Sandra J. Bromley Scholarship

 

Sandra J. Bromley Scholarship

Providing a Role Model for New Generations

Ray Greer. Banner Photo above: Dannon Allred, Ray Greer and his wife Jill, Michaela Fluck, Keegan Benfield, Eliza Roberts. Credit: Matt Crawley

The Sandra J. Bromley scholarship is a full-tuition scholarship for undergraduate students in the College of Science. It provides in-state tuition, up to 15 credit hours per semester, for eight semesters which allows each recipient to complete their degree. The program, now celebrating its 10-year anniversary, is funded by the generosity of Ray Greer, BS’86, in Mathematics.

Each year, a freshman student is selected as a new Bromley scholar, and rolls into the program, while a senior student graduates. This unique model provides continuous funding to the students and allows the College of Science to assist and monitor the students as they progress through their academic program.

“The Bromley scholarship is extremely valuable because it can serve a student throughout their entire undergraduate career,” says Peter Trapa, dean of the College of Science. “The cumulative effect for the student is truly profound. Each year we see the incredible results.”

In addition, Greer and his wife, Jill, host the Bromley scholars at least once a year on campus. The informal luncheon allows the students to report on their progress and discuss any problems or concerns.

“I have had the pleasure of meeting and getting acquainted with the undergraduates as they progress through their academic goals, and it is always a pleasure to see their progression and academic interest flourish over time. In all I have done throughout my life, this has been one of the greatest and most rewarding experiences I have had the opportunity to be a part of,” says Greer.

Role Model

When Greer was just 12 years old, his mother, Sandra J. Bromley, moved her young family from Texas to Utah. The year was 1976. Bromley was promptly hired at the University of Utah and enjoyed a successful career as a technical illustrator in the College of Mines and Earth Sciences under the direction of Frank H. Brown.

“My mother was the single greatest influence in my life,” says Greer. “She taught me the value of hard work and perseverance. She also insisted that college was not optional. It was like going from junior high to high school — you just did it!”

Greer enrolled at the U for fall semester 1981 and was initially interested in computer science and engineering. However, computer science was highly competitive at the time so available classes were scarce.

“Fortunately, Hugo Rossi, a math professor, convinced me that if I majored in mathematics I could get as much course work in computer science as I wanted,” says Greer.

For several years Greer worked through the rigorous mathematics major requirements. He persevered and completed his math degree in 1986.

Then, in 2000, Greer’s mother moved back to Texas for the remaining years of her life. She passed away in 2011. Shortly thereafter, Greer established the Sandra J. Bromley scholarship to honor his mother by providing a way for deserving students to earn a college degree.

“She worked hard to provide for her family, but her greatest regret in life was not attending college herself, hence the vision behind the Bromley scholarship,” says Greer.

“Her requirement was that she would support me as long as I didn’t quit school,” says Greer.  “That is why the Bromley scholarship requires continuous attendance.”

Solving Problems

Greer has more than 40 years of experience in logistics and transportation industries. He has held senior management positions for Greatwide Logistics Services, Newgistics, Ryder Logistics and FedEx. He served as president of BNSF Logistics, headquartered near Dallas, Texas, from 2011 to 2018.

“Math allows me to think critically about situations and problems generally. Not just numerically but logically, to find patterns and trends that point to likely outcomes,” he says.

In 2018, Greer was named CEO of Omnitracs, a leading company in onboard technology for the transportation industry. Omnitracs is an international billion-dollar company that provides telematic devices and logistics to support drivers and their organizations to be compliant, safe and efficient.

“Math is universal and most importantly it teaches you discipline and persistence to work a problem until it is solved. That process of critical thinking and problem-solving has served me well throughout my entire career,” says Greer.

In 2021, Greer sold Omnitracs and transitioned to advisory board work as well as becoming an operating partner for Welsh, Carson, Anderson and Stowe, focused on supply chain technology investments.

Ray Greer has high hopes and expectations for today’s college students. His advice: “Connecting with people — not apps and cell phones — will differentiate you from the competition.”


The Bromley Scholars


Eliza Robert

“I love the entire vibe of the university”


Eliza Roberts is the most recent recipient of the Bromley scholarship. A freshman at the U, she is pursuing a degree in applied math and physics, with an emphasis in astronomy and astrophysics. Being awarded this scholarship has made Roberts’ experience at the U even more valuable. “It has truly allowed me to focus more on my classes, and even take classes that I wouldn’t have taken otherwise,” she says. “With the scholarship, I don’t have to worry about the financial aspects of college like I was fully intending to, which means that I can explore my passions and dedicate my time to learning.”

In addition to her hard work as a student, Roberts works as a math tutor in the TRIO office at the U. One of her proudest accomplishments is receiving her Girl Scout Gold award, for which she focused on creating a safe backyard space for adults with disabilities. 

Roberts lives in Salt Lake City and makes the most of her time at the U participating in LEAP classes, a year-long learning community for entering University students, and even discovering top-secret study and nap spots on campus. “I love the entire vibe of the university,” she says. “I feel safe, valued, and free. I have been able to explore myself more than I have in years, and it has helped me figure out who I want to be.”

~Julia St. Andre


Dannon Allred
“Space is simply beautiful”


Dannon Allred was awarded the Bromley Scholarship in 2021 and just completed his sophomore year at the U. A passionate learner, he is studying physics with an astronomy emphasis. “Ever since I’ve been interested in science, I’ve felt a pull towards physics and astronomy,” he says. “There’s just a lot in astronomy that spikes my curiosity, there’s a lot that’s unknown, and [outer] space is simply beautiful.”

The Bromley scholarship has given Allred the opportunity to experience college without any financial worries and has allowed him to focus more of his energy on his passion for astrophysics. “Obviously one of the most daunting things about college is paying for it, and that’s a lot of stress that most students have to deal with,” he says. “I would say that’s what’s most impactful about the Bromely scholarship because it allows me to go through college stress-free in that aspect.” 

On top of his astrophysics studies, Allred has been involved in several research projects on campus. “In my freshman year, I was part of Dr. Boehme’s … lab as part of the Science Research Initiative doing research on Organic Light-Emitting Diodes (OLEDs) using spintronics,” explains Allred. “This spring, I did an introductory research project analyzing the spectral emission features of the Sombrero Galaxy with Dr. Anil Seth” who specializes in astrophysics. 

Allred’s hope is to complete a graduate degree in the field as well. Not surprisingly, when he’s not busy studying stars and galaxies far, far away, he loves astrophotography, admiring the universe through the lens of his camera.   ~ Julia St. Andre


Michaela Fluck
“Proceeding Into the Wilderness”

Michaela Fluck works in the Zelikowsky Lab, which researches neural circuits that affect stress, fear, and social behavior. “I’ve always been interested in neurobiology, since I was a kid,” she states. “I’ve had family members who’ve had strokes and other brain injuries.”

A biology major with a psychology minor, Fluck says the study of abnormal psychology is also a passion of hers. “Seeing what can go wrong with the brain and what’s behind [it] …  is super interesting as well.”

Fluck was inspired to become a doctor by her patients at Primary Children’s Hospital, where she works as a phlebotomist. “I want to become an advocate for patients,” she says, “and help people work through the difficulties of medicine. Kids tend to hate procedures no matter what, so helping them work through the procedures is honestly one of the most rewarding things I’ve ever done.”

Her favorite class was organic chemistry. “Not a lot of pre-meds can say that,” she jokes. Fluck also loved taking an acting class at the U which relieved the stress of being a STEM student and harked back to her time as an actress in high school, especially her appearance in the the late Stephen Sondheim’s epic musical saga about daring to venture Into the Woods~ CJ Siebeneck


Keegan Benfield
Who knew I could do that?”

As a Bromley Scholar, Keegan Benfield BS’23, was able to spend more time on scientific passions, such as research and projects. “The Bromley Scholarship and the U have helped shape me to be the best that I can be.” 

Along with his double majors in mechanical engineering and physics, Benfield focuses his time on humanitarian efforts, volunteering with Youthlinc and Real life programs. He’s the president of the university’s marksmen club, and has attended National Collegiate events at the National and Junior level.

Prior to graduation, Benfield worked in the Deemyad Lab, researching condensed matter physics. The Lab focuses on theoretical physics, especially the physics of matter at extreme conditions of temperature and pressure.

One of Benfield’s favorite classes was Introduction to Relativity and Quantum Mechanics. “It was an ‘ah-ha!’ class that was challenging and fun,” Benfield says. “I have learned and expanded my knowledge in ways that amaze me. Who knew I could do that?”

Benfield recently completed a summer internship at Cosm and developed educational programs for planetariums using Digistar 7, which features full-dome programs and production services, giant screen films formatted for full-dome theaters, premium-quality projection domes, and theater design services. He plans on getting a master’s or PhD and work in a national laboratory or research company.   ~ CJ Seibeneck

 

View a LIst of all Bromley Scholars (as of June 2023) and brief updates on their whereabouts

Nobel winner Capecchi discovers new brain mechanism

The pandemic and its aftermath have raised anxiety to new levels. But the roots of anxiety-related conditions, including obsessive-compulsive spectrum disorder (OCSD), are still unclear.

In a new study, University of Utah Health scientists discovered insights into the importance of a minor cell type in the bra in — microglia —i n controlling anxiety-related behaviors in laboratory mice. Traditionally, neurons — the predominant brain cell type — are thought to control behavior.

The researchers showed that, like buttons on a game controller, specific microglia populations activate anxiety and OCSD behaviors while others dampen them. Further, microglia communicate with neurons to invoke the behaviors. The findings, published in Molecular Psychiatry, could eventually lead to new approaches for targeted therapies.

“A small amount of anxiety is good,” said Nobel Laureate Mario Capecchi, Ph.D., a distinguished professor of human genetics at the Spencer Fox Eccles School of Medicine at University of Utah and of biology in the School of Biological Sciences. He is also senior author of the study. “Anxiety motivates us, spurs us on, and gives us that extra bit of push that said, ‘I can.’ But a large dose of anxiety overwhelms us. We become mentally paralyzed, the heart beats faster, we sweat, and confusion settles in our minds.”

“This work is unique and has challenged the current dogma about the role of microglia function in the brain”

Capecchi, who arrived at the University of Utah in 1973 did much of his early research, leading to his Nobel Prize, at U Biology where a permanent display of his original equipment involving gene-targeting is housed.

Read the full story by Julie Kiefer about this exciting new research by Utah’s Nobel laureate in U of U Health.

2023 Outstanding Undergraduate Research Mentors

The Office of Undergraduate Research has created a faculty award to honor mentors for their work with students. The Outstanding Undergraduate Research Mentor Award, now in its inaugural year, is given to those who were selected by their college leadership and peers for their dedicated service to mentorship.

Of the 420 mentors across campus who worked with the Office of Undergraduate Research this year, two of the 2023 winners of the Outstanding Undergraduate Research Mentor Award are seated in the College of Science: Ofer Rog (biology) and Gannet Hallar (Atmospheric Sciences).


Dr. Ofer Rog’s research focuses on the complex regulation of chromosomes during meiosis. Dr. Rog and his assembled team of top-notch researchers have developed new methods, used innovative approaches, and carried out meticulous studies that are now revealing key elements of this complex process. The work conducted by him and his research group has provided stunning insights into the fundamental cellular processes explaining the origin and maintenance of different sexes, including our own. As Director Frederick Adler states, “Dr. Rog is also an extraordinary communicator with a dedication to helping colleagues and students find new ways to communicate.”

The Mario Capecchi Endowed Chair in the School of Biological Sciences (SBS), Rog was a catalyst in forming and managing the LGBTQ+ STEM interest group in the College of Science. The group seeks to create change in our campus community with an inclusive environment for LGBTQ+ individuals and allies.

You can read about Rog’s work with condensate illustration in a recent feature in SBS’s OUR DNA here.

 


Dr. Gannett Hallar has been successfully mentoring undergraduate researchers at the University of Utah since 2016. Her mentees participate in the Hallar Aerosol Research Team (HART) making connections between the atmosphere, biosphere, and climate. Her mentees have successfully received awards such as the Undergraduate Research Opportunity Program and Wilkes Scholars. Her commitment to mentoring includes her role as a faculty fellow with Utah Pathways to STEM Initiative (UPSTEM), training in inclusive teaching and mentoring strategies.

As stated by Dean Darryl Butt, “Dr. Hallar is a world-class mentor. Her dedication to our undergraduate students comes naturally, but she is also very deliberate in creating a structure of experiential learning that is inherently unforgettable.”

Director of the Storm Peak Lab, the premier, high-elevation atmospheric science laboratory in the Western U.S., Hallar says the facility atop Steamboat Springs Ski Resort is “the perfect place, to have your head in the clouds.” The laboratory sits in the clouds about 40 percent of the time in the winter. “That allows us to sample clouds and the particles that make clouds at the same time. And from that, the lab has produced about 150 peer-reviewed publications.”

Humans of the U: Katya Podkovyroff Lewis

Growing up as a military kid, my family moved a lot and friendships seldom lasted.

My French mother—a teacher and musician—encouraged reading and creativity while my American father —a soldier working in field artillery—encouraged tinkering and what he called “real world skills.” My curiosity was often left free to roam, and led me to have plenty of imaginary friends and daydreams that would occupy my time. As I grew older, this imagination mainly translated to creative writing.

Moving to the United States felt like a culture shock even as an American citizen, and high school was an even harder adjustment. When my senior year rolled around, I felt like a first-generation student in many ways with a father who had never been to college and a mother who wasn’t familiar with the American college system. Thanks to military educational benefits, I was able to attend American University in Washington, DC – my dream school and “reach school” due to my family’s financial situation. I took on double major in journalism and international studies, with a concentration in environmental sustainability and global health, intending to focus my career on science writing or science communication.

After graduation, I began a communications internship in January 2020 writing stories about climate change and ended up writing articles on COVID-19, specifically regarding resources for journalists and the toll of reporting on the pandemic. The pandemic changed a lot of people’s plans, including mine—when I was laid off from my restaurant job in March of 2020 and had the impending end of my internship that June, I scrambled for journalistic freelancing opportunities. But I wasn’t content with just writing about topics I was so interested in—I realized that I wanted to do the work. I decided to go back to college for a second bachelors in biology with a minor in Earth science at the University of Utah, where my passions have since flourished.

Read the rest of of Katya’s story in@theU.

William Anderegg Receives NSF Waterman Award

William Anderegg and National Science Foundation Dir. Sethuraman Panchanathan at Waterman Award Ceremonies, May 9, 2023. Photo provided by NSF.

William Anderegg RECEIVES Waterman Award

Associate professor of Biology William Anderegg is a 2023 recipient of the National Science Foundation‘s Alan T. Waterman Award. Anderegg, who is also Director of the Wilkes Center for Climate Science & Policy, is one of three awardees each of whom receive a medal and $1 million over five years for research in their chosen field of science. The nation’s highest honor for early-career scientists and engineers, The Waterman Award was presented to all recipients at a ceremony during the National Science Board meeting, held in Washington, D.C., on May 9. The award, established by Congress in 1975, is named for Alan T. Waterman, NSF’s first director.

“Receiving the Waterman Award is incredibly meaningful. It’s an amazing honor and I’m still stunned,” said Anderegg. “It will allow us to take on some really aspirational, creative and high-risk projects that we’ve thought about for a while but can now actually tackle. I’m immensely grateful to the wonderful mentors I’ve had throughout my career who played a huge role in my path as a scientist. I feel lucky to be surrounded by such generous and brilliant scientists, and this award has really made me reflect on how important these people have been and still are in my career.”

This is the second year the National Science Foundation has chosen to honor three researchers with the award, which recognizes outstanding early-career U.S. science or engineering researchers who demonstrate exceptional individual achievements in NSF-supported fields.

 

Read the full story by Ross Chambless in @TheU.
Listen to the National Science Foundation’s recent podcast with Bill Anderegg here.

 

1U4U Initiative

Browse the College of Science’s Funded 1U4U Projects for 2023

 

IU4U is designed to seed multidisciplinary faculty/student collaborations in areas of mutual research interest and opportunity. The initiative seeks innovative projects aimed at campus, education, engagement, research and scholarship that are not subject to traditional peer review. In order to receive funding priority, the project must have the potential of leading to external funding, have societal impact, and be a collaboration between health sciences and main campus.

The College of Science is pleased to announce that four of our professors have received an 1U4U award. Congratulations!

Emerging Perovskite Dosimetry for In-Situ and High-Dose Radiotherapy

CONNOR BISCHAK, CHEMISTRY


Robust radiation detectors are essential in state-of-the-art radiotherapy and cancer treatment. This project exploits an innovative perovskite detector that meets the stringent requirements for such dosimeters. Our interdisciplinary team possesses complementary expertise in chemical synthesis (Bischak), semiconductor devices (Yoon), nuclear radiation (Sjoden), and clinical medical physics (Nelson).

Metal-halide perovskites are emerging semiconductors owing to their facile synthesis, tunable bandgap, long carrier diffusion length, and high defect tolerance. Researchers have demonstrated the feasibility of perovskite detectors where the performance is comparable to or exceeds established detectors. While exciting, the stability of perovskites under high radiation doses must be better understood. The detector architecture that optimizes the complex interactions between radioactive particles with semiconductors remains challenging. This research field faces limited experimental evaluation under irradiation by high-energy particles.

Our team is ideally positioned to tackle such challenges by maximizing our expertise and resources (TRIGA reactor [n-gamma], electron/proton sources). This project will be built on a solid partnership among experts, staff, and students, providing an excellent opportunity to promote diversity, educational training, and close collaborations. This project will enable us to pursue large external grants in medical, homeland security, and space research.

 

Surgery in the Pyrocene: Examining the Risk of Wildfire Smoke to Perioperative Patient Populations in the Mountain West

DEREK MALLIA, ATMOSPHERIC SCIENCES


Across the Western U.S., the number of large wildfires has been steadily increasing since the early 1980s leading to degraded air quality. Wildfire smoke is known to worsen cardiopulmonary and neurovascular outcomes, however its impact on surgical patients is unstudied. Surgical populations are especially vulnerable to wildfire smoke due to the surgical inflammatory response which can synergize with pollution related inflammation. We hypothesize that patients presenting for surgery during wildfire smoke events will experience worsened perioperative outcomes (e.g. stroke, MI) compared to clean air days.

To characterize the health risk of wildfire smoke, linkages are needed that can attribute specific elevated smoke components (e.g PAHs, PM2.5) to specific source regions. We will leverage a smoke transport model (STILT), developed by Co-I Mallia and Wilmot, which can trace the origin of elevated PM2.5 levels to specific wildfires and use this funding to extend model timeframes. The smoke model will then be combined with perioperative outcomes, patient addresses, and traffic pollution, building on prior work from Co-I’s Pearson and Wan from the Departments of Anesthesiology and Geography. Differentiating upstream smoke events from downstream pollution will enable better understanding of the pathophysiological mechanisms behind inflammatory responses to these varied sources. This non-traditional, cross-campus collaboration will enable us to characterize the risk to patients undergoing surgery and devise countermeasures, such as in-home filtration, PPE, and dynamic surgical scheduling, based on air quality.

This team will tackle a complex problem, the impact of wildfire smoke on perioperative health, and test the feasibility of this field of inquiry while supporting student researchers. If successful, we hope to build multi-institutional collaborations and obtain extramural funding from sources such as the NIH’s Climate Change and Health NOSI (NOT-ES-22-006).

 

The pathogenic potential of Great Salt Lake dust

KEVIN PERRY, ATMOSPHERIC SCIENCES


The Great Salt Lake (GSL) is rapidly shrinking, exposing a vast lake bed and emitting dust that affects the air quality for the 1.3 million people in the Salt Lake Valley (SLV) with a disproportionate impact on underserved communities. Dust from the GSL contains heavy metals, dangerous for human health. However, the pathogenic content of GSL dust has not been characterized, an urgent gap in our understanding of the health consequences of the drying lake.

To characterize the potential pathogens in the source of GSL dust, we will sample dust from a transect on the exposed lake bed. We will sieve dust and then re-aerosolize it to focus on the respirable fraction of dust that can penetrate deep into the lungs and that poses the most direct infection risk. To characterize the dust microbiome that may more proximally affect people and may contribute to increasing environmental health disparities in SLV, we will collect airborne dust using filter samplers across city transects. For both dust from the GSL lakebed and urban air, we will characterize the dust microbiome, identifying all known human bacterial and fungal pathogens, with next generation sequencing.
This proposal establishes a new multidisciplinary collaboration between researchers in the School of Pharmacy, School of Medicine, College of Mines and Earth Sciences, and College of Engineering, enabling us to collect preliminary data for an NIH proposal to study the epidemiology of GSL dust. By focusing on a major environmental and health justice challenge, our proposal advances the University of Utah’s strategic goals to develop and transfer new knowledge and to engage communities to improve health and the quality of life.

 

Understand and predict the severe drought events in the western United States and their influence on water resources and human health

ZHAOXIA PU, AYMOSPHERIC SCIENCES

 

 

 

PAUL BROOKS, GEOLOGY & GEOPHYSICS


The western United States has experienced drought in recent years. In 2022, drought conditions were most severe in the States of California, Texas, Oregon, Nevada, Utah, and New Mexico. As reported in July 2022, more than 32 percent of land in western states was classified as experiencing extreme or exceptional drought.
Drought can adversely reduce the quantity of snowpack and streamflow available, thus greatly influencing the ecosystem, human activities, and human health through environmental influence and social and economic impacts.

This project aims to better understand and predict the severe drought events in the western United States and their impacts on water resources and human health, especially in Northern Utah. We seek collaborations from climate, hydrological, ecosystem, and health science. Our objectives are to 1) develop improved drought metrics based on the historical records and current conditions of the atmosphere, land, and plant available water for an effective drought prediction method; and 2) assess the drought impacts on human health, such as lung health of toxic dust caused by a drought in Great Salt Lake. The ultimate goal of the research is to provide effective drought prediction methods for the western United States and identify significant issues, thus making suggestions for essential decision-making.

 

Development of a Science-Theater collaborative platform

SAVEEZ SAFFARIAN, PHYSICS & ASTRONOMY


“Of Serpents & Sea Spray” by Rachel Bublitz at Custom Made Theatre Co. photo by Jay Yamada.

Science and technology have transformed our lives and will disrupt and reshape jobs within our community. Yet, from genetic modifications to quantum computing, science remains enigmatic to the public. In recognition of this problem, the National Science Foundation has required every scientific proposal to incorporate elements of outreach. One way to reach wider communities is live theater. The Alfred P. Sloan Foundation supports production of plays about science. The creation of plays about science, however, remain challenging because it requires non-traditional, cross-disciplinary collaborations too elaborate for junior investigators or emerging playwrights.

Our project will develop a collaborative model that draws on the expertise of research faculty in Science, Theater and the Center for Health Ethics, Arts, and Humanities. We will test this approach by developing a play about retroviruses to be performed at the International Retrovirology Conference at Snowbird Utah in September of 2023. Our team has identified a local playwright, Rachel Bublitz, and director, Assistant Professor Alexandra Harbold (Theatre), who, will collaborate with Dr Anna Skalka (Fox Chase Medical Center in Philadelphia), Dr Saffarian’s lab, and health sciences faculty to explore the golden age of molecular biology and the ethical and social implications of retroviral research. This process will be documented to serve as a model for future investigators.
Opportunities for extramural funding include:

1- Allowing junior faculty to propose science-theater collaborations as outreach mechanisms in their NSF proposals. This retroviruses play will be directly incorporated into the next NSF proposal from Dr Saffarian’s lab.
2- Allowing playwrights to develop plays with the potential to seek additional development and production support from arts, cultural and science education foundations.

 

Overcoming Vaccine Hesitancy and Preventing Cancer ThroughAdaptive Learning Artificial Intelligence and Refinement of Reminder Interventions and Campaigns

NAINA PHADNIS, BIOLOGY


HPV is common (>80% of people), responsible for 36,000 cancer diagnoses each year in the U.S., and largely preventable. Vaccine hesitancy is a barrier to immunization and misinformation during the COVID-19 pandemic accelerated hesitancy, leading to sharp declines in adolescent immunizations, including HPV vaccination. Efforts focused on childhood vaccination, resulted in deprioritization of HPV and adolescent immunization. Patient reminder and recall (RR) strategies have been proven successful in immunization uptake; however, the effectiveness of these strategies varies by geographic and sociodemographic factors. The current study will be among the first to use state-level vaccination registry data to systematically examine missed opportunities and identify spatial and temporal trends of HPV vaccination. This project will inform the creation of an adaptive learning artificial intelligence for refinement of interactive RR strategies and interventions. Solutions arising from this study are scalable, can be tailored for diverse reminder campaigns, responsive to evolving landscapes, and designed to deliver cost-effective solutions. Both innovative and transformative, this cross-campus collaboration will address complex healthcare problems using precision public health strategies, optimized for decreasing vaccine hesitancy and increasing uptake, and provide preliminary results for high-impact NIH and NCI funding proposals.

 

Investigation of Polymer Functional Groups and Their Impact on Sperm Viability

 

NITIN PHADNIS, BIOLOGY


We have observed that the viability of sperm decreases depending on the polymer materials used in assisted reproductive technologies. We have done some preliminary studies and have determined that sperm can be negatively impacted by either the functional groups present on polymers, surface charge, surface morphology, and other polymer properties. We have further noted increased incidence in gamete toxicity in contact materials that were recently purchased after product substitutions became necessary due to supply chain issues. We believe this is due to the use of additives, mold release agents, and other contaminants that are present on the polymer surfaces. In this study, we propose to investigate the polymer properties of contact materials used in assisted reproductive techniques (ART) to determine their impact on the viability of sperm after exposure to different polymers over time. Following sperm exposure to various materials, we will test sperm function using the hamster egg penetration test. In addition, the Phadnis lab has developed a “sperm racetrack”, an optically clear counter-current microfluidic channel that can be used as a sensitive assay to measure other functional aspects of sperm including linear velocity, swim efficiency and longevity of motility. In this study, we aim to examine the material properties that may affect sperm viability, to determine whether there are negative impacts on sperm after exposure to specific polymer materials and to identify materials that are most compatible with gametes, with the ultimate goal of optimizing the composition of contact materials used in ART.

You can browse all of the awardees at the University of Utah here. 

Revisiting Carbon Offset Protocols

Revisiting carbon off-set protocols


When you walk through a forest, you are surrounded by carbon. Every branch and every leaf, every inch of trunk and every tendril of unseen root contains carbon pulled from the atmosphere through photosynthesis.

And as long as it stays stored away inside that forest, it’s not contributing to the rising concentrations of carbon dioxide that cause climate change. So it’s only natural that we might want to use forests’ carbon-storage superpower as a potential climate solution in addition to reducing human greenhouse gas emissions.

But climate change itself might compromise how permanently forests are able to store carbon and keep it out of the air, according to a new study led by University of Utah researchers. A study of how different regions and tree species will respond to climate change finds a wide range of estimates of how much carbon forests in different regions might gain or lose as the climate warms. Importantly, the researchers found, the regions most at risk to lose forest carbon through fire, climate stress or insect damage are those regions where many forest carbon offset projects have been set up.

“This tells us there’s a really urgent need to update these carbon offsets protocols and policies with the best available science of climate risks to U.S. forests,” said William Anderegg, study senior author and director of the U’s Wilkes Center for Climate Science and Policy.

The study is published in Nature Geoscience. Find an interactive tool showing carbon storage potential in forests in the U.S. here.

 

Read about a multi-perspective modeling approach and what we still need to know about climate offset protocols in our attempts to mitigate climate change in the full story by Paul Gabrielsen in @The U

 

>> HOME <<

Outstanding Grad Student

Dylan KlURE


Molecular Ecologist Wins Outstanding Graduate Student Award

Dylan Klure. Photo credit: Todd Anderson

At first glance, it might seem a circuitous route to study ecology through the DNA of a desert woodrat. But by using modern molecular biology techniques, Dylan Klure (Dearing Lab), a PhD candidate in the School of Biological Sciences, does just that and in a variety of compelling, integrated and collaborative ways.

To answer the question, “how does an organism interact with its environment?” an ecologist might traditionally study that organism’s behavior or its competition with other species and study its population trends over time. But Klure, who was awarded this year’s Outstanding Graduate Student from the College of Science at the University of Utah and considers himself a molecular ecologist, wants to know how that organism has changed over time and what adaptations that organism has at the level of its genome that allow it to live successfully in its current habitat.

In the case of the desert woodrat, populations in the southwestern United States have experienced gradual changes in climate over the last ~15,000 years since the end of the last ice age. This environmental change has led to the expansion of a highly toxic plant, creosote bush, across much of this region and now many woodrat populations must rely on this toxic plant as a food resource.  “Some woodrat populations have really experienced a lot of change in that time, and other ones haven't. So we can compare those two populations of woodrats and ask what's different or not different in their genomes in response to that environmental change.”

Certain populations of the desert woodrat, largely in the Mojave Desert, are able to consume large quantities of creosote bush, without becoming ill. Klure and his colleagues have found that these woodrats have evolved novel genes that code for enzymes in their liver that can degrade the toxins in creosote bush. Additionally, these woodrats have acquired beneficial microbes in their gut that also help degrade these toxins. These dramatic findings show how historic climate change has shaped the evolution of woodrats.

The implications of such discoveries are two-fold: first, by documenting how animals have responded to past climate change events, scientists can better predict how animals may respond to our current age of rapid climate change. Second, researchers are figuring out the link between what enzymes produced in the liver successfully degrades (or neutralizes) which types of toxins, something that is not well understood in humans.

“It’s complicated,” says Klure. “A single human can produce several dozens of unique enzymes in the liver in response to medicinal use or drug use. And knowing which of those enzymes are actually acting on which toxin or if they're acting sequentially” is a critical benchmark that might inform the development of future medicines.

A team effort that is both ongoing and built on the work of previous graduate students and post-docs, this research has led to multiple publications for the fifth-year graduate student. Articles in peer-reviewed journals have addressed not only how gut microbes in these woodrats allow them to feed on toxic plants, but more broadly, how microbes in the gut get there in the first place, what impacts the microbe community and what factors might predict what species of bacteria one finds in what animals.

Bryant's woodrat (Neotoma bryanti) feeding on the toxic creosote bush

Ecologists take into account how an organism interacts with its entire environment, but that can be complicated to measure. While the subject model for Klure might be woodrats, a “goldmine of knowledge” comes from their feces. “First of all, there is host DNA in feces”, says Klure. “Woodrats are shedding their own intestinal cells, so their DNA is in there. And whatever they're eating [that] DNA is in there. The bacteria in their gut’s DNA is in there. It's all in there.” From a single fecal pellet, scientists can determine who that animal is, what they are eating and what types of microorganisms they harbor in their gut.

It is these modern molecular approaches used to ask evolutionary and ecological questions that excites Klure the most. “I can start understanding how the organism is interacting with its environment, from a much more holistic view. Essentially, [I] don't have to just rely on what I can see with my own eyes.”

Klure and team employ techniques that range from DNA sequencing to gene expression assays and from pharmacological assays to test the activity of enzymes to “western blotting,” a technique used to characterize what proteins are in a sample using fluorescent antibodies.

Klure is slated to defend his dissertation in May and upon graduation will immediately begin work as a post-doctoral researcher in the Dearing Lab to finish up some of his research there. This will be followed most-likely by another stint as a post-doc elsewhere. He is planning to pursue a career in academia, where he would like to continue performing research alongside undergraduate students as this has been one the most rewarding parts of his graduate experience. He enjoys crafting research projects with undergraduate students that are feasible in scale so that they can contribute to the entire research process. Referencing his own experience as an undergraduate at the University of Redlands, he says, “it's cool to see that the students actually get to help design their own project and actually run it all the way to completion before they graduate.”

Biologist addressing young students at the Natural History Museum of Utah

Teaching kids at the Natural History Museum of Utah about the ecology of woodrats (photo credit - C. Hernandez)

With his partner, you can find Klure, a California native, with his spin rod, fishing in Utah’s outback, a welcome relief from the bench and fieldwork of all things woodrats. Outside the lab, the molecular ecologist has also found a home in advocating for the LGBTQ+ community that finds itself in STEM-related fields at the U. He co-founded the LGBTQ+STEM Interest group, alongside fellow graduate student Andy Sposato and biology professor Ofer Rog, and this work has proven gratifying the past few years. The goal of this organization is to foster professional development and community advancement for LGBTQ+ individuals pursuing careers in STEM.

“There really aren’t any LGBT resources for the most part at the grad-student-and-above level,” he says, remarking that most universities have some type of program and support system for undergraduates, but not for graduates, post-doctoral researchers and faculty. “That is where LGBTQ+ people are the most underrepresented.”

That Dylan Klure is recipient of the Outstanding Graduate Student award will only help elevate graduate students, like himself, and faculty who identify as LGBTQ+.

By David Pace

 

 

 

 

>> HOME <<

Weekend Effect

Weekend Effect


Austin Green

Adult female mule deer stares directly at a trail camera

Odocoileus hemionus, aka mule deer.

Puma concolor, aka cougar.

Along wild-to-urban gradients and especially within less developed areas, human recreation can affect wildlife behavior, especially during peaks in human recreational activity.

In a new study published in the journal Animal Behaviour large-scale citizen science camera trapping helped assess whether periodic increases in human recreational activity elicit behavioral responses across multiple mammal species in northern Utah.

Says lead author of the paper, Austin Green, PhD, “we assessed whether increases in human recreational activity during the weekend affected mammalian activity patterns at the community-wide and species-specific level.” The team headed up by Green, a postdoctoral researcher in the Science Research Initiative (SRI) at the U’s College of Science, found little evidence supporting the presence of time-specific, or temporal effect behavioral changes in response to increases in human recreational activity during the weekend, known as the “weekend effect.”

Only elk, Cervus canadensis, and rock squirrel, Otospermophilus variegatus, significantly altered temporal activity patterns during the weekend. “People significantly alter periodical activity during the weekend,” according to the study, “with more activity occurring in midday and less activity occurring in the early evening. This leads to consistent decreases in human-wildlife temporal overlap.”

Instructor of the Human Wildlife Coexistence stream in the SRI, Green is currently working with undergraduates in the field and in the lab located in the Crocker Science Center. Green’s research is focused on the Wasatch Front, a “functional landscape” that combines both human use and conservation. “One way in which mammals avoid the human ‘super-predator,’” says Green, “is by altering their behavior”: how they use both space and time; adjust their interaction with other species; and vary where they feed, sleep and reproduce.

Green’s group uses large-scale fieldwork in both natural and urbanized landscapes; performs data analytics; identifies wildlife in photos using artificial intelligence; and promotes citizen science education and engagement. In this study, says Green, “we were able to show that by altering the time of day that humans recreate, we can reduce the negative impacts of increased recreational activity on wildlife behavior.”

by David Pace, images by Wasatch Wildlife Watch.

 

>> HOME <<


A.A.U. Membership

UTAH JOINS THE A.A.U.


 

"It is difficult to overstate the importance of AAU Membership. This elevates the U to an exceptional category of peer institutions."
- Dean Peter Trapa

 

The University of Utah is one of the newest members of the prestigious Association of American Universities, which for more than 100 years has recognized the most outstanding academic institutions in the nation.

Mary Sue Coleman, president of the Association of American Universities (AAU), announced Wednesday that University of Utah President Ruth V. Watkins has accepted an invitation to join the association, along with the University of California, Santa Cruz and Dartmouth College. The three new members bring the number of AAU institutions to 65.

AAU invitations are infrequent; this year’s invitations are the first since 2012.

 

 

“AAU’s membership is limited to institutions at the forefront of scientific inquiry and educational excellence,” said Coleman. “These world-class institutions are a welcome addition, and we look forward to working with them as we continue to shape policy for higher education, science, and innovation.” - Mary Sue Coleman

 

About the AAU
The AAU formed in 1900 to promote and raise standards for university research and education. Today its mission is to “provide a forum for the development and implementation of institutional and national policies promoting strong programs of academic research and scholarship and undergraduate, graduate and professional education.”

A current list of member institutions can be found here. The membership criteria are based on a university’s research funding (the U reached a milestone of $547 million in research funding in FY2019); the proportion of faculty elected to the National Academies of Science, Engineering and Medicine; the impact of research and scholarship; and student outcomes. The U has 21 National Academies members, with some elected to more than one academy.

An AAU committee periodically reviews universities and recommends them to the full association for membership, where a three-fourths vote is required to confirm the invitation.

Leaders of AAU member universities meet to discuss common challenges and future directions in higher education. The U’s leaders will now join those meetings, which include the leaders of all the top 10 and 56 of the top 100 universities in the United States.

 

“We already knew that the U was one of the jewels of Utah and of the Intermountain West. This invitation shows that we are one of the jewels of the entire nation.” - H. David Burton

 

U on the rise
In FY2019 the U celebrated a historic high of $547 million in sponsored project funding, covering a wide range of research activities. These prestigious awards from organizations such as the U.S. Department of Energy, National Institutes of Health and National Science Foundation are supporting work in geothermal energy, cross-cutting, interdisciplinary approaches to research that challenge existing paradigms and effects of cannabinoids on pain management.

They also are funding educational research programs with significant community engagement, such as the U’s STEM Ambassador Program and the Genetic Science Learning Center’s participation in the All of Us Research Program.

“AAU is a confirmation of the quality and caliber of our faculty and the innovative work they are doing to advance knowledge and address grand societal challenges. Our students and our community will be the ultimate beneficiaries of these endeavors. " - President Ruth Watkins

 

On Nov. 4, 2019, the U announced a $150 million gift, the largest single-project donation in its history, to establish the Huntsman Mental Health Institute. These gifts and awards are in addition to the ongoing support of the U from the Utah State Legislature.

This fall the university welcomed its most academically prepared class of first-year students. The freshman cohort includes 4,249 students boasting an impressive 3.66 average high school GPA and an average ACT composite score of 25.8. The incoming class also brings more diversity to campus with both a 54% increase in international students and more bilingual students than the previous year’s freshman class. Among our freshmen who are U.S. citizens, 30% are students of color.

The U’s focus on student success has led to an increased six-year graduation rate, which now sits at 70%—well above the national average for four-year schools. The rate has jumped 19 percentage points over the past decade, making it one of only two public higher education research institutions to achieve this success.