Brennan Mahoney

Brennan Mahoney


“As a child I always seemed to have an interest in animals,” says Brennan Mahoney, HBS’20, “and  originally  I wanted  to  be  a   veterinarian!”     Fate, however, would intervene for this Sandy, Utah native.

When he was ten years old Mahoney’s father had a massive heart attack in the left anterior descending artery (LAD), what’s colloquially called the “widow-maker” because when it is blocked it often results in the patient’s death. His father survived thanks to the “herculean efforts,” of the medical team.

“The work of the doctors and how they treated my family throughout the period of his recovery,” he says, “… turned my interests in biology towards its applications in the field of medicine.” Mahoney’s father would eventually receive a heart transplant nearly two years to the date of the attack, and Mahoney would later enroll in pre-med at the University of Utah where, when he’s not studying, he enjoys playing the guitar and piano, cooking, hiking, (“This is Utah, of course,” he says) … and following Ute football.

The summer after his freshman year, Mahoney worked toward his certification as a nursing assistant (CNA) so that he could start gaining clinical experience. “I worked as a home health aide in many different contexts,” he explains, “but mostly dealt with people who had neurological disorders or injuries.” It was during this time that he met a client who, prior to his injury, had worked as a researcher, and the experience pushed Mahoney to look for opportunities in a neuroscience lab. At the same time, Mahoney also worked as a tutor at West High School in Salt Lake City.

Enter Sophie Caron, professor in the School of Biological Sciences who at the time held the endowed Mario Capecchi Chair, named after Utah’s Nobel laureate who holds joint appointments in SBS and Human Genetics at the U. Caron’s lab studies multisensory integration (MI), a process by which brains integrate sensory information into a comprehensive picture of their environment.

The Caron lab, 2020

“For the study of this,” reports Mahoney who graduated with honors last summer but continues working in the Caron lab as a technician, we “used a brain area known as the mushroom body of [the fruit fly] D. melanogaster as a model.” The Caron team characterized the connection of neurons from multiple sensory modalities using a technique known as GFP reconstitution across synaptic partners or GRASP for short. “With knowledge of the patterns underlining MI, this logic could be applied to more complex brains,” says Mahoney, including, potentially, the human brain.

The research culminated in a first publication for Mahoney and his undergraduate colleague Miles Jacob, also credited as a co-author. The article, which made the cover of the journal Cell Reports highlights fundamental differences in the way associate brain centers, notably the mushroom body, integrate sensory information and converge in higher order brain centers. The findings are built  on previous work from the Caron lab that described a pathway conveying visual information from the medulla to the ventral accessary calyx of the mushroom body. “[O]ur study,” reads the article abstract, “defines a second, parallel pathway that is anatomically poised to convey information from the visual system to the dorsal accessary calyx.”

It is these kinds of scientific findings that inspire a young researcher like Brennan Mahoney to keep going. His ambition, in fact, is to apply to an MD/PhD program where he can continue in research that can help health professionals practice the good work that he witnessed first-hand when his father was singularly under their care.

"The efforts of my father's medical team allowed him to live so that he could continue to raise me and my two brothers and continue to live a happy and full life to this day. I hope to be able to help people in that same capacity, be it through direct patient care or through the findings of my future research."

The School of Biological Sciences regularly grants the Research Scholar Award to deserving undergraduate researchers like Brennan Mahoney. You can support these scholarships through a donation here.

by David Pace

Lee Roberts

 

LEE K. ROberts

Last year the College of Science celebrated its 50-year anniversary. When the College was formed, in 1970, Lee K. Roberts, BS’72, had nearly completed his bachelor’s degree in Biology.

“My undergraduate training at the U gave me a strong background in science in general and biology in particular. It helped motivate me to pursue an advanced degree,” says Roberts.

“Dr. Stephen Durrant taught two evolution courses that really excited me,” says Roberts. “First, was a course on comparative anatomy. The course was part lecture but mostly dissection of representative animal classes from worms to mammals. The second class was the evolution of man; which, in addition to examining various hominid skulls and bones, was my first exposure to reading research papers to supplement the textbook. My first look at how science is done.”

Roberts remembers many of his biology professors, including Fred Evans, Gordon Lark, James Lords, and current emeritus professor Robert Vickery. The early 1970s was an exciting time in the biology department. Gordon Lark was the chairman, and he was building a world-class faculty at the U.

“I took a protozoology course from Dr. Fred Evans. As an extra credit option, I did a little research project to characterize a protozoan he’d found in the crook of a tree. It was my first experience in conducting experiments to solve a problem,” recalls Roberts.

As an undergraduate, Roberts worked part-time at the Radiobiology Lab in the University's School of Medicine. After graduating in 1972 with his biology degree, he joined the Radiobiology Lab as a full-time technician performing clinical chemistry analyses and assisting the lab’s veterinarians with surgeries and autopsies.

“In 1975 I started graduate school in the Department of Anatomy, University of Utah School of Medicine, working toward a Ph.D. degree. Early in my graduate training I attended a seminar on tumor immunology, and I was hooked by the mystery of the immune system,” says Roberts.

Roberts was able to complete his doctorate degree in 1980 in anatomy and published a dissertation on how the cellular immune response influences the emergence and growth of skin cancers.

For the next two years Roberts worked as a postdoctoral fellow at the Immunobiology Laboratory at the University of New Mexico School of Medicine, in Albuquerque. He focused on gaining technical expertise in flow cytometry, monoclonal antibody techniques, and T-cell cloning.

“In 1982 I returned to the University of Utah School of Medicine as a faculty member in the Department of Dermatology,” says Roberts. “I also became the Director of the Flow Cytometry and Monoclonal Antibody Core Facility of the Utah Regional Cancer Center.” His research group was focused on immunobiology of the skin, immunological mechanisms associated with photo carcinogenesis, and characterization of cloned regulatory T-cells involved in the immune response to skin cancer.

In 1989, Dr. Roberts exited his academic appointment at the U to pursue a 30-year career in pharmaceutical and biotechnology R&D and management.  “I was lucky to work on several cutting-edge vaccine and immunotherapy technologies.”  He is currently retired in Memphis, TN; but continues with some biotech consulting.

“My best advice for students is to pursue your passion, no matter what barriers you face. Be tenacious in what you want to accomplish and you’ll find a way to get there,” says Roberts. “Find a good mentor. Better yet, find a group of mentors!”

Lee and his wife Dawn are dedicated Utah fans. “We try to get to at least one Utah football game during the season, as well as their end of season bowl game,” he says. “When I get back to Salt Lake I always include a visit to the campus. I love the sights, sounds, smells, and feel of the campus and the academic research environment.

“Living in Memphis limits our access to live Utah sports, so we purchased the PAC-12 channel so we can watch all the Utah football and basketball games during the season. And of course I own a full collection of Utah-branded shirts, pants, sweatshirts and jackets!”

When asked about the Covid-19 pandemic, Roberts had the following to say:

Snowbird, UT, with wife Dawn (B.S., Education '71) and grandsons Dillon and Judah.

“I’ve been very interested in following the scientific and medical research into the description of the SARS-CoV-2 virus and Covid-19 disease. Reminds me of when I was a postdoc in 1981 and the early days of the discovery of HIV and AIDS. The exception being that contemporary gene sequencing technology has greatly accelerated the identification of SARS-CoV-2 and characterization of the spike protein antigen.

“Given my vaccine research and development background I’ve also followed with great interest the development, clinical testing and regulatory approval of the Pfizer-BioNTech and Moderna mRNA based anti-SARS-CoV-2 vaccines.”

“I’m heartened that science worked! In real time it demonstrated the global effort of public health officials and scientists working through the scientific process to understand and discover effective clinical responses to curb the Covid-19 pandemic.”

“Conversely, I’m disappointed by the general public and political pushback against scientific facts, scientists and public health initiatives to address the Covid-19 pandemic. I hope that in the future we, the community of scientists, are able to improve the public and political trust in the scientific process, scientific facts and the scientific enterprise.”

 

In 1985 a scholarship was established in the School of Biological Sciences in honor of Stephen D. Durrant, referenced above, to support students studying mammalogy. You can find a listing of established endowments and scholarships that alumni regularly donate to here

 
by James DeGooyer
 

Nancy Parry

Nancy parry

When Dr. Nancy Parry, BS’63, was eight years old, she talked her mother into taking her to a fortune teller in Ogden. On the way there her mother asked her what she wanted to do for a career. “I want to be a doctor,” she replied with some embarrassment, believing her mother would find the notion preposterous.

“Well. That’s nice,” said her mother.

The tarot card reader who was wearing the garb of a gypsy dealt her four cards while Nancy’s mother took notes. “Oh, you’re going to be a doctor,” the card reader announced. Her mother was floored.

Eventually, Parry, who grew up in Salt Lake City, attended the University of  Utah for her bachelor’s where she recalls in particular the late anatomy professor John Legler as having a formative influence on her. But with the tarot reader’s other-worldly endorsement, thought Parry, “I didn’t study real hard. I mean, I was going to be doctor,” as if it were a done deal.

Confident in the outcome, and further inspired by a boy she was dating who also wanted a medical career, Parry eventually applied to medical school on the east coast. She was declined. “So I jumped into the car and went back to the fortune teller. ‘You told me I was going to be a doctor, and I didn’t get into medical school,’” Parry exclaimed. The fortune teller dealt the four cards again. “You applied to the wrong coast,” she said.

Parry was soon selected as an alternative candidate at the University of California, Irvine and was given two days to get to the west coast. “I went to the anatomy class and it was hot and this guy fainted from the heat and the strong formaldehyde odor, so when he dropped out of med school, I replaced him.”

She was “in.”

In the 1960s, female medical students were a rarity. It was a stigma that Parry had to fight for the rest of her life, even during her training. “I was going with this guy during medical school,” she remembers, “and he said to me one time--made a fatal mistake--he said when we get done with our training we’ll open up a practice and you can assist me. That was the end of that relationship.”

With her signature determination, Parry set up a solo medical practice with her sister, Janet Parry, R.N. (BS'66), and located in Anaheim where she was a general practitioner for thirty years. Parry looked young at the time because, at 28 years old, she was. At work in a 24-bed hospital she remembers arriving during visiting hours. A nurse tried to stop her, telling her visiting hours were over.  “I’m the doctor” Parry told her and proceeded, only to hear behind her back, “You’ve got to be kidding.”

It was a different time in more ways than the fact that women were rarely doctors. During a visit with a patient regularly brought to the office by her son, Parry determined that the woman was unfortunately going to require a hysterectomy. “So I brought in her son.” says Parry.

“Your mother has cancer of the cervix,” she explained.

“Wait a minute,” said the man.

“Don’t worry she’ll be fine…”

“No, wait a minute,” he said again. “I’m not her son, I’m her taxi driver!”

Needless to say, it was the era before HIPPA laws.

Eventually, the two sisters would form Parry Development Company with Nancy's lifelong friend, also a U alumna, Susan Flandro, (BS'63 & JD'68). Together they built a three-story medical office building and then a six-story building with offices for 70 physicians. The company also built a five-operating-room outpatient surgery center in Anaheim.  At one point Nancy had to put her home  up for collateral for the bank loan.

Following their stint in Southern California, the two sisters set up shop in Ketchum, the ski town adjacent to Sun Valley, Idaho, where they opened a small medical office.  Before that, however, Parry needed to advance her provisional ER privileges at the hospital to active status, and commuted to Salmon for months to get her hours logged.

Parry eventually expanded her interests to hyperbarics, a type of treatment that employs a pressurized HBOT chamber used to help wounded warriors with TBI and PTSD and to speed up healing of tissues starved for oxygen. She also trained on a BEMER P.EM.F. device that increases oxygen and nutrient delivery at the cellular level be 30% and potentially decreases the body's inflammation by the same percentage.

In research she has worked on telomeres, the repetitive nucleotide sequences at each end of a chromosome. Activation of telomeres lengthens the shortened chromosome ends for the prevention and repair of the neurodegenerative changes of aging. Additionally, she has addressed topics to the medical sector on the P53 gene and its relationship to bio-identical progesterone. Up-regulating the p53 turns out to be a tumor suppressor gene that in humans is encoded by another gene that may protect patients from breast, uterine, cervix, ovary, prostate and colon cancers.

Through the ups and downs of breaking the “glass ceiling”—which was more of a recurring rather than singular event—Parry developed Parkinson’s and in 2020 she retired from her medical career of 50+ years. Passing the baton, this doctor who helped pioneer women in medicine arranged to have another female physician take over her practice, hard-won, and well-earned.

The pandemic has given Parry more time to read. She also continues advising her friends and fellow doctors and researchers remotely by phone. Her advice to students today is simple: “Don’t give up!”

At her retirement party in August, she had the audience in stitches, regaling them with hilarious stories about her time in the medical field.

Nancy Parry’s acerbic humor and willingness to laugh at herself have endeared her to friends and rivals, whether it’s about fortune tellers or that time she donated a vasectomy procedure to the fireman’s ball auction, only to have to make good on it months later.

“We raised $750 for a good cause,” she says with a smile.

 

The Legler Endowed Lectureship in Human Anatomy, currently held by Mark Nielsen, supports the full cadaver lab for pre-med students at the School of Biological Sciences. 

You can support the legacy of Legler and Nielsen through a donation to the endowment here.

 
by David Pace
 

Edward Meenen

Edward Meenen

Ed Meenen (seated) talking to Gordon Lark at the Lark Endowment Dinner, 2019

Shortly after the COVID-19 pandemic began last spring, the School of Biological Sciences checked in with our alumni across the country and beyond to see how they were managing. The self-isolating Edward Meenen (BS’86) responded from his ancestral family community in Clay Center, Kansas. My “morning decision,” he quipped, “is what to put on to go to the living room!”

Though not the most philosophical response, Ed’s humor was well appreciated at a time when lock downs, quarantining and sheltering at home became the new, hopefully temporary, “normal.”

Ed worked with the late K. Gordon Lark,  founder of the Department of Biology, now SBS, at Kansas State University and decided to follow him to the U as Lark’s lab technician before moving to the labs of Ray Gesteland (now an SBS emeritus faculty member) and finally Robert Weiss. Ed's understanding of micro environments increased exponentially at a time when Lark was establishing and rapidly growing micro and cell biology at the U. The Kansas native recalls his introduction to the Mountain/Southwest through skiing and a field trip to Southern Utah, both of which were particularly memorable. So too was his work in Baldomero “Toto” Olivera’s lab researching conotoxins, ion channels, neurobiology ad molecular biodiversity using the subject model of venomous marine snails.

Earlier, Ed was drafted into the Army where he trained as a veterinary technician. There he spent most of his time at Walter Reed Medical Center stationed at Forest Glen in the research section. The veterinarians and their technicians were attached to the research group to provide veterinary support for the research groups. “People do not believe my military stories,” he says with his signature wry humor. “So I don’t often tell them (even my parents were not sure of my tales).”

Currently, Ed manages the two Kansas family farms, one of which he grew up on. Both are mainly for grain production:  wheat, corn and soybeans. “The farms are rented out on shares,” he explains, “which means that a portion of each crop belongs to the family (my sister, my sister-in-law and myself). The crops are delivered to the grain elevators. I then take over and market the grain.”

The farms require extraordinary administrative skill: “I must pay the bills as the family is responsible for their share of fertilizers, spraying for weed and fungus control,” he explains. Ed is also responsible to see that all the paper work is complete at the Farm Service Agency and that the crop insurance paper work is complete.

“I am responsible for all the bookkeeping and accounting reports that are given to the certified public accountant who prepares the IRS papers.” Finally, he cuts the checks to family members for their regular distributions.

In October 2019, Ed made the trip by pickup to honor his mentor Gordon Lark at a special dinner that included Lark’s wife Antje and, among many other colleagues hired and mentored by Lark during his tenure, Nobel laureate Mario Capecchi. The former Department Chair was visibly delighted to see his friend Ed Meenen as the two of them reminisced on days of yore doing cutting edge research together at the School of Biological Sciences.

 

The K. Gordon Lark Endowment is currently on its way to becoming fully funded.
You can join Mr. Meenen, Mario Capecchi and others who have made a donation to honor the legacy of SBS’s founder here.

 
by David Pace
 

Michele Lefebvre

Michele Lefebvre

Michele Lefebvre, PhD’05, knows exactly what graduate students in the School of Biological Sciences need to know about their academic careers at the University of Utah.

“What you learn here,” she advises them, “will apply to any career path you choose. The abilities to critically read, analyze, and write will serve you well on whatever profession you pursue.” It’s the kind of advice that has proven true for her as she navigates the pandemic as an environmental scientist based in Hilo on Hawaii's Big Island.

It hasn’t been without its challenges. “Living on an island in the middle of the Pacific, away from family, has been isolating and hard. Working a full-time, professionally challenging job with two elementary school-aged children at home has also been hard.” But her training and persistence have paid off, and even during an unprecedented pandemic she understands the opportunity in this time of global loss and grief. “I hope our individual searches for what’s important during this time, turn into decisions that improve our lives moving forward.”

The perspective she currently has undoubtedly stems at least in part from her time at the U, in particular in the lab of Don Feener. Following her graduation with a BA in biology from Boston University, Lefebvre realized she wanted to continue conducting research, and Feener was very well respected in the field as a researcher and mentor. “I’m grateful for his patience and the great example he set, which gave me the confidence to tackle the challenges in the program.” The training, which she calls "rigorous," requiring that she develop a skill for attention to detail, translated “directly to the work I currently do,” she says. A Florida native, Lefebvre also has fond memories of learning how to ski while in Utah.

“I started working in environmental consulting after I graduated,” she explains further. “At first, I learned how to conduct biological surveys and write biological reports and impact analysis.” Lefebvre later transitioned to preparing and managing documents that comply with the National Environmental Policy Act (NEPA).

Currently, Lefebvre is employed as an environmental impact assessment specialist and project manager for Stantec, an international professional services company in the design and consulting industry. There she conducts impact analyses on resources as a result of a given proposed project. This involves coordinating baseline surveys including biological and cultural inventories. She also assists with stakeholder coordination, which underscores the company's tagline:  "We design with community in mind."

Outside of work Lefebvre loves going to the beach with her two daughters, watching (and sometimes swimming with) turtles, snorkeling, and playing in the sand. She also enjoys gardening—her family grows sweet potatoes, bananas, and papaya in their yard and they have a small herb garden. To top it off, Michele loves staying active and runs the Big Island half marathon every year.

It's the culmination of a life of inquiry, passion and hard work, qualities that other graduate students in the School of Biological Sciences are poised to emulate … even during these difficult times when uncertainty reigns.

 
by David Pace
 

Julia Bailey-Serres

Julia Bailey-Serres, BS'81

SBS Distinguished Alumna 2020

 

 

Julia Bailey-Serres, BS’81, is known for her research on mechanisms of plant adaptive responses to environmental stresses. She remembers enrolling in “a lot of lab classes in genetics, animal physiology and chemistry” at the U. And she fondly recalls a team-taught lab with now Nobel laureate Mario Capecchi. Other teachers and mentors she is quick to mention are Ray Gesteland, Joe Dickinson and E. Tucker Gurney, all emeritus faculty now.

A California native, Bailey-Serres transferred as a sophomore to the U where she immediately got a job in a lab with the late George Edmunds, an aquatic entomologist. “It was an early opportunity to understand what research was,” she says. “It gave me a home and then paid for a summer school class in electron microscopy on insects.”

After graduation, she attended he University of Edinburgh where she earned her PhD studying rearrangements of mitochondrial DNA in sorghum, a genus of flowering plants in the grass family Poaceae. Now Director at the Center for Plant Cell Biology and Distinguished Professor of Genetics at the University of California, Riverside, she was elected to the National Academy of Sciences in 2016 and, in 2020, recognized as a Distinguished Alumna of the School of Biological Sciences.

In addition to Edmunds, while at the U Bailey-Serres was mentored by SBS’s David Wolstenholme who would “steal” her away from his colleague. Cell and molecular biology outside of bacteria and viruses were just beginning to emerge, and Wolstenholme, who would become Department Chair, “didn’t guide me as much as just provided opportunities. [It was a] tremendous undergraduate opportunity,” she says, doing electron microscopy as well as some molecular biology. The research experience was accented by her work during her junior year as a teaching assistant for the non-majors biology class. “I was self-supporting as a student and needed the money for tuition.” Getting paid for lab work, she wryly attests, was “a lot more interesting than washing dishes.”

Even so, she remembers, “I was just this naïve young person interested in science and David gave me the push I needed.” She remembers Wolstenholme's explaining that she really needed to go to graduate school. As a consequence of her research experience at the U, Bailey-Serres has always had an undergraduate researcher in her own lab, over 100 to date. Fittingly, her first faculty award at Riverside was for her work with budding undergraduate researchers. The kind of relationship she formed with Wolstenholme was arguably prologue to what would become what is now the recently launched Science Research Initiative for undergraduates in the U’s College of Science.

Grains in the Rain

The Bailey-Serres group develops basic plant research discoveries into technologies or approaches that improve agriculture. By pursuing translational plant biology, says Bailey-Serres, “we aim to harness genetic mechanisms that provide climate change resilience to crops, particularly flooding, drought and nutrient stress resilience.” Her lab works from the single cell to the whole plant level. Their studies have defined mechanisms of low oxygen sensing and post-transcriptional gene regulation, from the epigenome to the "mRNPome" and translatome. “This knowledge is of importance to efforts that seek to stabilize crop yields,” she explains. “As Earth’s population grows, arable land decreases, and climatic patterns change.”

In a 2019 paper published in Science she disclosed how other crops compare to rice when submerged in water. Her research found that the plants – a wild-growing tomato, a tomato used for farming and a plant similar to alfalfa – all share at least 68 families of genes in common that are activated in response to flooding. “We hope to take advantage of what we learned about rice in order to help activate the genes in other plants that could help them survive waterlogging,” the paper reported.

Bailey-Serres has been involved in improving climate resilience in crops since her post doctoral fellowship at Berkeley where she first connected hypoxia responses with changes in translation. Traditional plant breeding demonstrated the presence of a gene that could confer submergence resistance (the SUB1 locus), but early breeding of the submergence locus into popular rice cultivars was mostly unsuccessful because it led to strains that had lost other desirable traits.

To get around this, Bailey-Serres was a member of a team that characterized the SUB1 locus molecularly. In her nomination of Bailey-Serres for the Distinguished Alumni Award, SBS’s Leslie Sieburth wrote that the 30-year research veteran’s “studies have led to much broader understanding of plant responses to hypoxia, and allowed marker-assisted breeding which introduced this gene to popular rice varieties.” By 2014, the rice cultivars that carried SUB1A were distributed to more than 4 million farmers throughout Asia. Sieburth applauded Bailey’s “extended … studies to understanding the gene regulatory networks underlying hypoxic responses, [including] the evolution of these responses in monocots and eudicots.”

The Climate Challenge

 While finding survival strategies for rice and other crops has always been critical, with climate change the challenge has become even greater. Currently, Bailey-Serres is embedded in a research group with other full professors in the Netherlands while she directs the National Research Traineeship program for graduate studies bridging plant biology and engineering. She also continues to collaborate with Sieburth, also a plant biologist, while continually being informed by others working in the field like Distinguished Professor and former SBS Chair Jim Ehleringer who is looking at how climate change effects where plants grow.

In addition to her research, Bailey-Serres is dedicated to promoting science education and professional development as well as fostering diversity and innovation in collaborative and interdisciplinary research. An example of this outreach is high school senior Susan Su who in 2018 took her project developed in the Bailey-Serres lab to the International Science and Engineering Fair where she placed third in her category (Plant Sciences). Su is now a student at MIT.

The technical advances taking place in plant translational research exemplify how basic research discoveries spawned at the School of Biological Sciences and elsewhere are being translated into methods to develop and improve important crop traits. Dr. Julia Bailey-Serres and her research group are at the forefront of making sure that happens.

 
by David Pace
 

The Daines Medical Dynasty

The Daines Medical Dynasty

Joseph Daines BS’68
Michael Daines BS’99   
Brad Daines BA’05

The School of Biological Sciences claims all of our alumni, but sometimes there’s a kind of harmonic convergence that elevates an entire family of U biologists into the spotlight.

Such is the case with the Idaho Daines Family of orthopedic surgeons—Joseph “Pete,”,BS’68; Michael, BS’99; and Brad, BS’05—a virtual dynasty in orthopedic surgery. Brian, who as an undergraduate attended BYU (the U’s traditional rival to the south) also practices orthopedics but in Arizona. The oldest son Gordon was the outlier. He found his passion in history and is now a university archivist with a doctorate in education.

The University of Utah Daines Dynasty goes back three generations, beginning in 1920 when the grandfather of Pete’s wife Susan--also mother to his sons--attended undergraduate school at the U and then went on to medical school in New York City, ultimately returning to the west to start a general medical practice in Preston.

Michael Daines, MD

Born in 1945, Pete was at first a math major at the U but changed to biology/pre-med before attending Columbia Medical School followed by an orthopedic residency at George Washington University. His father, who died a year after Pete’s return to Idaho in 1979, also practiced orthopedics in Boise.

Years later Pete’s son Michael would also graduate from the U and head east to medical school at Columbia College of Physicians and Surgeons, followed by a residency in orthopedics at the University of Iowa. Later he was awarded a fellowship to Oxford University to study shoulder surgery for a year. He now specializes in shoulder surgery in addition to general orthopedic surgery at West Idaho Orthopedics near Boise, where he and his siblings grew up.

Not to be outdone by his older brothers, Brad entered medical school at the University of Washington following his graduation from the School of Biological Sciences. Subsequently, he completed a residency at the University of Vermont in orthopedic surgery followed by fellowship training in total joint replacement at the Hospital for Special Surgery/Cornell University. Brad focuses on hip and knee replacement which can include robotics.

For the first few years in practice, his father Pete was his assistant in the operating room. “I ended up not really quitting totally, from practice until 2018,” Pete says. In addition to assisting Brad, he provided medical evaluations for insurance companies, conducted independent exams and wrote up patient histories and reports for attorneys. "To have my dad with me has been an awesome experience” Brad said in a 2016 KBOI 2News story “because he is sort of a calming presence."

"How does it feel seeing three of your four boys following in your footsteps?" the reporter asked Pete in the same story. "Well,” said the patriarch, “it's sort of an ego trip, but I think it's great. I just wanted my sons to do something that they enjoyed." Says Brad, "Like my brothers, I always thought I was going to be a doctor. I didn't ever feel any pressure, but I noticed that my dad liked his job."

Clearly orthopedics is in the Daines Family blood, and clearly the University of Utah’s Biology Department--now the School of Biological Sciences--played a role in the family’s success.

Both Michael and Brad remember the invaluable experience they had in the Biology Undergraduate Research Program (BioURP) with Rosemary Gray, now an emerita faculty. Michael was a research assistant with Sandy Parkinson while Brad found a research mentor in Dave Carrier. “I learned a lot from him about the scientific method,” says Brad. “In addition, because his work did involve animal subjects, I learned much about the balance of the ethical treatment of animals and the need for scientific advancement. We worked with canine subjects, and the length to which he went to ensure good care of these animals was impressive.”

Brad Daines, MD and two future U Biology Alumni

Additionally, Brad really found his groove in the honors program and his upper level biology classes were also an incredible experience, particularly, he remembers, comparative vertebral morphology. Membership in the University Chorus and Sigma Chi fraternity gave him a musical and social outlet.

Both brothers recall the “incredible athletic programs” at the U which gave them a reprieve from the lab and the classroom. Along with sports, there was a love of the mountains and skiing. The combination of the Daines family legacy, recreational opportunities and the academic reputation of the U would converge for a memorable experience for both.

Michael’s research experience in the Parkinson lab was a segue for Columbia Medical, his father’s alma mater. While in New York City, Michael had the singular experience of living through the attacks on the World Trade Center on September 11, 2001. Later, during his Oxford fellowship in the UK, he also worked on several research projects related to the shoulder.

An avid hunter, fisherman and triathlete, Michael enjoys spending time with his three kids, along with his hunting dog “Hawkeye.”

For all of the Daines, there have, of course, been challenges due to the current pandemic, including for Brian in Arizona who, his father remarks, finds himself overworked, doing “everything” related to joint medicine in a small clinic.

“I traveled a lot with my wife,” says Pete, remembering pre-COVID-19 times when he floated European rivers through places like Budapest and Vienna, sometimes through spectacular tunnels 30 miles long. A music enthusiast, he also sang bass in a choir and for five years sat on the board of the Boise Philharmonic. Along with Michael Brad also loves to fish and with his father enjoys music, opera in particular.

While the pandemic has slowed these activities, it has consorted to bring the family, which now includes thirteen grandchildren, closer together. Clearly the spread of the coronavirus has impacted the Daines and their respective medical practices just as it did Pete’s early relatives during the 1918 flu pandemic. “It was a bad pandemic as well,” Pete says, referencing family letters left behind, but “nothing like this one. [Back then] they lost family, this, that and the other thing. It took two years to get past it. That’s what it does. It comes and turns your life upside down.” Even so, he says, the earlier pandemic didn’t keep people out of work as much as the current one.

Says Michael, “I have had to navigate the need to care for patients and also keep my office staff safe. As a small business owner, we have had to find creative solutions to keep people working and keep the doors open.” Brad, too, has had to make the adjustments to the way he works.  “Life is always uncertain,” he says, referring to the past year. His advice? “Remain flexible and do the best you can every day. Embrace the fact that life will take you down unexpected paths. Upon reflection, many of the best things in my life happened when my plan deviated.”

Michael agrees: “Take your opportunities when they come up and have no fear!”

Will the Daines tradition of orthopedic surgery carry on into the next generation? “I think there’s going to be some of my grandkids going into medicine,” says Pete. “It probably isn’t going to be the conglomeration [of a medical life] like I got. I don’t know how that happened,” he quips, referring to three-fourths of his progeny who are surgeons.

“They just wanted to go and they did. Back then I could take my kids into the operating room with proper supervision and they could watch things. You can’t do that now. It’s not allowed. I had that opportunity to have some stuff in the operating room and I think that cemented for them going into medicine…. I didn’t mean for them to all become doctors, but that’s what happened. I’m very proud of them.”

As for Brad, his children are still too young (7 and 5) to have shown any interest in a career in medicine-- yet."

by David Pace

David Hillyard

David HillyARD

 

 

When David Hillyard, BS’73, was recognized in November with a Healthcare Hero Award, he was quick to share the love. “This honor should really go to the fantastic team of individuals I’ve been working with who have made high-capacity, quality COVID testing possible,” Hillyard said. “It’s very flattering, but every day I just think about the critical contributions front-line laboratory workers make for this effort every day.”

The sentiment is typical of the collaborative and generous nature of the Professor of Pathology at the University of Utah School of Medicine and founding Director of Molecular Infectious Disease Testing at ARUP, the largest academic laboratory in the country.

“This year, Utah’s healthcare leaders went above and beyond, pivoting their time, creativity, ingenuity, and magnanimity to face off against a global pandemic,” read the Utah Business citation. “This is only the beginning of our nation’s battle against COVID-19 … and we are so grateful to these warriors for leading the charge.”

Hillyard’s interest in the U started with a love of Ute basketball in the era of its legendary coach Jack Gardner, known as “the Fox,” who shepherded five All Americans, including Billy “The Hill” McGill.

“In high school, I visited the U for hosted debate and drama competitions and got a glimpse of its campus. I never thought I could afford to go out-of-state for college and saved all of my earnings … to be able to pay for at least a first year at the U.”  Scores of lawn mowings later and he had tuition which at that time was $175 per quarter. “I also had the academic blessing,” he says,“ of my Uncle Charlie, a renowned nuclear physicist, who received his PhD at the U and gave the science departments a high rating.”

Hillyard’s acceptance to the U was transformative for the Ogden native whose “first rate education” in biology and chemistry was elevated by the extraordinary opportunity to participate in basic research beginning his sophomore year. Professor K. Gordon Lark would arrive during Hillyard’s sojourn in the Department of Biology, now the School of Biological Sciences, and the legendary chair, who passed away in April, turbo-charged the department with newly recruited faculty of outstanding molecular biologists and distinguished visiting professors.

The expanding breadth and rigor of the department was an accelerant to Hillyard, allowing for him graduate level exposure to biology as an undergraduate but most importantly, he says, personal mentoring in bioresearch in “a thrillingly fun environment. Without question, these short years were the foundation for a happy career and any professional successes to come.”

As an undergraduate in Dr. Baldomero “Toto” Olivera’s lab, he worked on differences in pathways and magnitude of turnover of the metabolic cofactor NAD in e. colio and Hela cells.  “My fondest memories of my time at the U are informal dinner parties with lab mates and visiting scientists at the home of [Toto]” he recalls, adding that the “[l]ate night jaunts with Toto to the Roadway Inn for apple pie ala mode and experiment planning rank way up there too.” Many would agree with him that Olivera’s mentoring of undergraduates at the U is legendary.

Later, with the advent of polymerase chain reaction (PCR), a kind of molecular photocopying now commonly used in biology labs, Hillyard collaborated with Olivera on the identification and cloning of conopeptide genes from venomous marine snails, groundbreaking work that has since been widely celebrated as a potential replacement for opioids and their vaulting addictive properties. “As a clinical pathologist,” says Hillyard, “my work has focused on molecular infectious disease test development and the clinical application of these tests.”

Following graduation from the U, Hillyard pursued medical training at Columbia University’s College of Physicians and Surgeons in New York City along with fellowship training in pathology. He then returned to the U for fellowship training in microbial genetics and medical microbiology followed by a position as assistant investigator with the Howard Hughes Medical Institute at the U’s School of Medicine. He also joined the faculty of the Department of Pathology.

Hillyard figured prominently in establishing a test to meet the nationwide demand for diagnosing COVID-19. Beginning in January he and researchers at ARUP validated one of the first high-throughput diagnostic COVID-19 tests in the nation. With Emergency Use Authorization from the U.S. Food and Drug Administration in late February 2020, Hillyard and his team worked around the clock to ensure they had a test ready to launch in March with a turnaround time of less than two weeks.

More recently Hillyard and his team have worked on developing co-tests for Covid-19/Flu AB/ and respiratory syncytial virus. “The scale and urgency of the project has certainly been challenging and a bit life changing,” he confesses, “but is dwarfed by the positive experiences of working with teams of dedicated laboratorians stepping up to the plate with their hard work, problem-solving, and commitment to do good.”

“There are so many surprises with COVID-19 that you’re never fully prepared, no matter how ready you think you are,” said Hillyard in the Utah Business profile in November, as he described preparing for flu season with cases continuing to rise. “The flu season hasn’t been very bad in the southern hemisphere this year, perhaps because of physical distancing and other measures taken to mitigate COVID-19 spread, but the flu will come.”

The good doctor’s COVID-19 research has been in collaboration with Boston-based Ginkgo Bioworks whose co-founder Reshma Shetty is another celebrated alum of the Olivera lab. Together with other government and non-profit health organizations they’ve studied the genetics of the virus in Utah and analyzed how its molecular makeup is evolving. The consortium has also conducted a major study comparing testing accuracy across different labs and instrument platforms.

No doubt the pandemic has been a singular time for all of us, but being on the frontlines of infectious disease testing has put a megaphone on all of it for Hillyard. Beyond family, he takes refuge in bicycling, especially hill climb racing. “I also love hiking, photography and as a wellness advocate for my department, [I] enjoy keeping up on the latest in food science. Unfortunately," he admits, "I’m a terrible cook."

Terrible in the kitchen or not, in his typical generous fashion Hillyard is quick to offer thoughtful advice to the next generation of scientists and health professionals. “[T]rain broadly, recognizing the importance of multiple skill sets for a successful career,” he says. “I would also suggest seeking out the best mentors at the best institutions in an environment where you can build personal relationships and also have fun.”

Dr. David Hillyard is a model U Biology alumni, transforming his immersion in undergraduate research with star, engaged faculty to a most elevated and award-winning legacy underscored by public service.

Uncle Charlie, it turns out, was right.

 

 
by David Pace
 

COVID Connections

Creating a Virtual Symposium


Tanya Vickers

Rising to the Challenge

Science is about preparing the next generation of innovators, explorers, and connoisseurs of curiosity. For the last 29 years the College of Science ACCESS program has been the “first step” on this journey of discovery. The ACCESS program runs from June to August and is open only to first-year students freshmen and transfers).

A cornerstone of the ACCESS experience is the opportunity for the student cohort to share their work with faculty and peers during a research poster symposium. The symposium is a powerful learning experience that mirrors professional science conferences and a career in the field, and plays a key role in the program.

When COVID-19 hit the U.S., the longstanding tradition of the Spring Research Symposium was in jeopardy. As the director of ACCESS , I was driven to find a way to continue the capstone symposium, and provide talented first-year student scientists the opportunity to showcase their research, in spite of social distancing.

With just six weeks until the event we decided to design, build, and launch a novel virtual research symposium platform. The sudden shift and short time-frame presented a real challenge, but it was also an opportunity to pursue and explore innovative approaches to current standards that, if not for CO VID-19, would have been stagnant.

It’s been six months since the Virtual Symposium, and we are still surprised by its success. The merits and results of the virtual platform challenged the notion that in-person is best. The in-person symposium normally saw about 200 guests. In contrast, the virtual symposium reeled in nearly 6,000-page views in three days and 260 guests attended the live zoom presentations.

Thinking Differently

COVID-19 upended and reshaped our everyday lives and challenged everyone to find new approaches to routine activities and novel fixes for nascent problems, much like scientists do on a regular basis.

When the on-campus student research experience was cut short in March, it didn’t mark the end of learning for the 2019-2020 ACCESS cohort. Research faculty agreed to continue mentoring remotely, which included helping the students report their research in a scientific poster they would present virtually. Unfortunately, the technology for a virtual research poster presentation did not exist.

That’s when I began the process of envisioning and creating the Virtual Symposium platform, as it’s now known. I started with identifying the critical elements of an in-person research symposium and considering how to transpose them to a virtual model. My experience teaching and using Canvas (used to deliver course content) shaped the content, and with the collaboration and support of Micah Murdock, Associate Director of Teaching and Learning Technologists (TLT ), a novel virtual research symposium was fully realized.

Embracing Technology

The platform was a lofty goal that required three defining features: a webpage for students to introduce their project, a message board for peers, guests, and mentors to pose questions, and a live Zoom presentation with question and answer.

Each student had a personal webpage that included their research poster, a 3-minute video summary of their research project, and a short personal bio. These elements provided guests with an introduction and interactions analogous to an in-person symposium.

In-person symposia can feel rushed, but the virtual platform offered the advantage of providing guests more time to preview projects on their own, before using one, or both, forum tools—the student scientist’s discussion board, or the 30-minute Zoom live session scheduled on the last day—to ask questions or comment.

Building For the Future

Throughout this process, we wanted to build a tool with the future, as well as other disciplines and applications, in mind. We are proud to announce that the platform has already seen use for the School of Biological Sciences Virtual Retreat, ACCESS Alumni Career Panel, and a number of campus-wide projects. Most recently, the Virtual Symposium was chosen to serve as the cornerstone of the new College of Science high school outreach platform SCIENCE NO W—engaging students, presenters, and elite scientists from across the U.S. and around the world.

As a species and as scientists, we always look forward to new ideas and what can be done. In our darkest hours, we find a space for new forms of unity and growth, and can challenge ourselves to create and expand. CO VID has been undeniably difficult, but the development of new platforms and technologies, like the Virtual Research Symposium, show that sometimes, when we are forced to make changes to long held traditions, the outcome goes beyond finding an equivalent, making what we thought was “best” even better.

Special thanks to Dean Peter Trapa, ACCESS Program Manager, Samantha Shaw, and to the ACCESS students and mentors for believing in the vision of a Virtual Research Symposium.

For more information on the Virtual Symposium platform contact: tanya.vickers@utah.edu.

 

by Tanya Vickers

 

Giant Poisonous Rats

The secret social lives of giant poisonous rats.

The African crested rat (Lophiomys imhausi) is hardly the continent’s most fearsome-looking creature—the rabbit-sized rodent resembles a gray puffball crossed with a skunk—yet its fur is packed with a poison so lethal it can fell an elephant and just a few milligrams can kill a human. In a Journal of Mammology paper published today, Smithsonian Conservation Biology Institute, University of Utah and National Museums of Kenya researchers found the African crested rat is the only mammal known to sequester plant toxins for chemical defense and uncovered an unexpected social life—the rats appear to be monogamous and may even form small family units with their offspring.

Sara B. Weinstein and Katrina Nyawira.

“It’s considered a ‘black box’ of a rodent,” said Sara Weinstein, lead author and Smithsonian-Mpala postdoctoral fellow  and postdoctoral researcher at the University of Utah. “We initially wanted to confirm the toxin sequestration behavior was real and along the way discovered something completely unknown about social behavior. Our findings have conservation implications for this mysterious and elusive rat.”

People in East Africa have long suspected the rat to be poisonous. A 2011 paper proposed these large rodents sequester toxins from the poison arrow tree (Acokanthera schimperi). A source of traditional arrow poisons, Acokanthera contains cardenolides, compounds similar to those found in monarch butterflies, cane toads and some human heart medications. Cardenolides, particularly the ones in Acokanthera, are highly toxic to most animals.

“The initial 2011 study observed this behavior in only a single individual. A main goal of our study was to determine how common this exceptional behavior was,” said co-author Denise Dearing from the University of Utah.

When threatened, the African crested rat lives up to its name and erects a crest of hair on its back to reveal a warning on its flanks—black and white stripes running from neck-to-tail on each side of its body. The 2011 study hypothesized that the rats chew the Acokanthera bark and lick the plant toxins into specialized hairs at the center of these stripes.

In the new study, researchers trapped 25 African crested rats, the largest sample size of the species ever trapped. Using motion-activated cameras, they documented nearly 1,000 hours of rat behavior. For the first time, they recorded multiple rats sequestering Acokanthera toxins and discovered many traits that suggest they are social, and likely monogamous.

“Everyone thought it was a solitary animal. I’ve been researching this rat for more than ten years, so you would expect there to be fewer surprises,” said Bernard Agwanda, curator of Mammals at the Museums of Kenya, co-author of this study and the 2011 paper. “This can carry over into conservation policy.”

A rich social life

As a postdoctoral fellow at the Mpala Research Centre, Weinstein first searched for the rats with camera traps, but found that they rarely triggered the cameras. Weinstein was then joined by Katrina Nyawira, the paper’s second author and now a graduate student at Oxford Brookes University. Together, they spent months experimenting with live traps to capture the elusive rodents.

“We talked to rangers and ranchers to ask whether they’d seen anything.” said Nyawira. Eventually they figured out that loading the traps with smelly foods like fish, peanut butter and vanilla, did the trick. “Out of 30 traps, we finally got two animals. That was a win. This thing is really rare.”

Those two animals changed the course of the study. They first caught an individual female, then caught a male at the same site two days later.

The African crested rat.

“We put these two rats together in the enclosure and they started purring and grooming each other. Which was a big surprise, since everyone we talked to thought that they were solitary,” Weinstein said. “I realized that we had a chance to study their social interactions.”

Weinstein and Nyawira transformed an abandoned cow shed into a research station, constructing stalls equipped with ladders and nest boxes to simulate their habitat in tree cavities. They placed cameras in strategic spots of each pen and then analyzed every second of their footage, tracking the total activity, movement and feeding behavior. The aim was to build a baseline of normal behavior before testing whether behavior changed after the rats chewed the toxin cardenolides from the poison arrow tree.

“They’re herbivores, essentially rat-shaped little cows,” Weinstein said. “They spend a lot of time eating, but we also see them walk around, mate, groom, climb up the walls, sleep in the nest box.”

The footage and behavioral observations strongly support a monogamous lifestyle. They share many of the traits common among monogamous animals: large size, a long life span and a slow reproductive rate. Additionally, the researchers trapped a few large juveniles in the same location as adult pairs, suggesting that offspring spend an extended period of time with their parents. In the pens, the paired rats spent more than half of their time near each other, and frequently followed each other around. The researchers also recorded special squeaks, purrs and other communicative noises making up a wide vocal repertoire. Further behavioral studies and field observation would uncover more insights into their reproductive and family life.

After the researchers established a baseline of behavior, they offered rats branches from the poison arrow tree. Although rats did not sequester every time the plant was offered, 10 rats did at least once. They chewed it, mixed it with spit, and licked and chewed it into their specialized hairs. Exposure to the Acokanthera toxins did not alter rat behavior, and neither did eating milkweed, the same cardenolide-enriched plant used as chemical defense by monarch butterflies. Combined, these observations suggest that crested rats are uniquely resistant to these toxins.

“Most people think that it was a myth because of the potency of the tree,” said Nyawira. “But we caught it on video! It was very crazy.”

The rats were selective about using Acokanthera cardenolides, suggesting that rats may be picky about their toxin source, or that anointed toxins remain potent on the fur a long time, just like traditional arrow poisons from the same source.

African crested rat conservation

The African crested rat is listed as IUCN species of least concern, but there’s little actual data on the animals. Agwanda has studied African crested rats for more than a decade—and sees indications that they’re in trouble.

“We don’t have accurate numbers, but we have inferences. There was a time in Nairobi when cars would hit them and there was roadkill everywhere,” said Agwanda, who continues to monitor the populations. “Now encountering them is difficult. Our trapping rate is low. Their population is declining.”

The research team is planning future studies to better understand their physiology and behavior. “We are particularly interested in exploring the genetic mechanisms that allow the crested rats and their parasites to withstand the toxic cardenolides” said co-author Jesús Maldonado of the Smithsonian Conservation Biology Institute and Weinstein’s Smithsonian-Mpala Postdoctoral fellowship co-advisor.

“We are looking at a broad range of questions influenced by habitat change. Humans have cleared forests to make farms and roads. We need to understand how that impacts their survival,” Agwanda said. Additionally, Agwanda is building an exhibit at the Museums of Kenya to raise awareness about this unique poisonous animal.

About the Smithsonian’s National Zoo and Conservation Biology Institute

The Smithsonian’s National Zoo and Conservation Biology Institute leads the Smithsonian’s global effort to save species, better understand ecosystems and train future generations of conservationists. As Washington, D.C.’s favorite destination for families, the Zoo connects visitors to amazing animals and the people working to save them. In Front Royal, Virginia, across the United States and in more than 30 countries worldwide, Smithsonian Conservation Biology Institute scientists and animal care experts tackle some of today’s most complex conservation challenges by applying and sharing what they learn about animal behavior and reproduction, ecology, genetics, migration and conservation sustainability to save wildlife and habitats. Follow the Zoo on Facebook, Twitter and Instagram.

About the National Museums of Kenya

National Museums of Kenya (NMK) is a state corporation established by an Act of Parliament, the Museums and Heritage Act 2006. NMK is a multi-disciplinary institution whose role is to collect, preserve, study, document and present Kenya’s past and present cultural and natural heritage. This is for the purposes of enhancing knowledge, appreciation, respect and sustainable utilization of these resources for the benefit of Kenya and the world, for now and posterity. NMK’s mutual concern for the welfare of mankind and the conservation of the biological diversity of the East African region and that of the entire planet demands success in such efforts. In addition, NMK manages many Regional Museums, Sites and Monuments of national and international importance alongside priceless collections of Kenya’s living cultural and natural heritage. As an institution that must respond to the growing needs of the society, NMK is striving to contribute in a unique way to the task of national development.

Media Contacts

Sara Weinsteinpostdoctoral researcher at the University of Utah; postdoctoral fellow at the Smithsonian-Mpala

Denise Dearingdistinguished professor and director, School of Biological Sciences

Lisa Potterresearch/science communications specialist, University of Utah Communications
Office: 801-585-3093 Mobile: 949-533-7899 

Adapted from a release by the Carnegie Observatories. Also published in @theU