The power of curiosity and collaboration

The power of curiosity and collaboration


May 20, 2025
Above: Thure Cerling

Whether it’s roadkill livestock or his own beard hairs, Thure Cerling’s keen eye for objects to analyze has led to scientific discoveries, both unexpected and groundbreaking.

Over the course of an academic career spanning five decades, the University of Utah geoscientist has developed numerous forensic tools, such as isotope analysis, for understanding geological processes that affected the course of life on Earth, according to presentations given Saturday at a symposium to reflect on the contributions of Cerling, who is retiring this year.

His discoveries have reconstructed the diets of ancient animals, characterized the ecology of early human sites in East Africa, pinpointed when floods incised Grand Canyon, identified a global transition in vegetation types 3 to 10 million years ago, and even helped law enforcement crack cold cases and solve wildlife crimes. He is perhaps best known for exploiting the relative abundance of certain elemental isotopes as a way to date objects or determine where a person or animal lived or what they ate, earning him the moniker The IsoPope.

Cerling “is a profoundly curious and interested individual. He seeks out and he finds systems that are interesting around him and he finds interesting questions and finds ways to bring these fundamentals into new areas,” said symposium moderator Gabe Bowen, a U geology professor and former student of Cerling’s. “He’s not afraid to go out and sample things and just get materials and might not know exactly what they’re going to be good for right at that time, but Thure’s a collector and this pays off.”

The event was held at the Utah Museum on Natural History, where dozens of scientists from around the country gathered to celebrate Cerling’s contributions to science and  his impact on them personally.

Read the full story by Brian Maffly in @TheU

>> HOME <<


Spring runoff is older than you think

Spring RUnoff is Older than You think


May 12, 2025
Above: Head of Utah’s Little Cottonwood Canyon in spring. Credit: Brian Maffly

Research by U hydrologists finds water flowing out of Western ranges is, on average, more than 5 years old, demonstrating that runoff has a prolonged underground journey.

 

Growing communities and extensive agriculture throughout the Western United States rely on meltwater that spills out of snow-capped mountains every spring. The models for predicting the amount of this streamflow available each year have long assumed that a small fraction of snowmelt each year enters shallow soil, with the remainder rapidly exiting in rivers and creeks.

New research from University of Utah hydrologists, however, suggests that streamflow generation is much more complicated. Most spring runoff heading to reservoirs is actually several years old, indicating that most mountain snowfall has a years-long invisible journey as groundwater before it leaves the mountains.

The findings also indicate there is an order of magnitude more water stored underground than most Western water managers account for, said research leader Paul Brooks, a professor of geology and geophysics.

“On average, it takes over five years for a snowflake that falls in the mountains to exit as streamflow,” Brooks said. “Most of our models, whether for predicting streamflow or predicting how much water trees will have in dry years, are based on the idea that there’s very little water stored in the mountains. Now we know that that’s not the case. Most of the water goes into the ground and it sits there for somewhere between three and 15 years before it’s either used by plants or it goes into the streams.”

The team collected runoff samples at 42 sites and used tritium isotope analysis to determine the age of the water, that is how much time elapsed since it fell from the sky as snow.

Published this week in the journal Nature Communications Earth & Environment, the findings were co-authored by U geology professors Sara Warix and Kip Solomon in collaboration with research scientists around the West.

Read the full story by Brian Maffly in @TheU
Listen to an interview of Paul Brooks on this subject KPCW's Cool Science Radio.

>> HOME <<


Fredrick Manthi Elected to National Academy of Sciences

FREDRICK MANTHI ELECTED TO THE NATIONAL ACADEMY OF SCIENCES


May 7, 2025
Above: Fredrick Manthi in the field in the Turkana Basin, northern Kenya

 

Fredrick Manthi

University of Utah adjunct professor Fredrick Kyalo Manthi has been elected to the prestigious National Academy of Sciences (NAS). Manthi, who serves in the Department of Geology & Geophysics and as Director of Antiquities, Sites and Monuments at the National Museums of Kenya, was formally inducted during a ceremony at NAS headquarters in Washington, D.C. on April 25. His election recognizes his significant contributions to the fields of vertebrate paleontology and human evolution research.

The National Academy of Sciences recognizes scientists who have made outstanding and ongoing contributions to original research. As one of science's most prestigious distinctions, NAS membership represents an exceptional achievement in the scientific community. Current NAS membership totals approximately 2,700 members and over 500 international members, of which approximately 200 have received Nobel prizes. Manthi is the 16th faculty member from the College of Science to be elected to the NAS. He is also the only African scientist elected for 2024 and just the second Kenyan ever to receive this recognition.

"Fredrick Manthi's election to the National Academy of Sciences is incredibly well-deserved and represents decades of meticulous field research and scientific dedication," said Thure Cerling, Distinguished Professor of Geology & Geophysics and Biological Sciences at the University of Utah and fellow NAS member. "His pioneering work has advanced our understanding of early human evolution, and his connection to Utah has enriched our research community immensely."

With a research career spanning nearly four decades, Manthi has established himself as a leading expert in East African paleontology. Since joining the National Museums of Kenya in 1986, he has conducted extensive fieldwork throughout the Lake Turkana Basin and other fossil sites across Kenya. Since 2003, Manthi directed numerous excavations at Plio-Pleistocene sites including Kanapoi, Lomekwi, Nariokotome, and several others in northern Kenya, collectively yielding over 12,000 fossil specimens, including rare hominid remains. His research on fossil and modern micro-vertebrate bone assemblages has provided valuable evidence for early hominin paleoecology. Manthi has also facilitated research opportunities for emerging Kenyan scientists and developed scientific infrastructure and training programs focused on the collections at the National Museums of Kenya, which serve as crucial resources for understanding human evolution.

“This recognition highlights the importance of international scientific collaboration, and I plan to use my NAS membership to strengthen research partnerships with the University of Utah and the National Museums of Kenya,” says Manthi. “To the young Africans and those from other parts of the world, I want to tell you that you can achieve high levels of success in your career paths through focus, resilience and hard work.”

The College of Science celebrates this prestigious recognition of one of its faculty members. "Fredrick Manthi's groundbreaking research in paleontology and his commitment to nurturing the next generation of scientists are exemplary," said Interim Dean Pearl Sandick. "His election to the National Academy of Sciences is a tremendous honor, reflecting the extraordinary quality and global impact of his research."

 

by Bianca Lyon

Jay Quade, Distinguished Alumnus

Jay Quade, Distinguished Alumnus


May 6, 2025
Above: From left: Cari Johnson, Marjorie Chan, Thure Cerling, Jay Quade, Barba (Quade's wife), Kip Solomon, Peter Lippert

 

The Department of Geology and Geophysics is thrilled to present Jay Quade, Ph.D. '90, with the 2025 Distinguished Alumni award.

Jay Quade

One of the outstanding field geologists of the modern day, Jay Quade has provided great insight into the geochemistry of the near-surface (surficial) environment. His Ph.D. work set the stage to document isotope diffusion as the determining factor in soil carbonate profiles. He followed this with work in the Siwaliks of Pakistan and showed that major ecosystem changes, including the expansion of C4 grasslands, are recorded in soils through both d13C and d18O isotopic analysis.

In his distinguished faculty career at the University of Arizona beginning in 1992, he continued to pursue isotope change along the length of the Himalaya. This is the best documented ecological change showing the transition from the mid-Miocene "C3-World" to the Plio-Pleistocene "C4-World."

Quade has made many contributions since then in many aspects of surficial geochemistry, but a few highlights  include the following:

— Strontium isotopes to study calcrete formation and documenting movement of goods by early American cultures in the USA

— Studying packrat middens as long-term climate records

— The Quaternary history in the Yucca Mountain region for implications for nuclear waste disposal

— Demonstrating how earthquakes can influence surface weathering of boulders in desert regions (a very fun read)

— Clumped isotope applications in soils and paleosols

— Conventional and clumped isotopes in paleoaltimetry studies (pioneering work with Carmie Garzione)

Widely Recognized

A celebrated geoscience polymath, Quade has been widely recognized in the sector. He is the recipient of the 2018 Arthur L. Day Medalist from the Geological Society of America in 2018 recognizing “outstanding distinction in the application of physics and chemistry to the solution of geologic problems," and a fellow of the Geological Society of America, the American Geophysical Union, the Geochemical Society and the National Academy of Sciences. He has had visiting faculty positions at Hebrew University and the University of Tokyo.

Scopus, the multidisciplinary abstract and citation database produced by Elsevier lists Quade’s 220 publications with nearly 22,000 citations, and an "h-index’" of 78. His contribution to science extends far beyond these metrics with the creativity and care he demonstrates and instills in colleagues and mentees every day.

Through all this work, Quade has been engaged in multiple collaborations, showing enormous generosity of his time and sharing his experience and field sites.

The 2025 Distinguished Alumni Award was presented to Jay Quade by the Department of Geology & Geophysics March 6 by a committee that included Marjorie Chan, professor emerita; Pete Lippert, associate professor; Thure Cerling, distinguished professor; Cari Johnson, professor; Kip Solomon, distinguished professor and interim department chair; Ashley Herman, program manager. 

This story originally appeared on the website of the University of Utah's Department of Geology & Geophysics

2025 Convocation Student Speaker: Marcus Tanner

2025 Convocation Student SPeaker: Marcus Tanner


May 2, 2025

Above: Marcus Tanner at Convocation. All photos by Todd Anderson.

On May 1, Marcus Tanner, an undergraduate in Physics & Astronomy and Geology & Geophysics, spoke at the College of Science's 2025 convocation ceremony staged at the Huntsman Center. His complete remarks are below.


Friends, classmates, scientists, biologists, congratulations on blazing your trail through your undergraduate degrees! No matter how long it took you to get here or what path you took, this is the culmination of all your hard work … but this is not the end of your education, or at least I hope it isn’t, and I don’t mean whatever post-graduate programs you might be attending after we toss our caps. I hope you continue to learn and challenge yourselves long into the future.

I have been a part of many communities on campus during my five-year stay: the physics department, the geology department, the Science Ambassador team, countless teaching and mentoring roles, and I learned something new from each one of them.

Physics taught me that challenging myself is often worth the effort. Geoscience taught me to look at things from new perspectives. Being an Ambassador taught me that science is a team effort, and that not knowing things is more than okay, it’s a part of the job. Being a Teaching Assistant and Learning Assistant has taught me humility (and a lot of physics), because I was once in my students’ shoes seeking help for what now seemed so simple.

But one thing I learned from all of them is that change is an important part of life; I’ve seen friendships wax and wane, I’ve watched fledgling scientists grow into their own and spread their wings towards brighter skies, I’ve seen the world change and shift in ways I would have never dreamed of.

Looking back, I’ve seen that the thing that ties all of this together is the ebb and flow of overwhelming force and renewed strength. A gas cloud must collapse before it shines as a star. A rock must melt before it recrystallizes into something stronger. A mentor must make mistakes and live their life to have advice for people on a similar path. It’s rather parsimonious then, that people too must falter before they can rise higher, and often with support from others to give them some lift.

As we start our new journeys, I hope we can not only learn to grow and shine, but also be willing to take a chance to falter and ask for guidance. We can learn to be proud to admit when we don’t know something. As we do, we can shine when we are strong and borrow some fuel when we are weak. We can wander and wonder, burn and yearn, feel and heal; above all, we can keep learning.

After all, everything ends at some point. There’s no reason to stop changing before we run out of fuel. Our current degree programs may be over, but we can keep being students until we become part of geologic time ourselves.

Thank you.


Marcus Tanner, BS'25 with double degrees in Physics & Astronomy and Geology & Geophysics, is from Draper, Utah.
You can read more about him in his Humans of the U story here

>> HOME <<


Distinguished Professor Kip Solomon

Kip Solomon, Distinguished Professor


May 5, 2025
Above: Kip Solomon in his lab.

D. Kip Solomon has been elevated to the status of Distinguished Professor of Geology & Geophysics.

The rank of Distinguished Professor is reserved for selected individuals whose achievements exemplify the highest goals of scholarship as demonstrated by recognition accorded to them from peers with national and international stature, and whose record includes evidence of a high dedication to teaching as demonstrated by recognition accorded to them by students and/or colleagues.

Solomon holds the Frank Brown Presidential Chair in the Department of Geology & Geophysics, where he is currently interim department chair.

Solomon has a Ph.D. in Earth Sciences from the University of Waterloo and BS and MS degrees from the U’s Department of Geology and Geophysics. He joined the department as faculty in 1993 and served as chair from 2009-2013.

His research includes the use of environmental tracers to evaluate groundwater flow and solute transport processes in local-to regional-scale aquifers.  He constructed and operates one of only a few labs in the world that measures noble gases in groundwater. His research results have been documented in more than 120 journal articles, book chapters and technical reports.

“The College of Science congratulates Kip Solomon on this well-deserved recognition," said Pearl Sandick, interim dean of the College of Science. "As a hydrogeologist, Solomon has developed the use of dissolved gases to evaluate groundwater travel times, location and rates of recharge, and the sustainability of groundwater resources — findings that enhance our efforts to improve water management in the American West. His teaching over the years as well as his service to the department as a former chair and now interim chair epitomize his dedication to the field and the university.”

Solomon was awarded the O.E Meinzer Annual Award by the Geological Society of America in September when a profile of his life's work was featured. You can read that profile here.

For a while, crocodile

For a while, crocodile


April 17, 2024
Above:  Some 215 million years ago in what is now northwestern Argentina, the terrestrial crocodylomorph Hemiprotosuchus leali prepares to devour the early mammal relative Chaliminia musteloides. Credit: Jorge Gonzalez

The ancestors of today’s crocodylians survived two mass extinction events. A new study uncovered a secret to their longevity, which could help conservationists better protect our planet’s most vulnerable species.

Keegan Melstrom, assistant professor, University of Central Oklahoma with three crocodylomorphs. Photo credit: University of Central Oklahoma

Most people think of crocodylians as living fossils— stubbornly unchanged, prehistoric relics that have ruled the world’s swampiest corners for millions of years. But their evolutionary history tells a different story, according to new research led by the University of Central Oklahoma (UCO) and the University of Utah.

Crocodylians are surviving members of a 230-million-year lineage called crocodylomorphs, a group that includes living crocodylians (i.e. crocodiles, alligators and gharials) and their many extinct relatives. Crocodylian ancestors persisted through two mass extinction events, a feat requiring evolutionary agility to adapt to a rapidly changed world. The study’s authors discovered that one secret to crocodylian longevity is their remarkably flexible lifestyles, both in what they eat and the habitat in which they get it.

“Lots of groups closely related to crocodylians were more diverse, more abundant, and exhibited different ecologies, yet they all disappeared except these few generalist crocodylians alive today,” said Keegan Melstrom, lead author and assistant professor at UCO, who began the research as a doctoral student at the U. “Extinction and survivorship are two sides of the same coin. Through all mass extinctions, some groups manage to persist and diversify. What can we learn by studying the deeper evolutionary patterns imparted by these events?”

Earth has experienced five mass extinctions in its history. Experts argue that we’re living through a sixth, driven by habitat destruction, invasive species and changing climates. Identifying traits that boost survivorship during planetary upheaval may help scientists and conservationists better protect vulnerable species today.

Historically, the field has regarded mammals as the poster children for understanding mass extinction survival, lauding their generalist diet and ability to thrive in different ecological niches. Despite their resilience, research has largely ignored the crocodylomorph clade. The paper, published on April 16 in the journal Palaeontology, is the first to reconstruct the dietary ecology of crocodylomorphs to identify characteristics that helped some groups persist and thrive through two mass extinctions—the end-Triassic, about 201.4 million years ago (Ma), and the end-Cretaceous, about 66 Ma.

There’s a danger of trying to draw conclusions from millions of years ago and directly apply it to conservation. We have to be cautious,” said co-author Randy Irmis, curator of paleontology at the Natural History Museum of Utah and professor in the U’s Department of Geology & Geophysics. “If people study mammals and reptiles and find the same patterns with respect to extinction survival, then we might predict that species with a generalist diet may do better. That information helps us make predictions, but it’s unlikely we’ll ever be able to pick out which individual species will survive.”

A hidden past of alternative lifestyles

Randy Irmis faces off with a fossil Borealosuchus skull from the Natural History Museum of Utah’s collections. This crocodylian lived approximately 48 million years ago in the American West. Photo credit: Jack Rodgers/NHMU

Living crocodylians are famous for being semi-aquatic generalists that thrive in environments like lakes, rivers or marshes, waiting to ambush unsuspecting prey. Picky eaters, they are not. Young ones will snack on anything from tadpoles, insects or crustaceans before graduating to bigger fare, such as fish, baby deer, or even fellow crocs. Yet the uniform lifestyle of today’s crocodylians masks a massive diversity of dietary ecologies in which past crocodylomorphs thrived.

During the Late Triassic Period (237–201.4 Ma) Pseudosuchia, a broader evolutionary group that includes early crocodylomorphs and many other extinct lineages, ruled the land. The earliest crocodylomorphs were small-to-medium-sized creatures that were rare in their ecosystems, and were carnivores that mostly ate small animals. In contrast, other pseudosuchian groups dominated on land, occupied a wide range of ecological roles and exhibited a dizzying diversity of body shapes and sizes.

Despite their dominance, once the end-Triassic extinction hit, no non-crocodylomorph pseudosuchians survived. Whereas hyper-carnivore crocodylomorphs appeared to also die off, the terrestrial generalists made it through. The authors hypothesize that this ability to eat almost anything allowed them to survive, while so many other groups went extinct.

 

Read the full story by Lisa Potter in @The U.

Tooth enamel helps reconstruct wildlife migrations

tooth enamel helps reconstruct wildlife migrations


March 13, 2025
Above: The late Misha at the Hogle Zoo in Salt Lake City. Photo courtesy of Hogle Zoo.

Utah geologists show how strontium isotopes found in teeth or tusks reveal where large plant-eating animals have roamed.

Teeth recovered from a beloved zoo elephant that died in 2008 are helping University of Utah geologists develop a method for tracking the movements of large herbivores across landscapes, even for animals now extinct, such as mastodons and mammoths.

Outlined in recently published findings, the technique analyzes isotope ratios of the element strontium (Sr), which accumulates in tooth enamel. For large plant-eating land mammals, the relative abundance of two strontium isotopes in teeth and tusks reflects where the creature may have roamed during its lifetime.

“Our study not only adds to our understanding of how tooth enamel records an animal’s Sr isotope exposure, but also helps to reconstruct animal migrations from Sr isotope analysis,” lead author Deming Yang said in a posting about the research. “It can be applied to studies of paleobiology, to answer how megaherbivores migrated in the past. It can also be applied to studies of modern conservation and forensics, to trace the origins of illegal ivory trade and other forms of wildlife trafficking.”

The star of the study is Misha, a female elephant acquired by Salt Lake City’s Hogle Zoo in 2005.

Chemically similar to calcium, strontium from the environment accumulates in highly mineralized tissues, such as animals’ bones and teeth.

“As animals eat and drink, they pick up this environmental signature and store it in their teeth, preserving a series of environmental exposures like historic archives,” Yang wrote. This is because the geology of different places presents different isotope signatures for 87-strontium/86-strontium [87Sr/86Sr] and those isotope ratios are reflected in plants and water.

“We use other elements, but in this case, we’re focusing on strontium, which has proven to be really useful because of its strong link to geology,” coauthor Gabe Bowen said. “Ultimately it comes down to where that element comes from, how the animal gets it into their body and from what sources.”

The isotope 87Sr is radiogenic, meaning it is produced from the decay of another element, in this case rubidium, found next door to strontium on the Periodic Table, whose half-life exceeds 49 billion years, about 10 times the age of Earth. While 87Sr increases over time, the abundance of other strontium isotopes remains fixed. Accordingly, isotope ratios are a proxy for the age of rocks and typically differ from place to place.

Coauthor Thure Cerling, a highly decorated distinguished U professor of both geology and biology, is a pioneer in the use of isotope analysis to shed light on ecological questions such as soil formation, animal physiology, wildlife ecology and climate change.

Read the entire story by Brian Maffly in @TheU

New state-of-the-art mass spectrometer

 New state-of-the-art mass spectrometer


March 10, 2025
Above: University of Utah members of the Department of Geology & Geophysics, Left to right: Issaku Kohl, Chris Anderson, Chad Ostrander, Juan Carlos de Obeso, Sarah Lambart and Diego Fernandez. Photo by Todd Anderson..

Instrument will help scientists unravel Earth's ancient geological mysteries, past climates and humans' ongoing interactions with the environment.

The University of Utah’s Department of Geology & Geophysics has been awarded a million-dollar grant from the National Science Foundation (NSF) to acquire state-of-the-art mass spectrometry instrumentation for measuring isotope ratios of heavier elements at the precision needed to perform cutting-edge research into Earth’s deep past.

Mass spectrometers have been making accurate and precise isotope ratio measurements of elements such as hydrogen (H), carbon (C) and oxygen (O) for many decades. Isotope ratio differences generally scale with mass, with isotope ratios of these lighter-mass elements exhibiting much larger differences than ratios for the heavier-mass elements. Large differences are easier to measure than small differences.

The instrument acquired through the NSF Major Research Instrumentation program is capable of determining very, very small isotope ratio differences. The instrument’s technical name is the Thermo Neoma “multicollector inductively coupled plasma mass spectrometer,” or MC-ICP-MS for short. The instrument routinely makes accurate and precise isotope ratio measurements for magnesium (Mg), iron (Fe), strontium (Sr), molybdenum (Mo), mercury (Hg), thallium (Tl), lead (Pb), uranium (U), calcium (Ca), potassium (K) and many other heavy elements.

“There’s so many things you can do with it. We have a long list of scientists in our department and beyond who rely on isotope ratio data for their projects,” said Chad Ostrander, assistant professor of geology and principal investigator of the grant.

Joining Ostrander in applying for the grant are Diego FernandezJuan Carlos de Obeso and Sarah Lambart. Chris Anderson and Issaku Kohl also play instrumental roles in the project. The team’s interests cover many fields of research, tracking the selective movement of isotopes today and in the past from Earth’s interior to its surface, between seawater and the seafloor, from ocean to land and between land and life.

Read the entire story by Ethan Hood in @TheU

A Climate Moon Shot Beneath Our Feet

a Climate Moon Shot Beneath Our Feet


March 3, 2025
Above: The Utah Frontier Observatory for Research in Geothermal Energy, or FORGE, is an underground field laboratory specifically focused on an emerging field of research and development of geothermal energy.

North Milford Valley, in western Utah, is home to dormant volcanoes, subterranean lava deposits, and smatterings of obsidian—black volcanic glass—that Paiute peoples once collected for arrowheads and jewelry. Scalding groundwater still bubbles to the surface in places.

Joseph Moore

In such a landscape, you remember that the planet’s hard exterior, where we spend our entire lives, is so thin that we call it a crust. Its superheated interior, meanwhile, burns with an estimated forty-four trillion watts of power. Milford was once a lead-, silver-, and gold-mining town, but when I visited the area on a sunny spring morning a scientist named Joseph Moore [research professor in civil and environmental engineering and adjunct professor in the Department of Geology and Geophysics at the University of Utah] was prospecting for something else: heat.

Heat mined from underground is called geothermal — “earth heat,” in ancient Greek — and can be used to produce steam, spin a turbine, and generate electricity. Until recently, humans have tended to harvest small quantities in the rare places where it surfaces, such as hot springs. Moore’s mission, as a geologist at the University of Utah and the project leader of the Frontier Observatory for Research in Geothermal Energy (FORGE), is to “develop the roadmap that is needed to build geothermal reservoirs anywhere in the world.” This road is long, and much of the map remains blank. The biggest problem is drilling miles through hot rock, safely. If scientists can do that, however, next-generation geothermal power could supply clean energy for eons.

During my trip, Moore’s corps of consultants and roughnecks were drilling the fifth borehole of their experimental project. Their rig, armed with a diamond drill bit, towered like a rocket over the rural landscape; miles of solar panels and wind turbines receded into the distance. The hole, which would eventually be L-shaped, was five thousand feet deep, and the team had another five thousand to go, horizontally. But, before they could drill any farther, they needed to install a hundred-and-fifty-ton steel tube in the hole, using special heat-resistant cement to glue it into place. The tube was like a massive straw that was meant to transport hot water and steam from an artificial underground reservoir—without contaminating local groundwater or triggering earthquakes.

At 6:15P.M.on May 3rd, cement had started flowing into the hole. Four hours later, part of the cement folded in on itself. The next morning, the cement supply ran out; the men had miscalculated how much they needed. This brought the three-hundred-million-dollar operation to a maddening halt. Moore, in bluejeans and a FORGE-branded hard hat, called his supplier. The nearest batch of suitable cement was five hundred miles away, in Bakersfield, California. The truck would not arrive until after dark.

Right now, geothermal energy meets less than one per cent of humanity’s electricity and heating needs—a puny, almost irrelevant portion. Fossil fuels power about eighty per cent of human activity, pumping out carbon dioxide and short-circuiting our climate to catastrophic effect. Converts argue that geothermal checks three key boxes: it is carbon-free, available everywhere, and effectively unlimited. Crucially, it is also baseload, which means that, unlike solar panels or wind, it provides a constant flow of energy. Companies and governments have taken notice. “Over the last two years, I have watched this exponential spin-up of activity in geothermal,” Tony Pink, a drilling expert in Houston, told me, in 2023.

But there is a glaring risk of moon shots: often, they miss. “There’s basically zero chance that you’re going to develop a moon-shot technology and have it be commercial in five years, on a large-scale, worldwide,” Mark Jacobson, a Stanford engineering professor and the author of “No Miracles Needed: How Today’s Technology Can Save Our Climate and Clean Our Air,” told me. That’s how long humanity has to lower emissions before climatic devastation, according to his calculations. “There’s a very decent chance you can do that with wind and solar,” he said. Perhaps, when resources and time are finite, trying and failing — or simply taking too long — could be worse than not trying at all.

Read the rest of the story by Brent Crane published in The New Yorkerhere. (Requires setting up an account for limited, trial access.)

Joseph Moore, featured in the story above, was recently honored by the Utah State Legislature for his lifetime of service and dedication to advancing geothermal energy. Read more here.