Biologist Eron Powell: Student Commencement Speaker

shaping students into people of excellence


April 29, 2024
Above: Eron Powell

For the 2024 University of Utah student commencement speaker Eron Powell, a love of learning is one of the most important things he is taking away from his time at the U.

“Outside of college and into the future, I hope to always be able to educate myself,” Powell said. “We are never complete people. We have to keep working on ourselves. That is the fun of living—learning to be a better person who is more kind, more compassionate and more caring.”

Twenty-six-year-old Powell grew up in Emmett, Idaho, with his seven siblings. Graduating with a Bachelor of Science in biology, he was drawn to the U because of the school’s research opportunities and the prestige of the U’s College of Science.

Though Powell faced many challenges during his first year of college, from health issues to adapting to rigorous course work to finding his place among strangers, there is a lot he will miss about being a U student.

“As we approach commencement, I’m sadder than I thought I would be,” Powell said. “I thought I’d be so excited, but I really loved my experience at the U. So it’s hard that it’s ending.”

 

Read the full article by Maitlyn Mortensen in @ The U. 

The General Commencement ceremony where Powell will speak will be held on Thursday, May 2 at 6 p.m. in the Jon M. Huntsman Center. Read more about the 2024 commencement here.

Arbor Day & Cottam’s Gulch

Arbor Day & Cottam's Gulch


April 26, 2024
Above: Cottam's Gulch, Credit: Mathew Crawley

On this Arbor Day: The legacy of botanist Walter Cottam transformed U campus into a living laboratory. How the university became Utah's official arboretum, home to 9,600 trees on its main campus, featuring at least 250 species from around the world.

Back in the 1930s, University of Utah administrators had a plan for a natural gully that ran past the then-new Thomas Building (now housing the Crocker Science Center) south of Presidents Circle. That proposal was to fill it and and stick more buildings there.

.

Botany professor Walter Cottam had a different idea for the spot. How about a botanical feature filled with exotic trees? This vision for what became known as Cottam’s Gulch somehow prevailed, and ultimately proliferated around the U where Cottam and colleagues went on a decades-long tree-planting spree.

Thanks to those efforts, the Utah Legislature in 1961 designated the booming campus as the state’s official arboretum, to “provide resources and facilities for cultivating a greater knowledge and public appreciation for the trees and plants around us, as well as those growing in remote sections of the country and world.”

More than 60 years later, main campus is home to 9,600 trees representing 250 species and many more different varieties within species. With Arbor Day upon us (April 26), now is the time to tour the campus arboretum with trees beginning to leaf and blossom.

Bring a smartphone so you can scan the QR codes found on placards attached to about 100 trees, most of them within or near Presidents Circle.

Read the full story by Brian Maffly and take a guided tour of the gulch in @ The U. Read a previous article about Cottam's Gulch by Ann Jardine Bardsley BA'84 here.

Humans of the U: Gabe Brown

Humans of the U: Gabe Brown


April 26, 2024
Above: Gabe Brown. Credit:  Harriet Richardson/University of Utah

 

“I’ve always loved the outdoors. I grew up here in Utah going on backpacking trips in places like the High Uintas. So, I knew I wanted to do something in conservation and fortunately, I found myself working in Austin Green’s lab, who uses trail cameras to understand local ecosystems.

 

 

I really like working in Austin’s lab not only because he’s a  really supportive mentor (and fellow nerd), but also because we work with the Sageland Collaborative, a Utah based nonprofit I really admire.  I find their commitment to community engagement, collaboration with policymakers, and applied science to be very inspiring. I think those are three things that are really important in conservation; scientific research, because you need to have the understanding of what’s going on to manage effectively; collaboration, because you need to work with people who have the power to make changes; and then—the most important thing for me—is engaging the public in conservation of their local ecosystem. I am really passionate about people’s connection to land, and how our experiences shape our perception of nature and what things are worth conserving.

It’s funny—the fact that my research lab uses cameras is completely incidental to my other passion, filmmaking. I’ve also always loved film, but I also knew early on that I didn’t want to work in Hollywood,  or live in LA. I love the creativity possible in film, but I have always loved science more. I went into school not thinking I would ever do a film degree, but then I found out about the U’s documentary minor program. Through the program I’ve been able to refine my skills as a filmmaker and meet some incredibly talented friends along the way.

I’m really interested in human ecology and conservation, and how people are connected to the land that sustains them. Right now, I’m doing a student fellowship with a local nonprofit called Leicester Productions to make a short film about Great Salt Lake. The group I’m focusing on is called the Youth Coalition for the Great Salt Lake. Many of the members of the coalition are queer or come from other underrepresented groups, and I think it’s really important to amplify those kinds of voices in environmental spaces.

Read the full story in @ the U.

SRI Stories: Bones of the Past

SRI Stories: Bones of The Past Teach Us About The Present


April 22, 2024

Animal bones found in Utah’s caves are being used to study the impact of climate change on current animal communities. “I like to think of it as just one big puzzle,” Kasey Cole, Science Research Initiative (SRI) post-doctoral researcher and stream leader, states. “We can look at past records of animals and compare them to modern records of animals in that same area.”

Kasey has always been interested in studying the past. Originally from California, she graduated from California State University, Fullerton with a degree in anthropology. “I started as a history major,” Kasey says. “But I took an archaeology course, just as a general education requirement, and realized I can incorporate science and a more hands-on approach to learning about the past.” She then received her master’s from California State University, Chico, before coming to the University of Utah to get her PhD.

Left to right: Randall Irmis, NHMU’s curator of paleontology, Dr. Tyler Faith, NHMU’s chief curator, and caver Tom Evans examine and collect mammal bones on the floor of Tubafore Cave. Credit: Colin Stern

“My advisor, Jack Broughton, is a wonderful archaeologist, and he specializes in zooarchaeology of western North America, the exact thing I wanted to do,” says Kasey. “The anthropology program is unified by an evolutionary and ecological theoretical perspective, which is something I wanted to pursue more. I liked the connection with biology and the connection with ecology, so that’s what got me hooked. With my background in zooarchaeology, I study environmental change in the past.” Her expertise also includes paleoecology and she works as a research affiliate for the Natural History Museum of Utah (NHMU) and the Department of Anthropology. The Utah Cave Paleo project started when citizen cavers began noticing bones at the bottom of caves they were exploring.

Enter Tyler Faith, chief curator and Randy Irmis, curator of paleontology at NHMU. They were interested in the findings and have since collected many bones from caves throughout Utah over the past four years. Last year, Kasey was brought in because of her expertise in North American fauna in order to identify and research the bones.

“At the time, I was one of Tyler Faith’s graduate students,” says Kasey. “He brought me into this project — perfect for a postdoc,” and she has been studying the bones from these Utah caves ever since.

The collaboration between the NHMU, SRI, and local cavers made this research possible, which is providing a glimpse into the past. The bones range in age, from only a few weeks old to hundreds of years old. In terms of archaeology, the caves are a gold mine, allowing researchers to understand animal communities before anthropogenic climate change. The data from the bones are then compared to current animal communities to see how they are affected by climate change.

Kaedan O’Brien, lead author of published findings from Utah caves, and anthropology Ph.D. candidate at the U, holds up a mummified wood rat at an undisclosed cave in the House Range of western Utah. Credit: Randy Irmis

“I use the term paleoecologist,” says Kasey when describing herself. “I study old environments. And the way I do that is by studying animal bones from either archaeological or paleontological contexts. I then use those animals to help me reconstruct what the environment looked like.”

Kasey’s research is interdisciplinary, involving biology, ecology, anthropology, chemistry, climate science, among others. By studying past environments through animal bones, Cole can ask questions about the climate and geologic record and even questions about human behavior.

Some of the insights provided by this research include records of the now-extinct Southern Rocky Mountain Wolf, from bones recovered in a cave in the Uinta Mountain range. These wolves went extinct in the early 1900s, and records of them are rare because of how quickly they disappeared due to eradication by humans.

The cave bones also indicate the presence of wolverines, animals that are extremely rare in Utah, with only eight confirmed sightings in Utah since the 1970s. However, bones in these caves imply resident populations of the animal.

Kasey Cole posing next to special exhibit at the Natural History Musem of Utah.

The project is beginning to expand out of the Wasatch and Uinta and into other mountain ranges such as Utah’s House Range located in Millard County. Within some of these caves, the remains of bighorn sheep are being discovered, which is fascinating since there is no historical or modern record of them in the region.

The SRI students in Kasey’s lab not only assisted with this research, but they get to explore their own individual research projects.

“It’s associated with the stream, but they’re focused on questions they’re asking,” says Cole about student activities. “The students all learn the process of identifying bones, but at the end of the semester, I want them all to have an individual project idea, so they can conduct that research the next semester. All of these research projects have transferable skills that pre-med students or other students can take with them.”

Kasey is involved with SRI because she’s passionate about teaching, and SRI is a great place for students to learn research skills and gain access to research opportunities. “The thing that brings me the most joy is talking to students and teaching them,” she says. “Also breaking down these antiquated barriers for people in science and giving people opportunities.”

Kasey Cole’s research is currently on display at the Natural History Museum of Utah in a special exhibit which opened April 1 and will be on display until early September.

 

By CJ Siebeneck

SRI Stories is a series by the College of Science intended to share transformative experiences from students, alums, postdocs and faculty of the Science Research Initiative. To read more stories, visit the SRI Stories page.

Regenerating damaged heart tissue. Sound Fishy? (It is)

REGENERATING DAMAGED HEART TISSUE. SOUND FISHY? (IT IS)


April 18, 2024

Utah biologists discover that tiny tropical fish's "superpower" lies in an immune response to heart injuries.

Clayton Carey, a postdoctoral researcher in the Gagnon lab and lead author on the new study. Credit here and above: Brian Maffly

A heart attack will leave a permanent scar on a human heart, yet other animals, including some fish and amphibians, can clear cardiac scar tissue and regrow damaged muscle as adults.

Scientists have sought to figure out how special power works in hopes of advancing medical treatments for human cardiac patients, but the great physiological differences between fish and mammals make such inquiries difficult.

So University of Utah biologists, led by assistant professor Jamie Gagnon, tackled the problem by comparing two fish species: zebrafish, which can regenerate its heart, and medaka, which cannot.

A tale of two fish

The team identified a few possible explanations, mostly associated with the immune system, for how zebrafish fix cardiac tissue, according to newly published research.

“We thought by comparing these two fish that have similar heart morphology and live in similar habitats, we could have a better chance of actually finding what the main differences are,” said Clayton Carey, a postdoctoral researcher in the Gagnon lab and lead author on the new study.

Gagnon’s team wasn’t able to solve the mystery—yet—but their study shed new light on the molecular and cellular mechanisms at play in zebrafish’s heart regeneration.

“It told us these two hearts that look very similar are actually very different,” Gagnon said.

Both members of the teleost family of ray-finned fish, zebrafish (Danio rerio) and medaka (Oryzias latipes) descended from a common ancestor that lived millions of years ago. Both are about 1.5 inches long, inhabit freshwater and are equipped with two-chamber hearts. Medaka are native to Japan and zebrafish are native to the Ganges River basin.

According to the study, the existence of non-regenerating fish presents an opportunity to contrast the differing responses to injury to identify the cellular features unique to regenerating species. Gagnon suspects heart regeneration is an ancestral trait common to all teleosts.

Understanding the evolutionary path that led to the loss of this ability in some teleost species could offer parallel insights into why mammals cannot regenerate as adults.

With their distinctive horizontal stripes, zebrafish have long been popular as pets in the United States. In the 1970s zebrafish were embraced by biologists as a model organism for studying embryonic development of vertebrates.

Scientists like zebrafish because they can be propagated by the thousands quickly in labs, are easy to study and proved to be extremely hardy.

Read the full story by Brian Maffly in @The U

Gentrification drives patterns of alpha and beta diversity in cities

Gentrification drives patterns of alpha and beta diversity in cities


April 18, 2024
Photo: Mountain lion in the Wasatch Mountains. Credit: Austin Green.

Over the past two decades, a return of investment and development to once-neglected neighborhoods has meant a significant increase in spending on restoring parks, planting trees and converting power and sewer easements into publicly accessible greenspaces.

That trend — sometimes called “green gentrification” — tended to raise property values, helping to price out many neighborhoods’ original inhabitants. That led to an obvious question: What had those changes done to local animal populations, and what might that say about the changing dynamics of how nature functions in American cities?

This requires a staggeringly complicated analysis, and a new study published earlier this week in Proceedings of the National Academy of Sciences (PNAS), a vast and diverse array of data includes nearly 200,000 days of camera trap surveillance, taken over three years across almost 1,000 sites in 23 U.S. cities each with a unique mammal population, pattern of urban development and interaction between the two.

Austin Green, PhD

Some of that data have been accumulated by conservation ecologist Austin Green, a post-doctoral researcher and Human/Wildlife Coexistence stream leader in the acclaimed Science Research Initiative (SRI) at the College of Science. Leveraging the citizen science movement in the intermountain region, Green and his SRI team played a critical role in assembling a cohesive, detailed data-driven narrative of how gentrification  — when lower-income people are forced out from American neighborhoods — the animal populations in the areas they’re leaving behind shift toward local species less typically associated with city environments. In turn, this phenomenon adds to the larger conversation in the U.S. about the reach and complexity of racial inequity.

Green's research is part of a monumental effort to collect and interpret data that have global implications about how humans and wildlife co-exist, especially in this case, as it relates to the continuing gentrification of cities, where more than 58 percent of the world population lives. Informed by Green's work in the SRI program combined with that of many others', scientific breakthroughs, as illustrated in the PNAS study, can directly influence conservation and adaptive management strategies.

Students in this particular stream at the U learn about wildlife ecology and conservation, as well as how to conduct ecological fieldwork, design complex studies of animal behavior and human-wildlife coexistence, curate and format large scale-datasets, and conduct advanced statistical analysis.

 

You can read the full article by SAUL ELBEIN in The Hill about this fascinating research and its findings published in PNAS here.

 

 

Biology Student Stories: Bailey Landis

Biology Student Stories: Bailey Landis


April 3, 2024

by Maisy Webb

From playing the clarinet and majoring in music to finding inspiration in deciphering the As, Ts, Gs, and Cs relevant to fruit fly evolution and genetics, Bailey Landis has many interests but has dedicated his educational pursuits to biology.

The “major” shift happened when Bailey took Genetics from Nitin Phadnis. That was the moment he realized he loved biology and wanted to give research a try.

Bailey asked Phadnis if he knew of any lab openings, and the very next day he entered the research world…in the Phadnis lab! “Even though research was new to me, I was given the opportunity to jump into cutting-edge science. I immediately began investigating the genetic basis of a hybrid incompatibility between two subspecies of Drosophila.” Bailey artfully explained that “When two populations of a species are isolated from each other, they rapidly evolve [and this can] lead to speciation.” Deciphering the molecular and genetic basis of this process is the focus of the Phadnis lab.

Bailey finds the lab environment “unequivocally amazing” and  “is inspired by the motivation and drive of his peers in the lab.” He says, “Whenever you are doing something, people want you to do well ... and are not hoping for your downfall. So I have gotten courage knowing when I am presenting or doing something scary that people are hoping to see me succeed.”

Bailey has gained an appreciation for the collaborative nature of science, receiving mentorship and mastering new techniques with support from two other biology professors, Kent Golic and Clayton Dale. As it goes in research, things often don’t work and you always have to be on the lookout for something unexpected, Bailey shared. “I became frustrated that my hard work had yielded no results and began doubting whether the X-ray machine was working correctly. I examined the neuroblasts of mutagenized males, looking for fragmented chromosomes to ensure that the genetic material was being irradiated. ... My irradiation approach was simple and reliable [yet] lacked efficiency, relying on randomly mutating a single gene out of over 13,000. I felt like I was waiting for an accident and wanted my approach to be more precise. I returned to the drawing board, searching for a more efficient way to identify this gene. I pivoted to a targeted deletion system using CRISPR/Cas-9.”

Bailey’s enthusiasm and dedication has led to an evolution in his knowledge, which will definitely give him a head start when he begins his PhD in biology, at the U, in the fall of 2024.

Bailey is from Chico, California. When he’s not in the lab, you can find Bailey indulging his many other interests from drawing and painting, fly fishing, working on his jiu jitsu, snowboarding, and cooking lots of different dishes!

 

This article originally appeared at the School of Biological Sciences

>> HOME <<


Hunting an underground epidemic

Hunting an underground epidemic


April 3, 2024

Above: The research team outside Toquerville, UT. Left to right: Kimberly Hanson; Kevin Perry; Alyssa McCoy; Katrina Derieg; and Schuyler Liphardt.

In 2001, 10 archaeologists working at a dig site in northeastern Utah suddenly fell ill with a respiratory illness that sent eight of them to the hospital, coughing and feverish.

The symptoms resembled pneumonia, but their diagnosis was unexpected. It was Valley fever, a fungal infection that spreads to people through spores in the soil and dust—and it wasn’t supposed to be there. Valley fever is more common in hotter, drier states; previous predictions of where the fungus could survive in the soil barely extended into the southwest corner of Utah. The archaeologists’ dig site, in Dinosaur National Monument, was hundreds of miles outside the disease’s expected borders.

The truth is, nobody really knows which areas of the state harbor Valley fever. But the archaeologists’ plight shows that its fungal culprit could be far more widespread than anyone predicted. And as the climate changes, the fungus will likely spread further, explained Katharine Walter, assistant professor of epidemiology at the Spencer Fox Eccles School of Medicine at the University of Utah.

A person bends over samples in a shade tent.

PHOTO CREDIT: KATRINA DERIEG

Eric Rickart in the field outside Santa Clara, UT.

 DOWNLOAD FULL-RES IMAGE

“There have been incredibly intense recent changes in temperature as well as precipitation and drought here in the American West. These all impact the range of where the fungus can exist,” said Walter.

Walter is on a mission to map where in Utah the Valley fever fungus can survive and predict how it will move across the landscape as the climate changes. Walter and her collaborators—Katrina Derieg, vertebrate collections manager at the Natural History Museum of Utah; Eric Rickart, adjunct associate professor of biology at the U and curator of vertebrates at NHMU; and Kevin Perry, professor of atmospheric sciences in the U’s College of Mines and Earth Sciences—recently received a $375,000 Climate and Health Interdisciplinary Award through the Burroughs Wellcome Fund to power their fungus hunt and raise awareness of what to do for the people most at risk of infection.

Read the full story by University of Utah Health's Sophia Friesen in @TheU. You can read another article about this story at KSL.

>> HOME <<


Utah Symposium in Science & Literature

Utah Symposium in Science and Literature


March 27, 2024

Poet Claudia Rankine, physicist Brian Greene, and neuroscientist and artist Bevil Conway are the keynote speakers for this year’s Utah Symposium in Science and Literature, taking place from April 10-12 at the Eccles Alumni House on campus.

Claudia Rankine is the author of “Citizen: An American Lyric,” a New York Times bestseller, as well as four other books of poetry and three plays. She is the founder of The Racial Imaginary Institute, an NEA fellow, a former Chancellor of the Academy of American Poets, and a professor at NYU. Brian Greene is renowned for his groundbreaking discoveries in superstring theory and is known to the public through his books, “The Elegant Universe,” “The Fabric of the Cosmos,” and “The Hidden Reality,” which have collectively spent 65 weeks on the New York Times bestseller list and sold more than 2 million copies worldwide. He is a professor of physics and mathematics and the director of Columbia University’s Center for Theoretical Physics. Bevil Conway is a senior investigator at the National Eye Institute and the National Institute of Mental Health, and an expert on the neuroscience of color. His artwork is in the Boston Public Library, the Fogg University Art Rental Collection, the N.I.H. Building 35 Public Art Collection, and many private collections.

The Utah Symposium returns this year after a long Covid hiatus, and will feature the involvement of U professors and grad students from numerous departments and disciplines, from English to math to music to philosophy. The theme of this year’s Symposium is “Mere Beauty,” a topic arising from the reexaminations of beauty occurring not only in the arts and humanities, but also in biology, where dominant theories about the possible evolutionary purposes of beauty are being questioned.

Co-chairs Fred Adler, Professor of Biology and Mathematics, and Katharine Coles, Distinguished Professor of English, developed the Symposium’s theme together. Coles explains, “In some ways, the topic of Beauty as a topic of interdisciplinary discussion and examination seems very abstract. However, I think it has become my favorite Symposium topic so far. It seems to touch on every discipline and, in many ways, on every aspect of our lives. Nature seems to have built us to respond to beauty; it’s hard not to wonder why.”

Read the full article about the symposium in @TheU.

The Utah Symposium is free and open to the public. For more information, please visit scienceandliterature.org.

>> HOME <<


U Fulbright Scholar Semi-Finalists 2024

Three Science Students selected as Fulbright SEMI-finalists


March 21, 2024

Nine U students selected as Fulbright finalists; three of them call the College of Science home.

The University of Utah is proud to announce that nine students have been selected as semi-finalists for the prestigious Fulbright U.S. Student Program. Three are affiliated with the College of Science in the Fulbright area of Research.

Sponsored by the U.S. Department of State’s Bureau of Educational and Cultural Affairs, this nationally competitive program supports academic exchanges between the United States and over 140 countries around the world. Selected program participants pursue graduate study, conduct research, or serve as English Teaching Assistants abroad. See us.fulbrightonline.org.

For 2024-2025, the University of Utah submitted 19 Fulbright applications. Its cohort of semi-finalists represents multiple schools and colleges, including the College of Education, College of Humanities, College of Science, College of Social and Behavioral Sciences, David Eccles School of Business, and the Honors College. The group includes two students who intend to enter graduate programs, three students who proposed research projects, and four students who aim to serve as English Teaching Assistants. Projected countries include Costa Rica, Denmark, France, Germany, Italy, South Korea, and Taiwan.

Making it to the semi-finalist round is a significant accomplishment for these students and means that their applications have been forwarded by the Fulbright National Screening Committee to the Fulbright Commission or U.S. Embassy in the host country for final review. Finalists will be notified later this spring, with the timing of notifications varying by country.

Below are the three finalists from the College of Science all in the category of Research.

Marina Gerton (B.S. in Biology and Chemistry, December 2023) aims to undertake a research project at the University of Costa Rica under the mentorship of Mario Espinoza that focuses on the secret life of snappers--insights from fish movements. Gerton got an early start in science. She graduated from West High School in Salt Lake City where she participated in the 2018 University of Utah Science and Engineering Fair with her project "Mucoadhesive HA-based film releasing metronidazole to treat bacterial vaginosis." Her ambition is to pursue a PhD in marine science, specifically focusing on conservation research.

"While I had a slightly different focus when I first started in the lab," she says, "I’m now working on using paper and plant waste products (think recycled paper, yard clippings, agricultural waste, etc.) as, essentially, a food source for this really interesting bacteria Teredinibacter turnerae." Currently working in Eric Schmidt's lab in the Department of Medicinal Chemistry, she says that "one of the most interesting aspects of her research is that the bacteria she works with live in symbiosis with another organism, shipworms, and actually grow within specialized host cells in the shipworms’ gill tissue." It’s especially interesting, she states, as we know this species produces various compounds of medicinal interest, and "we’re still able to see production of those compounds when it’s grown on these waste products."

Gerton loves boxing and swimming, but is quick to say that she loathes running "with a passion." She also claims that watching commercials for Best Friends or the WWF can make her cry. (She avoids them along with pineapple on her pizza.) Finally, what would she do if she had more time outside of academics? One word: bake.

Moses Samuelson-Lynn (HBS in Math, BA in German, Spring 2024) aims to research “A New Set of Efficient Initial Variables for Cluster Algebras of Finite Mutation Type” at the Max Plank Institute for Mathematics in the Sciences in Germany. His main interest is in pure mathematics, especially number theory, analysis, geometric graph theory, geometric group theory and algebraic geometry.

His undergraduate research has led him to multiple presentations at the Joint Mathematics Meetings. His ambition is to earn a PhD in pure mathematics with the goal of becoming a research professor.

Samuelson-Lynn lives in West Valley City and he enjoys playing piano, bicycle riding, chess, origami and programming. In addition to his Fulbright aspirations, he will be joining a research team in Germany over the summer of 2024 directly after graduation. He will be investigating applications of subatomic-scale sensitivity of nitrogen vacancy centers in ultra-pure diamond at GSI Helmholtz in Darmstadt, Germany. He is completing an honors thesis on the classification of surfaces and is a member of the university German club.  UPDATE (4/3/2024): Moses Samuelson-Lynn has been announced as a finalist and will now be participating in the program as Fulbright scholar. Congratulations!

 

Catherine Warner (HBS, Math'19; Ph.D. in Math, Spring 2025) is a graduate student in the mathematics department where she anticipates earning her PhD in 2025. She aims to undertake a research project titled “Semiduality Groups: An Analog of Duality Groups” at the University of Sannio in Italy.

Werner's path to mathematics wasn’t exactly obvious. "I began undergrad as a biomedical engineering student," she says. "And even before that I mostly played golf throughout my earlier schooling while secretly reading classical philosophy in my free time,"  She quickly realized that engineering wasn’t enough. "I realized that ever since my early reading as a child, I’m used to expecting some deeper structures to reality, some sort of a deeper meaning. I just didn’t know how to find it."

Following the completion of her undergraduate degree, and partly pushed by that curiosity "and partly for lack of anything better to do," she adds, "I signed on for abstract math. I did so with hesitation because it seemed to me to be airy, lacking contact with reality. But the more I pursued geometric group theory, the more I became fascinated. Because I realized something pretty fundamental: One of the ways of finding hidden structures of the world is math — the amazing pursuit of the human mind, attempting to penetrate and order reality by following the structure of the mind itself."  UPDATE (3/21/2024): Catherine Warner has been announced as a finalist and will now be participating in the program as Fulbright scholar. Congratulations!

____________________

Fulbright alumni from the United States and around the world have gone on to achieve distinction in government, science, the arts, business, philanthropy, and education. Among the ranks of Fulbright alumni are 62 Nobel Prize recipients, 78 MacArthur Foundation Fellows, 89 Pulitzer Prize winners, and 41 current or former heads of state or government.

Fulbright semi-finalists from the University of Utah were advised throughout the application process by the Office of Nationally Competitive Scholarships (ONCS) housed in the Honors College. ONCS staff members assist outstanding students and alumni in developing competitive applications, preparing for interviews, and securing University endorsements for a variety of prestigious nationally competitive scholarships, including Fulbright.

You can learn about all of the Fulbright semi-finalists at the U here.

The 2025-2026 Fulbright competition will open on April 2, 2024. To learn more, contact Alison Shimko, the University of Utah’s Fulbright Director and the Associate Director of ONCS, at alison.shimko@utah.edu or consult nationallycompetitivescholarships.utah.edu.