’s intention is to inform policy in key areas of water resources, climate extremes, and nature-based climate solutions. Funded by a $20 million gift from Clay and Marie Wilkes, the Center illuminates climate impacts on local communities, economies, ecosystems, and human health in Utah and around the globe while developing key tools to mitigate, adapt, and manage climate impacts.

The directorship is a natural one for Anderegg whose principal query is driven by concerns that drought, insects, and wildfire may devastate forests in the coming decades. “We study how drought and climate change affect forest ecosystems, including tree physiology, species interactions, carbon cycling and biosphere-atmosphere feedback,” he writes. “This research spans a broad array of spatial scales from xylem cells to ecosystems and seeks to gain a better mechanistic understanding of how climate change will affect forests around the world.”

 

William “Bill” Anderegg

“We study how drought and climate change affect forest ecosystems, including tree physiology, species interactions, carbon cycling and biosphere-atmosphere feedback”

 

A recent paper of his in Science presents a climate risk analysis of the Earth’s forests in the 21 century. Before that publication, his team not only determined that more people are suffering from pollen-related allergies and that people who do have these allergies are suffering longer pollen seasons than they used to but that the causes, while wide-ranging, are mainly because of climate change. The Wilkes Center aims to scale up such societally relevant research, provide tools for stakeholders to make decisions and leverage science and education to inform public policy.

Accumulating citations in scientific, peer-reviewed journals leading to warm accolades of being one of an elite group of the “highly-cited” is not just about giving credit where credit is due. Instead, citations are signs of momentum, the importance of a given field of study, and robust collaboration. They are mechanisms for the leveraging of data and interpretation of that data. And, like the exhilarating high-volume transport upwards of water through xylem in trillions of trees across the earth, citations help link together the scientific literature and let scientists stand on the shoulders of giants to tackle society’s greatest challenges.

 

by David Pace, first published in the School of Biological Sciences

Ty Mellor

Ty Mellor


Ty Mellor

Slightly more than 2,000 people currently live in Salina, Utah—just west of a 217,000-acre geological feature called the San Raphael Swell.

It’s a gateway to some of the most remote (and still yet-to-be-permanently settled) land in the Beehive State. But for Carl “Ty” Mellor, it’s been an ideal launching pad for a career in, of all things, microbial engineering. The double-major in chemical engineering and cellular & molecular biology places Mellor on the edge of a different frontier than that of the magnificent badlands of brightly colored and wildly eroded sandstone formations, populated by wild horses and etched drawings from the ancestors of today’s Native Americans.

Frontiers, after all, can be both big … and small. The deep canyons and giant plates of stone tilted upright in his hometown’s backyard are metaphors for the scientific reveals that await the young scientist who, inversely, investigates the micro universe rather than the macro one of massive geologic upheavals where he spent time as a youth camping and hiking with friends.

“In physics,” says Mellor of his time at the University of Utah, “we were going over things that happen at the micro scale which got me interested. It’s all so complex and there’s so much left to discover on how things work at that scale, and there is so much potential for solutions to real world issues.”

Considered a “non-traditional” student, the twenty-eight-year-old U senior graduated more than a decade ago from North Sevier High School in a class of 46. During that time he worked as a dishwasher, then at Little Caesar’s pizzeria with one winter at Brian Head Ski Resort, followed in his final year at an oil change/tire repair shop. Today, he is the recipient of no fewer than seven university scholarships and awards, including the Joseph T. Crockett and the Neil R. Mitchell Endowed Scholarships.

Montell Seely and daughter Fawn examine Swasey’s Leap. Photo: Lee Swasey

From Salina to the bench at one of America’s top research institutions might seem like a leap as far and precipitous as relatively nearby “Swasey’s Leap.” Local legend has it that Sid Swasey bet his brother Charlie that he could jump his horse over the 14-foot wide, 60-foot deep gap which Charlie proceeded to do. But for Mellor, his was a leap clearly worth making. Now embedded in the Kelly Hughes Lab at the School of Biological Sciences, he is busy co-opting the type 3 secretion system used to build flagella in salmonella to secrete proteins of interest and simplify bacterial protein synthesis.

A leap from North Sevier High School, indeed.

When asked to explain something most people don’t known about salmonella, he explains that the pathogenic bacteria is named after Daniel Salmon, the first person in the U.S. to receive a Doctorate of Veterinary Medicine. But, despite his adoration of a pet chihuahua named “Ace,” Mellor won’t be going to veterinary school.

“I think there is a ton of potential [for research] in aging and disease,” he says. “There is so much that we don’t understand yet about the human body. There is also potential in carbon sequestration, either by manufacturing long-term products using carbon or developing microbial carbon sinks that can sink to the bottom of the ocean, for example — possibly being able to manufacture stronger and lighter materials by mimicking the way certain enzymes have incredibly low error rates.”

The last few years have not been easy for Mellor due to the pandemic. But, perhaps surprisingly, he will tell you that he didn’t mind online classes that much. “I was working grave shifts at the time [at the U's Guest House] and was able to watch all of my lectures during downtime at work. Transitioning back to normal life has been much more difficult.”

Difficult or not, in October Mellor jumped right in to share his research poster titled “One Step Protein Purification via the Type 3 Secretion System” at the annual School of Biological Sciences' Science Retreat. His explanations to the curious as well as potentially the friendly combatant-questioner (admittedly rare), was clear, commanding and informed. Poster presentations of this kind are a sort of pay day for an undergraduate: it’s that rare moment when all the hours “at the bench,” under the ‘scope, and under the care of a principal investigator and mentor converge, and one’s scientific findings are distilled into appealing, bite-sized pieces.

As Mellor approaches graduation and graduate studies, he has some advice for his undergraduate cohort: “Keep in touch with old friends and put an effort into connecting to new groups (especially for tough classes). Get lots of fresh air and sunshine, spend some time learning time management, and remember the online skills you had to learn since[,] they’ll always be useful.”

Getting ready for yet another leap, this time out of an airplane, skydiving with brother Casey.

He and his older brother Casey, whom Mellor refers to as his “hero,” still hang out together. “Scientifically, he’s the only one among my family and close friends that I can talk to about research or science in general. Everyone else’s eyes tend to glaze over almost immediately, while he’ll actively argue, ask questions, and come up with his own solutions. We share reading recommendations and talk about any new stuff that pops up in the news … . He’s always been there for me.”

You can take the boy out of Salina but you can’t take the Salina out of the man. And Ty Mellor wouldn’t have it any other way.

by David Pace, first published @ biology.utah.edu.

>> HOME <<

BioKids

BioKids


Christine Medina

Earlier this year, when BioKids was awarded a half-million-dollar stabilization grant, where those monies were allocated spoke to the ethic of this celebrated childcare and pre-school at the School of Biological Sciences.

“My first priority was to take care of our staff—to ensure they are receiving equitable wages and benefits,” says Christine Medina, Director. “They are the most critical component to our day-to-day operations. Supporting our staff is the best way to support our families.”

In addition to paying back the College of Science for the building remodel (2020) and and a recent remodeling of its infant/toddler playground, the pandemic relief funds issued by the Office of Childcare: Department of Workforce Services allowed Medina to allot more of her annual budget towards base salaries/wages. As a self-sustaining (recharge) program at the University of Utah, BioKids is required to bring in what it pay outs. And, of course, parents have limits on what they can pay in tuition for their child care costs. “Given the recent workforce demands for increased pay,” Medina says, “the grant has enabled us to meet those demands with most increases around 30% and without further burdening parents.”

This innovative ethic first underscored the launch of BioKids in 1999 when a group of biology faculty decided they wanted to make it easier and more convenient for faculty to care for their young children during the work day. As a parent cooperative program, Medina explains, “parents are involved in the program and encouraged to participate in daily activities and needs of the classrooms. Parents and Staff work together.”

The three amigos.

In the early days, faculty took turns teaching the children and directing the program outside of their positions in the Biology Department (now the School of Biological Sciences). “It was a grass roots effort to provide childcare,” says Medina, and then quips with a smile, “Dave Gard, a cell biology professor [now emeritus], operated BioKids as the Director for a short while and said, ‘it was the worst job I ever had.’” Then when the pandemic happened, and high-touch parental involvement had to end.

Clearly, a new model was needed. Today, in addition to Medina as director, there are 13 employees that thread through three classrooms each hosting a different age range. The three-class model supports the current research for how children learn and develop: infants (3 months to 18 months); toddler (18-33 months) and pre-school (30 months to 5 years old).

What makes BioKids with an enrollment of 40-45 children at any given time distinctive from other day care/pre-schools on campus?

“Most faculty and staff can see their children from their offices/labs while outside on walks or on the playground. Or, they are [just] a short walk away. Many of their colleagues are also enrolled, and their children are spending time creating friendships and bonds that span the family,” says Medina.

In addition to the close proximity of BioKids, housed in Building 44 just south of the Skaggs Biology Building, each cohort of children has a low enrollment with low student/teacher ratios. This allows staff to get to know each individual and plan a “whole child” approach to their learning. The more professional staff also means that children’s progress and comprehension are monitored with developmental assessments and portfolios. BioKids is now accredited by the National Association for the Education of Young Children, representing early childhood education teachers, para-educators, center directors, trainers, college educators, families of young children, policy makers, and advocates.

Another advantage to the BioKids model is that children move up and progress through classrooms based on their age and the designated age range of each class. Children enroll based on the parents’ need, generally for a 4-to-5-year span and without pause. The child care/pre-school has a reputation as one of the most successful and desired programs in the city. No wonder there’s a three-year wait for families outside of SBS and the College of Science which have priority status in admissions.

Trick-or-treating on campus.

Parents are not the only ones who appreciate the kind of continuity in their child’s life . . . as well as their own . . . that BioKids affords. Staff are clearly happy as well. Turnover is “very low,” something that a 30% raise in wages is likely to further cement. Remarkably, “both original preschool teachers hired in 1999 are still with us today,” says Medina. “Their first hoard of children are now in college!”

As for Medina, she has been an administrator for prominent early childhood programs in Salt Lake for 23 years and serves on several committees throughout the state. There she advises on state-level policies and initiatives for the childcare industry—for both the child and the worker. Her undergraduate degree is in Family and Human Studies, and she also holds a National Administrators Credential and a Child Development Associates credential, along with several state endorsements.

It’s easy to see why BioKids is such a hit. Outside both main biology buildings (South Biology and Skaggs) the ambient noise of childhood play wafts in on any given day, and the ritual of parents coming and going to drop off and pick up their wee ones is heartwarming. Every Halloween (especially now that the pandemic has eased some) a trail of children costumed as lizards (or are they dinosaurs?) and other life forms, arrive at the Main Office to trick or treat and endure comments like, “Oh, wow, the freshman are getting younger every year!”

But it is the daily routine that is most charming. Markus Babst, Associate Professor of Biology and Director of the Cell & Genome Center is all smiles every morning when he drops of his two-and-a-half-year-old at the historic building built during World War II with original windows, moldings, hardware and exposed brick. (The building was originally the student health facility.) A first child, six-year-old Oskar, is already a BioKids graduate, and this second child, Mari, along with her parents are more than happy to have Mari enrolled in what Babst calls “a warm, friendly and educational place.”

End of day, Babst returns on his commuter bike towing its requisite canopied trailer for toddlers, and will sometimes lift his daughter over the chain-link fence to give her a hug, strap her in and then head for home. It’s a bucolic scene right here on campus, usually commandeered by college pursuits, and it spurs passing students to look up from the perpetual viewing of their mobile screen and . . . smile. Sometimes they even stop and watch for a few moments perhaps remembering something nostalgic about their own past as a small person.

 

by David Pace, first published in biology.utah.edu.

Stephanie VanBeuge

Stephanie VanBeuge


Lockdowns are something that Stephanie VanBeuge BS’17 knows something about–even before the pandemic.

It was in her third year of graduate school at the University of Oregon when VanBeuge was first diagnosed with brain cancer–on the first day of the school year. She returned to Utah to receive treatment at Huntsman Cancer Institute and was able to return to school almost like nothing ever happened.

Stephanie VanBeuge

“When the pandemic started, I had just finished radiation treatment for my brain cancer. For about four months before lockdown started in March 2020, I was on my own lockdown of sorts recovering from brain surgery and enduring radiation."

 

Adjusting to the isolation of the early days of the pandemic was easy enough, she admits, “but starting to work from home and then going back into the lab later that year was really difficult, in part because my brain just wasn’t working like it used to. It’s hard for me to gauge how hard the pandemic specifically has been because as I’ve adjusted to the pandemic I’ve also recovered from brain cancer and, as my brain has continued to heal, I’ve had an easier time navigating our ‘new normal.'”

The U, VanBeuge says, gave her a lot of confidence in exploring new topics. “I chose to rotate in labs that were different from the kind of research I had done before. I was able to learn a lot about myself and my interests as a scientist and make an informed decision on my degree.” That was a good thing, because in Oregon students rotate through three labs during their first year and then pick one of those labs in which to work on their PhD. VanBeuge chose Karen Guillemin’s lab where she studied host-microbiome relationships.

Now with her doctorate, VanBeuge, who is originally from Tacoma, WA but grew up in Las Vegas, is looking to start a career in the biotechnology industry. “I was interested in the evolutionarily conserved aspects of this relationship and focused on gut epithelial proliferation in response to colonization by the microbiota.” During her research she found that the multiplication or reproduction of epithelial cells which in the expansion of a cell population (epithelial proliferation) wasn’t a response to a specific bacterial species. Instead, “it’s an innate immune system mediated response to barrier damage.”

Along the way VanBeuge has been active in the University of Oregon Women in Graduate Sciences (UOWGS) - https://twitter.com/uowgs organization where she served as outreach chair for AY 2019-2020. Her research culminated in two papers that she co-authored, “Proteolytic Degradation and Inflammation Play Critical Roles in Polypoidal Choroidal Vasculopathy” in The American Journal of Pathology and “Secreted Aeromonas GlcNAc binding protein GbpA stimulates epithelial cell proliferation in the zebrafish intestine” in bioRxiv. A third paper has also been submitted.

Reporting on her research is just one writing outlet for Stephanie VanBeuge. She’s determined to produce a memoir of what it was like as a young scientist, battling brain cancer in the middle of her education. She has a first draft and plans on completing it soon. The story “is primarily a story about resilience. It’s about facing your fears and uncertainty head on and not letting them stop you from showing up and fighting back. I hope people who read this book are empowered to show up and face their own challenges head on.”

By David Pace, originally published at of biology.utah.edu.

Are you a Science Alumni? Connect with us today!

 

Stolen Ivory

Stolen Ivory


Isotope data strengthens suspicions of ivory stockpile theft.

In January 2019, a seizure of 3.3 tons of ivory in Uganda turned up something surprising: markings on some of the tusks suggested that they may have been taken from a stockpile of ivory kept, it was thought, strictly under lock and key by the government of Burundi.

A new study from University of Utah distinguished professor Thure Cerling and colleagues, published in Proceedings of the National Academy of Sciences, uses carbon isotope science to show that the marked tusks were more than 30 years old and somehow had found their way from the guarded government stockpile into the hands of illegal ivory traders. The results suggest that governments that maintain ivory stockpiles may want to take a closer look at their inventory.

Thure Cerling

“Due to the markings seen on some samples of the ivory, it was thought that quite a few samples in this shipment could be related to material held in a government stockpile in Burundi.”

Ivory’s isotope signatures

Cerling is a pioneer in the use of isotopes to answer questions about physical and biological processes. “Isotopes” of a given element refer to atoms of the element that vary in their number of neutrons, and thus vary oh-so-slightly in mass. A carbon-14 isotope has one more neutron than carbon-13, for example.

Some isotopes are stable and some are unstable. Unstable isotopes decay into other isotopes or elements through radioactive decay. Since the rate of decay is known for unstable isotopes, we can use the amounts present in a sample to determine ages. That’s how carbon dating works—it uses the rate of decay of unstable carbon-14 to determine the age of organic matter.

Sam Wasser

Around a decade ago, Cerling attended a presentation at the U by Sam Wasser of the University of Washington, who was studying the genetics of wildlife and using those tools to investigate the date and place of wildlife poaching. Cerling, recognizing that his expertise in isotope science might be able to add useful information, began an ongoing collaboration with Wasser.

In 2016, Cerling, Wasser and colleagues published a study that addressed a key question in the ivory trade: how old is the ivory seized by governments? Some traders have claimed their ivory is old, taken before 1976, and thus exempt from sales bans. And with the average size of ivory seizures more than 2.5 tons, researchers, governments and conservationists wonder how much of the ivory is recent and how much is coming from criminal stockpiles—or is stolen from one of several ivory stockpiles held by the governments of some countries in Africa.

“Governments keep their stockpiles for multiple reasons,” Wasser says. “They hope to sell the ivory for revenue, sometimes to support conservation efforts. However, they can only sell ivory from elephants that died of natural causes or were culled because they were problem animals. They can’t sell seized ivory because they don’t know it came from the country.”

With the combination of Cerling’s isotope data and Wasser’s genetic data, the 2016 study found that more than 90% of seized ivory was from elephants that had been killed less than three years before. It was a sobering result, showing active and well-developed poaching and export networks. The study seemed to show that little ivory from government stockpiles had ended up on the black market.

Marked tusks

But the 2019 seizure of ivory in Uganda showed something concerning. Some of the tusks sported markings that looked suspiciously like the markings that CITES, the Convention on International Trade in Endangered Species of Wild Fauna and Flora, uses to inventory stockpiled ivory.

Due to the markings seen on some samples of the ivory,” Cerling says, “it was thought that quite a few samples in this shipment could be related to material held in a government stockpile in Burundi.  We were asked to date samples from this, and three other recent ivory seizures, to see if some samples could possibly be from older stockpiles.”

To determine the ivory’s age, the researchers collected small samples from the tusks and analyzed them for the amount of carbon-14 isotopes in each sample. They were looking specifically for the amount of “bomb carbon” in the tusks. Between 1945 and 1963, nuclear weapons testing doubled the amount of carbon-14 in the atmosphere, so anything living that’s consumed carbon since then—including you—has a measurable carbon-14 signature. The amount of carbon-14 in a sample of ivory that hasn’t yet radioactively decayed can tell scientists when the ivory stopped growing, or when the elephant died.

Paula Kahumbu

The method takes some calibration, using samples from organisms living in the same area. Some of the samples came from schoolchildren in Kenya, through a program called “Kids and Goats for Elephants.” Because most families in rural Kenya keep goats the program, run by Cerling and Paula Kahumbu of WildlifeDirect, engages children in collecting hair samples from goats for isotopic analysis. The isotope data is useful for many applications, including fighting elephant poaching and, in this case, calibrating the bomb carbon decay rate for more accurate dating of ivory.

A consequential result

The researchers analyzed ivory from four seizures in Angola, Hong Kong, Singapore and Uganda. Genetic data ensured that they weren’t sampling two tusks from the same individual. The results of analysis from the Angola, Hong Kong and Singapore seizures were as expected – the results showed ages mostly around three years after the death of the elephant, with no tusks having been taken more than 10 years previous.

But the Uganda seizure, with the inventory markings on the tusks, showed something very different. Nine of the 11 tusks tested had been taken more than 30 years before, with the dates of death ranging between 1985 and 1988. Those dates are consistent with the age of ivory in the stockpile of the government of Burundi, which was inventoried and stored in sealed containers in 1989.

“My suspicions were affirmed,” Wasser says. “The bigger surprise was how near to 1989 the elephants were killed.” At the time Burundi assembled its stockpile, a condition of joining CITES, which assists governments in managing ivory reserves, was that the ivory to be stockpiled was old. The results suggest that that wasn’t the case, Wasser says, which would have violated conditions for Burundi to join CITES.

“The hope is that CITES will request the stockpile to be re-inventoried,” Wasser says, “including aging randomly selected tusks and secure the remaining stocks.”

Find the full study here.

 

by Paul Gabrielsen, first published in @theU.

Hedgehog Signaling

Hedgehog Signaling


A cracker jack team of U of U undergrads works with principal investigator Ben Myers to break open a decades-old biological mystery of Hedgehog Signaling.

Corvin Arveseth

Corvin Arveseth, BS’21, can’t remember when he wasn’t fascinated by science and biology. So, when he came to the University of Utah and declared his majors in biology and biochemistry, he knew he wanted hands-on experience in research. “I didn’t know anything [about the] Hedgehog (Hh) signaling [pathway] until I read an advertisement put out by Ben Myers, [principal investigator at Huntsman Cancer Institute, assistant professor of oncological sciences at the University of Utah, and head of the Myers Lab] in a biology department newsletter looking for undergraduate researchers,” he says. “After reading some background information and meeting with Ben about the Hh pathway, I became intrigued with the work being done in his lab.”

The Hh pathway he’s referring to is akin to a master set of instructions for animal development and regeneration. It controls the formation of nearly every organ in the human body. Signaling pathways like Hh serve as molecular “telephone wires” from the cell surface to the nucleus. When cells in our bodies communicate with one another, signals are relayed along these molecular telephone wires, turning on expression of genes involved in growth, differentiation, or in some cases skin and brain cancers.

Corvin Arveseth and Will Steiner

The Hh pathway got its unusual name from decades-old genetic studies in fruit flies, where mutations in critical developmental genes led the flies to take on a bristly hedgehog-like appearance. However, versions of the Hh pathway operate throughout the animal kingdom, controlling development, stem cell biology, and cancer in many different contexts.

But even after many years of effort by labs all over the world, surprisingly little was known about how the Hh pathway actually works at a molecular level. Scientists knew that the signals conveyed by these molecular telephone wires were fundamental to human development and disease, but they didn’t know what the signals were, or how they were transmitted intracellularly. Consequently, health researchers’ ability to control Hh signaling in many diseases including cancer had been limited.

So, this is a story not just about a seemingly intractable research question, which is de rigeur in scientific circles, but how a team of largely undergraduate students in a four-year-old lab worked together under enormous odds to shake loose that answer. Myers says that that it was because of inexperience, not in spite of it, that the undergraduates in his lab were able to make these discoveries. These students’ fresh, undaunted determination to scientific inquiry, combined with a lack of preconceived notions and a willingness to learn, were key factors that enabled their groundbreaking discoveries.

Two papers, both with U undergraduates as first or co-first authors, were the gratifying result. PLOS Biology and Nature.com

 

Ben Myers

“It is a truly remarkable and inspiring collaboration that continues to this day, and I am so proud of how everybody was able to join forces and overcome so many obstacles created by the COVID-19 pandemic.”

 

Mysterious pathways
When Myers first set up his lab at the U in 2018, the key molecule in the Hh pathway that grabbed his attention was SMOOTHENED (SMO), a so-called “transmembrane protein” that spans across the cell membrane from the outside to the interior. SMO was known to be critical for transmitting signals from the cell surface to the nucleus. But what were the five or six steps between receiving the message and turning on gene expression? There was a “major disconnection about how this worked,” says Myers.

Nate Iverson

The twenty-five-year-old mystery was indeed tantalizing. It was “this interesting mystery coupled with the importance of Hh function,” says Arveseth, “in developmental and cancer biology [which] hooked me right away.”

Spearheading the project
Arveseth was the point of the spear for this project begun at the beginning of his sophomore year. But there were many others on the team, all of whom are “both incredibly smart, and also very kind and a lot of fun to work with,” according to Myers.

This includes Nate Iverson, a third year chemistry major with an interest in cellular signaling. “Having HCI in close connection with the University gave me greater access to research possibilities, and I was able to find an opening in the Myers lab studying Hh signal transduction.”

And then there was biology major Isaac Nelson, who worked tirelessly to produce a freezer full of carefully prepared, purified fragments of SMO for biochemical studies, only to hit a brick wall when he and Myers were unable to formulate a good hypothesis to drive an experiment.

Isaac Nelson

“It was only after starting up an international collaboration,” says Myers, “that the critical experiments snapped into view for us.” This led Nelson to send his samples to one of the lab’s new collaborators in Germany, and they used his samples to try an experiment that worked right away. In the midst of a raging pandemic, Nelson’s purified proteins helped to launch a new and entirely unexpected phase of the project, expanding the collaboration to include other scientists around the world.

“It was another scenario,” says Myers, “where everyone worked well together.”

Recent graduate Madison “Madi” Walker, BS’21, with a cell and molecular emphasis, was also part of the team. She is still working in the Myers lab studying another critical aspect of SMO signaling, namely the interaction between SMO and the enzyme G protein-coupled receptor kinase 2. Earlier, former undergraduate Jacob Capener, BS’20, assisted in the work.

Another critical member of the Myers lab team is Will Steiner, BS’21, who is currently collaborating with Arveseth and Nelson to purify SMO in complex with its binding partners in order to work out their atomic structures. He became interested in this area of research after taking the cell biology and biochemistry course at the U. “Biochemistry was particularly compelling and got me excited about the chemical reactions behind human physiology,” he says.

Madison Walker

It starts in the classroom
Rigorous courses were critical in preparing Myers’ undergraduate team for the hands-on research that led to their remarkable findings in the lab. He has nothing but kudos for the U’s curriculum. “Coursework before the lab experience [for undergraduate researchers] was very, very good here. In general, I’ve been lucky to attract motivated and curious students to my lab. They are inspired to push the research forward. They are all up to the challenge. And they have a great esprit de corps. They all work incredibly well together as a team to drive the science forward.”

That kind of correlated teamwork was not necessarily easy to enact under the circumstances. “Fortunately, we were able to finish the last key experiment of the first paper,” says Myers, in March 2020, just before the pandemic started to take hold and shut lab work down. He’s always believed that having undergraduates get a taste of cutting-edge research is important. They “shouldn’t have to work on something trivial… . What’s exciting about science is to push the boundaries.”

And yes, for Myers and the other senior members of his lab, including graduate students Danielle Hedeen and Aram Centeno, lab manager Ju-Fen Zhu, and former lab technician John Happ, “you have to be committed to helping everybody in your lab, even if they’re neophytes.” Clearly it’s been worth it. “And being a little bit of a neophyte is good,” he says, “because you don’t talk yourself out of doing experiments that are simple, unorthodox.”

Will Steiner

Asking the right questions
What Myers is trying to say, and seems to have proven over the course of the past three years and now the publication of two discovery-laden papers, is that their remarkable findings stemmed from the initial naïve view that the SMO protein didn’t fit the mold of other proteins as was previously assumed. He and Arveseth took a guess that SMO might be directly coupled to a critical intracellular signaling molecule called PKA. This was a rather wild idea, since there were few if any examples of transmembrane proteins that directly interacted with PKA. “It was a guess, how it might work, and a couple of months later: big discovery. Our initial guess was on the right track. There was a whole new unexpected thing going on but that made sense.”

Though early on the team suspected what they had discovered was important, “we didn’t know if we had a full explanation of how the system worked. We weren’t sure if it was the main event or an auxiliary event.” In the first paper, published in the journal PLOS Biology last year, they explained that: what they thought they knew, and what they weren’t sure about . . . yet.

But it was only after the pandemic was in full force that the team pivoted to the second exciting phase of the project, expanding to include Susan Taylor’s lab at the University of California, San Diego, one of the world’s foremost authorities on the PKA molecule the Myers team had implicated in their research.

Taylor and her colleagues had a critical insight regarding the SMO-PKA interaction which eventually formed the basis of a second manuscript, recently published in Nature Structural and Molecular Biology. “It is a truly remarkable and inspiring collaboration that continues to this day, and I am so proud of how everybody was able to join forces and overcome so many obstacles created by the COVID-19 pandemic,” says Myers. And his team is anticipating that even more exciting discoveries are on the horizon. Eventually, this work may lead to better drugs to treat some of the diseases that result from aberrant Hh signaling, including various skin and brain cancers.

In all, with the resulting two papers, the project turned out to be a “best case scenario that wasn’t planned,” and a lesson of how important it is to keep an open mind, which often leads to big discoveries.

Success is never final, however. And Arveseth, recipient of no less than ten scholarships and awards during his sojourn at the U, is now enrolled in the MD/PhD program at the Washington University in St. Louis, where he will focus on hematology and oncology. His colleagues are also pursuing their academic and research careers full-steam ahead. They, along with their mentor, Ben Myers are a testament to the notion that persistence in knowledge gathering pays off but that it must be paired and even driven by a relentlessly open mind.

The Meyers Lab

Concludes Myers, “To be honest, it comes down to the willingness to try new things and to have the ability to work together as a team. In reality, this would have been way too much for any individual scientist, even a highly trained one, to do alone.” You can follow him and his lab on Twitter @Myers_lab

Find the full study here.

 

by David Pace, first published @ biology.utah.edu.

Ethiopian Abattoirs

Ethiopian Abattoirs


Hooded Vulture

The decline of vultures and rise of dogs carries disease risks.

In the yards behind the slaughterhouses—also called abattoirs—of Ethiopia, an ecological shift is unfolding that echoes similar crises the world over. Species with a clear and effective ecological role are in serious decline, and the less-specialized but more aggressive species that have moved in to take their place are not only less effective, but are harmful to their ecosystem which, in this case, includes humans.

This is a story about vultures, feral dogs, rabies—and piles of rotting animal carcasses. Buckle up. But in the end, it’s about the power of conservation to keep ecosystems, even urban ecosystems, in balance, benefitting the people who live there.

“Carrion consumption by vultures is declining, and increasing by most other scavengers, but that increase is not sufficient to make up for the loss of vultures.” says SBS alumnus Evan Buechley, PhD’17, now with The Peregrine Fund, “So there’s a gap there. And what happens with that gap is a bit of an unanswered question, but that’s where the problem lies.”

The study is published in the Journal of Wildlife Management and is funded by the National Science Foundation, the University of Utah, HawkWatch International, The Peregrine Fund and the National Geographic Society.

Vultures are awesome

Worldwide, vultures are perfectly equipped to take care of the unpleasant remnants of death. Rotting carcasses can become hotbeds of disease, overrun by bacteria and insects. But vultures are an efficient clean-up crew. By eating carrion, they remove the carcasses and pass them through a highly acidic digestive system that wipes out disease-causing agents. And a diversity of vultures is better—some species are specialized to tear away hides and skin while others, coming in last, literally gulp down the bones.

 

Evan Buechley

“Carrion consumption by vultures is declining, and increasing by most other scavengers, but that increase is not sufficient enough to make up for the loss of vultures.”

 

But vultures have been in trouble in recent decades. They’re susceptible to poisons in the carrion they eat, whether that’s lead ammunition, the drug diclofenac, or poisons used against predatory animals. And with vultures producing relatively few chicks and taking a relatively long time to mature, it’s harder for them to recover from population declines.

Çağan Şekercioğlu, associate professor in the University of Utah School of Biological Sciences, showed that vultures were the most threatened group of birds (called an ecological guild, when the group uses the same or related resources) in 2004 when he conducted the first known ecological analysis of all bird species while in graduate school.

In 2012, Şekercioğlu accepted Buechley as his first doctoral student at the U. Buechley brought extensive experience working with vultures and condors. He and Şekercioğlu began a project tracking Egyptian vultures in eastern Turkey and the Horn of Africa.

“Evan led this project brilliantly and expanded it to the other vulture species of Ethiopia and the Horn,” Şekercioğlu says. “Despite the many challenges, he also decided to study the scavenger communities of the Addis Ababa abattoirs, to quantify the causes and consequences of vulture declines in the region.”

In 2016, Şekercioğlu and Buechley re-analyzed the ecology of all bird species. “We realized that vultures not only have the fewest species of any avian ecological guild, making them irreplaceable, but since that first analysis in 2004, they had gone downhill faster than any other group,” Şekercioğlu says.

Yes, there are other scavenger species that can take vultures’ place at the carrion table. But the loss of vultures, as we’ll see, can lead to human costs.

A white-backed vulture, a hooded vulture and a thick-billed raven.

Abattoirs’ feathered “employees”

At the abattoirs of Ethiopia, vultures are welcome partners. After butchering animals in clean conditions, the workers move the remnants of the carcasses – hooves, organs and bones, for example, to separate compounds. It’s a . . . unique sensory experience, Buechley says.

“It can be pretty stinky and pretty gross, by any objective measure.”

So abattoirs are grateful for the scavengers, including critically endangered white-backed, Rüppell’s and hooded vultures, that eagerly clean up the pile.

Study co-author Alazar Daka Ruffo, from Addis Ababa University, has interviewed abattoir staff members to see how they feel about the vultures.

“Some abattoir staff say half-jokingly, but not fully, that they see the vultures as employees of the abattoir,” says Buechley, reporting Ruffo’s findings. “They’re serving an important function. There’s intentionality behind the system.”

Other winged scavengers frequent the disposal piles, including crows, ravens, ibises and marabou storks. Four-legged visitors include packs of feral dogs.

“It’s an urban ecology situation where you have the human food supply meeting and really directly interacting with the wildlife food supply of scavengers,” Buechley adds. “It’s just a really complicated, kind of gross but fascinating system.”

With a research team including Rebecca Bishop, Tara Christensen and Şekercioğlu from the U’s School of Biological Sciences, Buechley set out to quantify the amount of carrion consumed by scavengers at six abattoirs in Ethiopia over five years, from 2014 to 2019.

Decline in vultures and rise in rabies

The team noted the types and abundance of scavengers that visited the abattoir buffets, and used this to extrapolate how much they ate. At first, vultures were eating more than half of the carrion in the disposal piles. White-backed, Rüppell’s and hooded vultures together ate an average of around 550 pounds (250 kg) of carrion a day.

But by the end of the five-year study, the number of Rüppell’s and white-backed vultures visiting the abattoir disposal yards decreased by 73%. Hooded vulture visits decreased by 15%. Over the same time, feral dog detections more than doubled.

A committee of hooded vultures.

“Although we can’t say for sure if the decline represents a population crash or if the vultures are being displaced by dogs and moving away from the abattoirs, either way this is really concerning,” says Megan Murgatroyd, Interim Director of International Programs for HawkWatch International.

“We know that the vultures are declining and we know that the feral dogs are increasing, but we don’t know exactly why,” Buechley says, adding that abattoir practices are also changing and that further studies will be needed to draw a cause-and-effect relationship.

Regardless, the vultures can ill afford the loss of abattoirs as a food supply. Rüppell’s, white-backed and hooded vultures are listed as critically endangered. “That’s the highest threat category before going extinct or extinct in the wild,” Buechley says.

The population of Rüppell’s vultures has declined by over 90% over the past three generations (approximately 40 years). White-backed and hooded vultures are doing a little better—but not by much. They’re estimated to have declined by 81% and 83%, respectively, over three generations.

“So it does seem that their disappearance from abattoirs is likely linked to a population crash,” says Murgatroyd. “Vultures need all the help they can get right now, and having to compete with growing dog populations is only making things worse.”

Other scavengers on the rise, including dogs, ibises and corvids (crows and ravens) couldn’t pick up the slack at the abattoirs. By 2019, scavengers were consuming nearly 43,000 pounds (around 20,000 kg) less carrion per year than they were in 2014, back when vultures were more abundant and dogs more scarce.

A chilling consequence of the rise of dogs may be a rise of rabies rates in humans. In the late 1990s, vulture populations in India and Pakistan crashed. Feral dog populations increased to take advantage of the uneaten carrion.

“They’re also disease vectors,” Buechley says, “and they interact really closely with people. And there’s been a link drawn between a big spike in feral dog populations and rabies in India.”

Is the same thing likely to happen in Ethiopia? Scientists haven’t yet drawn a link between vulture loss and rabies rise in that country. But Ethiopia already bears a heavy rabies burden with around 3,000 deaths from the disease per year.

“Unlike a lot of diseases which impact the elderly, rabies disproportionately affects young children, which are the most likely to be bit by rabid dogs,” Buechley says.

Fencing dogs out

The researchers provide a straightforward recommendation to help the situation: Use fences to keep the dogs out. And many abattoirs already have fences in place.

“But a pack of feral dogs is really persistent,” Buechley says. “It’s hard to keep hungry animals away from lots of food.”

An abattoir disposal pile with a kettle of vultures overhead.

The dogs can fight and dig their way through many fences, and maintaining or fortifying them may cut into the abattoirs’ profit margins.

“It’s a matter of weighing how important it is to keep the fences maintained,” Buechley says. “Improvement of these fences could really have a lot of benefits.” Those include potentially reducing the numbers of feral dogs, which reproduce quickly and whose population keeps pace with the available food supply. That in turn could help control rabies in humans and diseases in other animals, such as the critically endangered Ethiopian wolf, which are carried by the feral dogs.

And, counterintuitively, fencing out the abundant dogs could increase the rates of carrion consumption. Without the dogs around to scare off other scavengers, vultures could return in larger numbers to more quickly and efficiently clean up the disposal piles.

“That could lead to less smell, less groundwater contamination, fewer insects like flies that can breed on the carcasses,” Buechley says. “There’s a lot of potential benefits of investing in repairing the fences around abattoirs, which are found throughout Africa and elsewhere worldwide. We encourage abattoirs, local governments and international organizations to consider this when looking for solutions to waste disposal, human health and scavenger conservation.”

The results of the study show that the loss of specialist species from an ecosystem can’t always be compensated for by other species.

“The overarching point is that vultures are super important,” Buechley says. “If they decline, we expect there to be pretty profound ecological consequences and there may be increases in human disease burden. And so we should appreciate vultures and invest in their conservation.”

Find the full study here.

 

by Paul Gabrielsen, first published in @theU.