SRI Stories

SRI Stories: Mutualistic Mentorship

 

Creating stepping stones for students and mentors alike

If there were a single word to describe the Science Research Initiative (SRI), “mutualistic” would rank among the best choices. Most are aware that the program uniquely allows undergraduate students to build a strong undergraduate resume, connect with expertise in the field, and ultimately learn if the career path is right for them far earlier and easier than what tradition entails. But did you know a similar benefit exists for the mentors? 

SRI mentors are able to build a resume of their own as they teach and foster their students’ growth, showing proof-positive results that they can help students thrive under their leadership. That’s useful in its own right, but they also get to “home-grow” a roster of assistants with tailor-made expertise to assist with their projects. These are assistants that then use that expertise as groundwork for projects of their own. It’s a system that benefits everyone involved

Kendra Autumn is a prime example.

Parasitic fungi adaptation

Kendra arrived at the U with a BA in Biology from Willamette University in tow and quickly became involved with SRI as a graduate student stream leader. Under the guidance of her PhD advisor Bryn Dentinger, she developed a research focus on how parasitic fungi adapt to their hosts and how they might adapt to switch to a new host. The study of parasitic relationships can lead to deeper understandings of the evolution and mechanism of parasitism and often leads to practical applications. 

“Say you’re trying to grow a crop plant and a pathogenic fungus attacks that plant,” Kendra explains, “you can get a different fungus that is a parasite of the crop-attacking fungus to deal with the issue, which is a potential pesticide-free approach to mitigating fungal crop pathogens.” She is currently studying the DNA of several mushroom specimens and their mold parasites, building evolutionary trees to better understand how these parasites have adapted to counter their hosts' defensive measures.

SRI's signature mutualism

This sort of adaptive specialization is a potential goldmine of breakthroughs as parasitism is all around us. Its utilization could affect everything from medicine to waste reduction. But as these parasitic studies built momentum, so, in tandem, did the new SRI with its signature mutualism. Now in its fifth year, the program for undergraduates is perfectly poised to place a handful of undergraduates under Kendra’s leadership, allowing them to adapt and grow together, often in ways you might not expect.

Kendra explains that “Many streams are able to create a lab culture, where fresh SRI students will go on to become learning assistants or TA’s in their stream to help mentor new students. There’s an actual sense of community. It’s something [where] I’m looking around and asking, ‘How do I develop this more in my stream?’” It becomes not just a project that students are invested in, but an environment, a place, where they feel comfortable enough to plant a few roots and start growing in turn. 

Even SRI's infancy, the benefits to both students and mentors, like Kendra, have been astounding. Now with her PhD in Ecology and Evolutionary Biology awarded last spring, she gets to lead her upcoming students as a fully fledged SRI Fellow, to ask more ambitious questions and find new ways to expand student’s horizons as the program continues to evolve. 

Kendra Autumn  has big plans, ranging from introducing genomic studies in an accessible way, to creating and involving her students with outreach programs to build their science communication skills. And all the while they will be helping her lift her own projects towards new heights. It truly is a mutualistic relationship, as the years continue to pass it's no longer a question of if SRI will benefit students. Instead, it’s a question of what kind of extraordinary new heights both mentor and students together will be able to reach.

By Michael Jacobsen

SRI Stories is a series by the College of Science, intended to share transformative experiences from students, alums, postdocs and faculty of the Science Research Initiative. To read more stories, visit the SRI Stories page.

The Next Antibiotic Revolution: Viruses to the Rescue

The Next Antibiotic Revolution: Viruses to the Rescue


Dec 09, 2024
Above: Talia Backman – Ph.D. student, School of Biological Sciences, shares a micrograph of tailocins.

From multicellular organisms, like us humans, to single-cell bacteria, living things are subject to attack by viruses. Plants, animals and even bacteria have evolved strategies to combat pathogens, including viruses that can threaten health and life.

Talia Backman, a University of Utah doctoral candidate wrapping up her final year in the School of Biological Sciences, found her project and niche in studying bacteria and the viruses that infect them.

She studies how bacteria create and use weapons, called “tailocins,” by repurposing genes from viruses.

“I’m especially interested in how bacteria have taken this a step further,” Backman said, “using remnants of past viral infections as a novel defense mechanism.”

“Phage” is the word that refers to the viruses that infect bacterial cells. While phages do not attack human cells, a lot can be learned from the strategies used by bacteria to survive a viral infection. Working with Talia Karasov, the principal investigator and assistant professor of biology (yes, they share the same first name), Backman recently helped make an unexpected discovery.

Repurposing viruses

“The bacterial strains (Pseudomonas) that I am studying are essentially repurposing the viruses that infect them,” Backman said, “retaining features from the infectious particles that ultimately help them to kill or co-exist with other strains of bacteria. These repurposed phage parts are called ‘tailocins.’ Understanding the role tailocins may be playing in shaping the prevalence, survival, and evolutionary success of certain bacterial strains is not well understood and is a major focus of the research in the Karasov lab.

Research on bacteria, and their unique viral pathogens, might just offer a novel solution to the antibiotic crisis. Beyond revealing how microbial communities combat infection, compete and evolve is the adjacent opportunity and potential to discover a new class of antibiotics.

Read the full article in @School of Biological Sciences.

SRI Stories: Parker Guzman

SRI Stories: Of Bees & Pigeons


May 29, 2024

“We were given the opportunity to ask novel questions,” Parker Guzman says of the Science Research Initiative (SRI) in the College of Science, “as well as the methods and process of experiments. That’s lacking in undergraduate research a lot of the time.”

Parker worked in the Briggs/Steffen SRI stream, which focuses on pollination biology. The lab, in which students actively participate in field research and molecular protocols, studies native bees and their molecular structure in order to better understand the plants they pollinate and how to help native bees in the environment.

Parker is majoring in biology, with an emphasis in ecology and evolution with a minor in integrative human biology.

“After I leave the U,” Parker says, “I want to work in the field and then apply for a PhD program in ecology and evolution. I could see myself staying in academia, I enjoy teaching or doing research.”

In 2023, Parker won the Department of Chemistry’s Kodak Educational Service Fellow Award for mentorship. He works as a teaching assistant for organic chemistry classes.

“A professional hero of mine is Hank Green,” Parker says. “He’s an author and science communicator and has done a lot of work on platforms like YouTube to make science more accessible.”

Parker is the president of the undergraduate chapter of SACNAS at the U, a club that promotes and supports diversity in STEM. SACNAS often attends conferences, such as the one in Portland, Oregon last year. Parker also organized a smaller, local conference at the U in April, where around one hundred people participated. SACNAS won the Recognized Student Organization award for belonging from the University of Utah.

Along with SACNAS, Guzman works in the Clayton/Bush lab in the School of Biological Sciences. He became interested in their research after attending a lecture on parasitology. Focusing on host-parasite coadaptation and diversification, the Clayton/Bush lab works with birds, using captive birds as well as field work to research these mechanisms.

Guzman’s research within the Clayton/Bush lab is on the relationship between molt and preening behavior in captive pigeons.

“Molt is a huge but necessary energy investment for pigeons,” explains Parker. “So we expect them to downregulate other behaviors. But preening may not be downregulated due to the role it plays in maintaining plumage health.”

“Despite what most people think,” adds Parker Guzman, “pigeons are one of the smartest animals in the world.”

 

by CJ SIebeneck

New Faculty: Eleinis Ávila-Lovera

New Faculty:  Eleinis Ávila-Lovera


September 25, 2024

Above: Eleinis Ávila-Lovera

Like all living things, plants have to respond and adapt to various stressors in their environment. But unlike most living things, plants must cope with these issues while being completely immobile.

In the field.

This stalwart resilience fascinated Eleinis Ávila-Lovera in her undergraduate years, an interest that has guided her entire educational journey as a plant ecophysiologist. Drawn to the deserts of the region, she has found her way here as an assistant professor of the School of Biological Sciences

Starting in Venezuela where she was born and raised, Ávila-Lovera was inspired by her grandparents to live her life to its fullest potential. Her grandmother Leonidas Guevera de Lovera taught her to read and write at the age of four. When combined with her grandfather Luis Lovera’s work ethic setting a perfect example, Ávila-Lovera was able to adapt and thrive as efficiently as the plants she would eventually study. Guided by the insightful teaching of her undergraduate mentor Wilmer Tezera, she was quickly drawn to the arid environments of the region. It’s hard enough to weather the world while immobile, exponentially more so in the scorching heat with no water. And yet, countless plants are able to adapt and thrive in these conditions.

“There’s a particular genus called Parkinsonia (palo verde),” Ávila-Lovera explains when asked for an example, “Whose bark is completely green. It’s a drought-deciduous plant, meaning that it loses its leaves during the dry season. In a desert this could lead to zero carbon gain, yet the palo verde is still able to withstand the arid heat, because the green stem helps them continue acquiring carbon despite the lack of leaves.”

Plants such as this are the focus of Ávila-Lovera’s research. Her lab is currently working on two projects: One, led by graduate student Osedipo Adegbeyeni, is comparing the water status regulation between leaves and photosynthetic stems in desert plants. The other, led by postdoctoral researcher Oranys Marin, is studying the link between hydraulic conductivity and stem photosynthesis in desert plants. Ultimately the former project aims to decipher differences in how stems and leaves tolerate drought conditions. The latter explores the potential coordination of traits that allow better performance of plants in drought conditions.

Ávila-Lovera also currently teaches BIOL 5460, Plant Ecology in a Changing World. Taking inspiration from the adaptations she has studied, she wishes to create a classroom environment that provides students all the tools and resources they need to thrive. Being over 3,000 miles from home herself, she’s well versed in the process of learning to flourish in unfamiliar soil. She aspires not just to transmit information, but to provide the basis that allows  students to master and apply their newfound knowledge in turn.

“It’s important to remember that ecology as a science has the same rigorous background as other sciences,” Ávila-Lovera explains. “I do consider myself an environmentalist. I do not eat red meat or poultry and try to reduce my carbon footprint. But ecology itself is a science; we’re testing hypotheses, and it’s critical to approach it with the organization and structure one would expect.”

Having been allowed to thrive by multiple mentors before her, Ávila-Lovera eagerly looks forward to providing a similar mentorship role to her current and future students.

By Michael Jacobsen

You can read more about Ávila-Lovera and her study of the chromatic story of plant survival here.

>> HOME <<


Biochar Robots win $500K Wilkes Climate Launch Prize

Biochar Robots win $500K Wilkes Climate Launch Prize


Sep 25, 2024
Above: Applied Carbon’s pyrolyzer. PHOTO CREDIT: Applied Carbon

Applied Carbon, formerly known as Climate Robotics, has developed a mobile, in-field solution that picks up crop waste left after harvesting and converts it into carbon-rich biochar in a single pass.

The resulting product is deposited back onto the field, simultaneously increasing soil health, improving crop yields, reducing fertilizer needs, and providing a carbon removal and storage solution that lasts millions of years.

Jason Aramburu, CEO and co-founder Applied Carbon, receives Wilkes Climate Launch Prize in September 2024. CREDIT: University of Utah

The 2024 Wilkes Climate Launch Prize is one of the largest university-affiliate climate awards in the world and is geared to spur innovation and breakthroughs from organizations at all stages, both for-profits and nonprofits—anywhere in the world—to help fund and accelerate solutions to climate change.

“People talk about the ‘missing middle’ of funding in climate tech. For early-stage research, you use government grants to prove the science. Once you have a working design, you might get VC money. But when it comes to building your first few prototypes, investors can’t take the risk,” said Jason Aramburu, CEO and co-founder Applied Carbon. “Programs like the Wilkes Climate Launch Prize are really important to fill a crucial funding gap.”

William Anderegg, director of the Wilkes Center for Climate Science & Policy, awarded the prize to Aramburu during an evening reception held in partnership with the Southwest Sustainability Innovation Engine (SWISIE), a multi-institutional enterprise in which the U and collaborators confront climate challenges facing the desert Southwest and spur economic development in the region.

“Applied Carbon’s bold climate solution addresses a major opportunity for agriculture to contribute to removing carbon from the atmosphere, benefiting farmers and soil health at the same time,” said William Anderegg. “It’s exactly the type of scalable and impactful solution that the Wilkes Climate Launch Prize seeks to supercharge.”

Aramburu and Applied Carbon COO and co-founder Morgan Williams dreamed of a better system that could pick up crop waste and produce and distribute biochar in one pass. Now, they’ve developed an agricultural robot called a pyrolizer that does it all in-field, in one pass.

Read the full article by Lisa Potter in @TheU.

How Harmful is Great Salt Lake Dust? U Scientists Investigate

How Harmful is Great Salt Lake Dust?
U Scientists Investigate


September 17, 2024

As Utah’s Great Salt Lake shrinks, exposing more of its playa, concerns grow about the dust the dry lakebed emits. But scientists lack the data to fully understand what pollutants are present in these airborne sediments.

Researchers from the University of Utah, including atmospheric scientist Kevin Perry and biologist Michael Werner, are attempting to get a handle on this question and the latest findings are concerning.

Sediments in the lake’s exposed playa are potentially more harmful than other major dust sources affecting the Wasatch Front’s air quality, according to a study published online recently in the journal Atmospheric Environment.

NBC News Dust researcher Kevin Perry poses with his fat bike and a PI-SWERL machine, which can measure wind erosion and dust emission.
Photo credit: Evan Bush

“You’re talking about a very large dust source located next to a very large population, and you’ve got elevated levels of manganese, iron, copper and lead. Lead is a concern for developmental reasons,” said senior author Kerry Kelly, a professor of chemical engineering. “Manganese, iron and copper, these are transition metals and are known to be very irritating to your lungs. Once you get irritation, that can lead to this whole inflammatory response. And that’s part of the problem with particulate matter and it’s adverse health effects like asthma.”

Another recent study led by sociology professor Sara Grineski found dust from the lakebed disproportionately affects disadvantaged neighborhoods in Salt Lake County.

In a separate forthcoming study led by U biologist Michael Werner’s lab, another team of researchers characterized levels of toxic metals deposited in submerged lakebed sediments sampled during the lake’s record low-water year of 2021, noting how these levels have changed since the years of Utah’s mining era.

To conduct the published study, Kerry Kelly’s lab, which specializes in air quality, teamed up with researchers in the U’s College of Science. They examined previously collected sediment samples from the Great Salt Lake, comparing them with sediments from other dust sources in the Great Basin, namely Sevier Lake, Fish Springs Lake and West Desert in western Utah and Tule Lake in northeastern California. These places are known to contribute to dust pollution reaching Salt Lake City.

In recent years, co-author Kevin Perry, a professor of atmospheric sciences, has systematically gathered exposed lakebed sediments, logging hundreds of miles on a bike. His prior research has identified “hotspots” on the playa that appear to be enriched with potentially toxic elements.

Read the full article by Brian Maffly @TheU.

How symbiosis helps define evolution

How symbiosis helps define evolution


September 3, 2024
Above: Colin Dale

“We’re looking at how deterministic the process of evolution is,” biologist Colin Dale says. “We’ve leveraged that question in this beautiful system, where we’ve got samples that have evolved under near identical conditions in nature.”

At the School of Biological Sciences at the University of Utah, the Dale Lab, along with U biologists Sarah Bush, Dale Clayton (Clayton/Bush Lab) and Robert Weiss U Human Genetics, in addition to collaborators from the University of Illinois (Kevin Johnson) and Virginia Commonwealth University (Bret Boyd) are exploiting an amazing biological system to study the relative contributions of stochasticity, contingency and determinism to evolution.

They do this using feather-feeding lice and their symbiotic bacteria that play a critical role in supplementing their host’s overly protein-rich diet of feather keratin. Their paper “Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria” published this summer in Nature Communications.

“Keratin is a protein, and animals can’t live on protein alone,” says Dale. “The bacteria are producing B vitamins that are essential for these lice. Consequently, all feather-feeding lice have bacterial symbionts.”

The Clayton/Bush lab: Bacteriocytes in the abdomen of an adult female Columbicola columbae. Red and green colors show bacterial and louse cells, respectively. The bacteriocytes form conspicuous tissues called ovarial ampullae (oa) that are associated with developing eggs (mature oocytes: mo). Inset shows vertical transmission, with bacterial cells moving from the ovarial ampulla to the posterior pole of an oocyte through follicle cells. Credit: adapted from Fukatsu et al. 2007)

These bacteria are “endosymbiotic” which means they live (obligately) within the cells or bodies of a host animal. Remarkably, these bird lice have been collected from all over the globe, yet they have independently picked up the same species of bacteria to domesticate as vitamin “factories.” Dale recalls a question posed by the famous paleontologist Stephen Jay Gould: If we could see replays of the tape of life, taking place under near-identical conditions, would the process of evolution prove to be repeatable?

“What you have to worry about with Gould’s thought experiment,” Dale states, “is that distinct environmental conditions can induce distinct selection pressures. But since these lice are ectoparasites on birds, they’re buffered against variation in the environment and have no variation in diet. So, it’s one of the best examples of an evolutionary process that has evolved repeatedly under near-identical conditions.”

Symbiotic lifestyle

Mutations are randomly or “stochastically” generated but many do not survive the test of natural selection because they negatively impact fitness. However, upon transitioning to a symbiotic lifestyle, bacteria can withstand the mutational inactivation of many genes because those gene functions are supplanted by genes in their host. In this work, Dale and colleagues found that gene losses in the bacterial symbionts follow a decision tree-like structure that results in the minimization of their gene inventory, through the removal of redundant gene functions. In simple terms, if Gene A and B have redundant functions and the bacteria lose gene A, they are forced to maintain Gene B in order to survive (or vice versa). However, the loss of gene B might then facilitate the loss of genes X, Y and Z because the functions of those genes are uniquely dependent on gene B. Thus, cascading patterns of co-dependent gene loss and retention are initiated as a consequence of distinct stochastic losses in each symbiont genome.

“That’s the beautiful outcome of this paper,” says Dale. “It provides empirical evidence for this long-term trajectory and interplay between stochasticity, contingency and evolutionary determinism.” This has implications for the evolution of mitochondria and chloroplasts, which according to the theory of endosymbiosis, are organelles that used to be independent microbes that became symbiotic with eukaryotic cells in a similar way to these bacteria and the lice.

“Those organelles started off with big gene inventories,” Dale says. “When our cells provided them with an abundance of nutrients, they minimized their functions to retain only those that proved beneficial to their hosts, encompassing photosynthesis in the case of the chloroplast and aerobic energy generation in the case of the mitochondrion.

Notably, these very important traits originated through symbiosis and defined the evolution of plants and animals on Earth.

Cutting-edge of computational biology

The Dale Lab has a substantial focus on computational genomics and data science, catalyzed in large part by a very talented graduate student, Ian James, who obtained his bachelor’s degree in biology from the U and subsequently discovered that he had a talent for computer science.  “Ian is extraordinarily creative,” says Dale. “He starts out with biological questions and crafts complex data analysis pipelines, often using machine learning approaches, to obtain answers from big sets of data, ultimately producing some really psychedelic figures.”

Graduate student Ian James engrossed in “the silicon bubble of computational biology." Credit: courtesy of Colin Dale.

In combination with collaborators in Illinois and Virginia, who also utilize cutting-edge computational techniques to understand the patterns of louse and symbiont evolution, James uses pattern recognition and association rule mining to uncover hidden relationships between variables in large datasets to detect contingency in evolution.

“The resulting approaches are really novel and uncover striking and highly supported patterns” continues Dale. “Such approaches also have great potential for understanding the etiologies of diseases such as cancer, that often arise as a consequence of gene(s) becoming damaged.”

While Dale enjoys being trapped in what he calls “the silicon bubble of computational biology,” he also recognizes that field biologists, including Bush and Clayton, play a critical role in enabling this work to come to fruition. It requires specimens collected from all over the world to provide the genetic material for the cutting-edge data science and analysis. Bush and Clayton, along with many other collaborators, have been collecting and studying bird lice for decades, yielding a gift (to science) that literally keeps on giving.

The system has been used to answer many important questions in the field of evolutionary biology and serves as a model for the understanding of co-evolutionary interactions in biology textbooks. “In this case, in the context of symbiosis, this system is actually really interesting because it’s so boring” quips Dale. “Again, it’s the lack of variation in the underlying biology that makes it an excellent candidate for this type of study. I’ve always paid attention to the aphorism stating that ‘all that glitters is not gold.’ It’s also worth noting that sometimes the gold doesn’t glitter at all.”

by CJ Siebeneck

New bioinformatics major

New bioinformatics major opens doors to thriving careers


August 28, 2024

Beginning fall 2024, the degree provides rigorous interdisciplinary training to help graduates thrive in rapidly growing sectors.

Tommaso De Fernex, Chair of the Department of Mathematics. Credit: Todd Anderson

Tommaso De Fernex, chair of the Department of Mathematics at the University of Utah, has announced a new bioinformatics bachelor's degree (BS) available beginning fall semester 2024. The degree provides rigorous interdisciplinary training to help graduates thrive in rapidly growing sectors.

At the nexus of data science and life and physical sciences, bioinformatics applies intensive computational methods to analyze and understand complex biological information related to health, biotechnology, genomics and more. Through a comprehensive curriculum, undergraduates at the U will gain expertise in a variety of areas that together form an inter-disciplinary, multi-semester laboratory with rich possibilities.

“This major represents a pivotal step in keeping our students at the forefront of biotechnology,” says De Fernex. “It embodies true interdisciplinary collaboration, drawing expertise from biology, chemistry, and computer science faculties. I'm grateful for the dedication of our faculty in developing this program and for our strong partnerships with the medical campus and Utah's thriving biotechnology sector.”

 The complexity of life

Another math professor at the U, Fred Adler, agrees. The “study of life” is decidedly complex, says Adler who has joint faculty appointments in biology and mathematics and is currently director of the U’s School of Biological Sciences. “Unraveling that complexity means combining the tools developed in the last century: ability to visualize and measure huge numbers of tiny things that used to be invisible, technology to store and analyze vast quantities of data, and the fundamental biological and mathematical knowledge to make sense of it all.”

Continues Adler: “A few years ago, we heard that biology is the science of the 21st century. But with all the excitement and innovation in AI and machine learning, it might seem that this prediction was premature. We think nothing could be further from the truth.” Clearly, with the advent of biostatistical modeling, machine learning for genetics, biological data mining, computer programming and computational techniques for biomedical research, he said, “the preeminent role of biology in the sciences” has arrived.

A busy intersection

Bioinformatics is a field that intersects virtually every STEM discipline, developing and utilizing methods and software tools for understanding biological data, especially when the data sets are large and complex. Mathematics, (including statistics), biology, chemistry, physics, computer science and programming and information engineering all constellate to analyze and interpret biological data. The subsequent process of analyzing and interpreting data is referred to as computational biology.

Historically, bioinformatics and computational biology have involved the analysis of biological data, particularly DNA, RNA, and protein sequences. The field experienced explosive growth starting in the mid-1990s, driven largely by the Human Genome Project and by rapid advances in DNA sequencing technology, including at the U.

The new bioinformatics bachelor’s degree also complements the University’s storied graduate program in biomedical informatics, run by the Department of Biomedical Informatics at the Spencer Fox School of Medicine.

High-growth career field

The field of bioinformatics is experiencing rapid growth, with the U.S. Bureau of Labor Statistics projecting a 15% increase in related jobs over the next decade, outpacing many other occupations. Graduates with a bioinformatics degree can expect to find opportunities in diverse sectors, including biotechnology, pharmaceuticals, healthcare and research institutions. The interdisciplinary nature of this degree equips students with a unique skill set that combines biological knowledge with computational expertise. This blend of skills is increasingly valuable in today's data-driven economy, opening doors to a wide range of career paths and translating into higher earning potential for bioinformatics graduates.

"Students with quantitative expertise, like that offered in the new bioinformatics degree, are in high demand in the life sciences industry," says Peter Trapa, dean of the College of Science. "Recent data on U graduates highlights strong job placement and impressive salaries for graduates with such skills. This degree is designed to prepare students for success in these thriving job markets."

What students can expect

As a bioinformatics major, a student will learn from and collaborate with faculty pushing the boundaries of genomics, systems biology, biomedical informatics and more. Other universities and colleges offer a similar degree, but advantages to the U’s bioinformatics major include the following:

  • Hands-on research experiences in a student’s first year through the College’s celebrated Science Research Initiative
  • Core mathematical foundations through the renowned Department of Mathematics
  • Access to an R1 university with nationally ranked biomedical, health sciences and genomics programs
  • Internship opportunities with industry partners
  • Advisory support and career coaching

Concludes De Fernex, “Our bioinformatics curriculum promises a challenging yet immensely rewarding journey, equipping students for high-paying careers or further advanced studies. In today's world, where science and medicine increasingly rely on big data analysis, bioinformatics stands as a frontier of discovery.”

Students can learn more about the new bioinformatics major by visiting http://math.utah.edu/bioinformatics.

By David Pace

Scientists Find Hope in Cone Snail Venom

Scientists Find Hope in Cone Snail Venom


Aug 23, 2024
Above : Ho Yan Yeung, PhD (left) and Thomas Koch, PhD (right, also an author on the study) examine a freshly-collected batch of cone snails. Image credit: Safavi Lab.

Based on work by Toto Olivera, the father of research on cone snail venom, scientists are now finding clues for how to treat diabetes and hormone disorders in a toxin from one of the most venomous animals on the planet.

An international research team led by University of Utah scientists has identified a component within the venom of a predatory marine cone snail, the geography cone, that mimics a human hormone called somatostatin, which regulates the levels of blood sugar and various hormones in the body. The hormone-like toxin’s specific, long-lasting effects, which help the snail hunt its prey, could also help scientists design better drugs for people with diabetes or hormone disorders, conditions that can be serious and sometimes fatal.

The results were published Aug. 20 in the journal Nature Communications.

A blueprint for better drugs

Somatostatin acts like a brake pedal for many processes in the human body, preventing the levels of blood sugar, various hormones, and many other important molecules from rising dangerously high. The cone snail toxin, called consomatin, works similarly, the researchers found—but consomatin is more stable and specific than the human hormone, which makes it a promising blueprint for drug design.

By measuring how consomatin interacts with somatostatin’s targets in human cells in a dish, the researchers found that consomatin interacts with one of the same proteins that somatostatin does. But while somatostatin directly interacts with several proteins, consomatin only interacts with one. This fine-tuned targeting means that the cone snail toxin affects hormone levels and blood sugar levels but not the levels of many other molecules.

In fact, the cone snail toxin is more precisely targeted than the most specific synthetic drugs designed to regulate hormone levels, such as drugs that regulate growth hormone. Such drugs are an important therapy for people whose bodies overproduce growth hormones. Consomatin’s effects on blood sugar could make it dangerous to use as a therapeutic, but by studying its structure, researchers could start to design drugs for endocrine disorders that have fewer side effects.

Consomatin is more specific than top-of-the-line synthetic drugs—and it also lasts far longer in the body than the human hormone, thanks to the inclusion of an unusual amino acid that makes it difficult to break down. This is a useful feature for pharmaceutical researchers looking for ways to make drugs that will have long-lasting benefits.

Learning from cone snails

Finding better drugs by studying deadly venoms may seem unintuitive, but Helena Safavi, associate professor of biochemistry in the U’s Spencer Fox Eccles School of Medicine and the senior author on the study, explained that the toxins’ lethality is often aided by pinpoint targeting of specific molecules in the victim’s body. That same precision can be extraordinarily useful when treating disease.

“Venomous animals have, through evolution, fine-tuned venom components to hit a particular target in the prey and disrupt it,” Safavi said. “If you take one individual component out of the venom mixture and look at how it disrupts normal physiology, that pathway is often really relevant in disease.” For medicinal chemists, “it’s a bit of a shortcut.”

Among Safavi’s coauthors are faculty from the U’s School of Biological Sciences, including Baldomero Olivera and Samuel Espino. The U has been a hotspot for research into the venom’s pharmacological properties since Olivera arrived in Utah in 1970 from his native Philippines, bringing his interest in cone snails with him.

Read the full, original story by Sophia Friesen in UofU Health.
Read about Toto Olivera’s 2022 Golden Goose Award for early research in cone snails here.

Humans of the U: Nathan Patchen

Humans of The U: Nathan Patchen


August 12, 2024

“Initially, I chose to attend the University of Utah because I heard they had an excellent biology program and many opportunities for pre-medical students. I understood that the U was a top research school, and I knew I wanted to pursue a career in the biological sciences.

In my first year, however, I had some great experiences with the university’s chemistry department and fell in love with chemistry. Since then, I have decided to double major in biochemistry and biology. My goal is to pursue an MD-PhD, so I can do both research and work with patients.

I am passionate about improving the quality of life for patients, allowing them to lead healthier and hopefully more fulfilling lives. I hope to do this by working in the field of genetics/genomics and using gene editing techniques to find new tools to combat diseases that are otherwise untreatable. Additionally, I am interested in understanding why and how we age and improving patient outcomes through this process.

These interests are reflected in the research I have been a part of on campus as an undergraduate. The prestigious research that happens at the U is one of the reasons I was drawn to the school. Though research can be frustrating, time-consuming, and tedious, I have found it to be the most enriching part of my education. The incredible opportunity to participate in the forefront of science has drastically expanded my capabilities not only as a scientist but as a person.

Recently in my lab, the principal investigator (PI) assigned me to learn how to synthesize a compound we use for our experiments in an effort to bring our costs down. It was a difficult process to optimize the protocol for our lab, but through extensive troubleshooting and consulting with other labs, I became an expert on the topic.

After months of running the process over and over again without success, my PI and I discovered the error was occurring in a step I was not in control of. We were so excited to have found the solution After correcting the problem, I was able to successfully produce the desired product. Better yet, the new method dropped the cost of our experiments from $60 per experiment to less than a cent. It is exciting that I could play such a key role in helping my lab achieve a research goal that opens realms of possibility. It feels great to be able to contribute to something larger than myself.

I have recently been recognized as a Goldwater scholar which is exciting because it is a testament to my commitment to pursue science and my desire to make an impact on the world through discovery. To me, receiving this award is a great honor, it tells me that someone believes in me, and is willing to invest in my development. It is my goal to live up to that expectation, whether it be through science, medicine, or some other field, my goal is to serve and improve the lives of others.

—Nathan Patchen, a junior in the Honors College studying biochemistry and biology and a 2024 Goldwater Scholarship recipient 

This story originally appeared in @TheU.