Vignesh Iyer

Vignesh Iyer


How did you become interested in math?
I’ve always gravitated toward STEM subjects even in elementary school. In college, I was exposed to various subjects but a common language each subject used was math. I’m a curious student and hungry to consume as much knowledge as possible. Math is a universal language that allows me to communicate with those in different fields and tells me how things work. Math has allowed me to explore other subjects and influences the way I interact with problems—from social sciences to applied sciences and engineering.

What kind of internship did you have while at the U? How did you get it?  What did you like about it?
At the beginning of 2020, I started interning for the Pharmacotherapy Outcomes Research Center (PORC) at the University of Utah College of Pharmacy. I applied using the College of Science internship page. I loved interning with the PORC because it allowed me to engage in computational mathematics, work in pharmacology, and interact with different data science and statistical analysis techniques. The team I worked with was performing a correlational study between medication types and bile-duct cancers. I was able to work on the entire computing and mathematics aspect of the study and learn some cool chemistry along the way. My favorite part of the internship was learning how to access databases and interpret the information using data analysis.

You finished your bachelor’s degree and are now in graduate school at the University of California, Irvine. What are you studying?
I entered UC Irvine last fall to begin my graduate studies in mathematics. Graduate school is a whole new challenge but it’s such an enjoyable challenge! My coursework has really taught me to think in new ways, and I’m able to explore new areas of mathematics. At the moment, my favorite class is abstract algebra because it’s a whole new area of math I’ve never been exposed to. I think the online learning part of graduate school has presented learning curves but they’re interesting learning curves.

I’d like to continue my graduate studies in mathematics and get a Ph.D., whether that’s returning to the U. or staying here at home in Southern California.

Is there an area of research that interests you in math? What do you like about it?
I’m interested in applied and computational mathematics. More specifically, I’m interested in applying computational mathematics to data science and machine learning. Applied and computational mathematics explores modeling and/or simulating systems using computers and various mathematical subjects, such as numerical methods, inverse problems, etc. What I like about applied and computational mathematics is that it allows me to be an all-around researcher and engage and contribute to different fields.

Long-term career plans?
After my graduate studies are completed, I’d like to pursue a career in robotics, focusing primarily on research and development in machine learning and artificial intelligence.

 - first published by the Department of Mathematics

Kyle Kazemini

Kyle Kazemini


How did you become interested in math?
I had an exceptional math teacher in high school. He had a great sense of humor and genuinely cared about all of his students. He also loved math and it was apparent in his teaching. His lessons were both fun and interesting. My enjoyment prompted me to take calculus and decide to study math further. My interest in math has only continued to grow.

How did you get your internship?
My math advisor, Angie Gardiner, told me about the College of Science Internship Program, and I applied for some positions. I was hired as a sports science intern for University of Utah Athletics. The people I worked with were great, and they all made me feel like part of the team.

My first project was to transform ForceDecks data. ForceDecks is a system for analyzing an athlete’s performance and to make assessments. The data from ForceDecks has a unique format that’s difficult to use in statistical programming languages like R and Python. My job was to develop a tool to fix this issue. I used Excel and VBA (Visual Basic for Applications) to create an automated tool for transforming the data into a user-friendly format.

My second project was to analyze the ForceDecks data. Now that it had a better format, I used R to analyze the data. The purpose of the analysis was to detect athlete asymmetries and possible injury risks. I generated statistics, tables, and plots. These projects made use of both my statistical and programming skills. I enjoyed this internship because I love applying math and computer science in interesting and impactful ways. Because of this internship, I have since become interested in quantitative medicine.

You’re involved in the Directed Reading Program. What is it? 
The Directed Reading Program is a mentoring program between graduate and undergraduate students, who work together on a reading project in mathematics. Any student can sign up for the program, regardless of their level in math. I heard about it through Math Department announcements, and I’m so happy I did. My graduate student mentor is awesome! We’ve read about differential equations and basic mathematical biology. Currently, we’re reading about partial differential equations.

What year are you?  
I’m a junior and plan on graduating in the spring of 2023. I’m taking an extra year since I’m doing a double major with computer science. My interest in computer science started when I took some CS courses as part of my math major. After learning some of the basics of CS, I began to wonder what was out there. Since then, I’ve become excited about theoretical computer science, as well as image processing and computer vision. Studying computer science has made me better at math and vice versa. Although math is the subject I love most, I think studying CS gives me a different perspective on mathematical problems. I also love learning about computing for its own sake.

What about career plans? 
I’m planning on doing a Ph.D. in math, but I’m still narrowing down my research interests. I’m deciding between pure and applied math because I enjoy things like applied mathematical biology, but I also just love math problems on their own. In addition to math bio, I’m interested in partial differential equations. I’m excited to learn about the theory behind PDEs, including real analysis, functional analysis, and Sobolev spaces.

Hobbies or interests outside of math?
I started studying Muay Thai (Thai boxing) when I was 13. Muay Thai is like kickboxing, except with elbows and knees. I was taking classes at a gym for about three years, but now I do it just for fun/exercise at home on a punching bag. I think martial arts are awesome for learning things like discipline and self-confidence.

I also love film—my favorite film is Good Will Hunting, which is pretty typical for a math nerd! I love it because it has a math genius, a great love story, and it’s about triumphing over difficult challenges. I enjoy most film genres—anything from romance to horror to documentaries.

I’m new to snowboarding, and I really like it. My favorite resort (for now) is Brighton. Currently, my favorite video game is CSGO(Counter-Strike: Global Offensive). I don’t play a lot of games because school keeps me busy, but in the past I’ve loved playing Skyrim, Call of Duty, and Halo.

I’ve wanted to build my own computer for years, and I finally did it for the first time a few months ago. I use it for school, work, and for intensive tasks that my laptop just can’t handle. Building it made me really happy!

 - first published by the Department of Mathematics

Brennan Mahoney

Brennan Mahoney


“As a child I always seemed to have an interest in animals,” says Brennan Mahoney, HBS’20, “and  originally  I wanted  to  be  a   veterinarian!”     Fate, however, would intervene for this Sandy, Utah native.

When he was ten years old Mahoney’s father had a massive heart attack in the left anterior descending artery (LAD), what’s colloquially called the “widow-maker” because when it is blocked it often results in the patient’s death. His father survived thanks to the “herculean efforts,” of the medical team.

“The work of the doctors and how they treated my family throughout the period of his recovery,” he says, “… turned my interests in biology towards its applications in the field of medicine.” Mahoney’s father would eventually receive a heart transplant nearly two years to the date of the attack, and Mahoney would later enroll in pre-med at the University of Utah where, when he’s not studying, he enjoys playing the guitar and piano, cooking, hiking, (“This is Utah, of course,” he says) … and following Ute football.

The summer after his freshman year, Mahoney worked toward his certification as a nursing assistant (CNA) so that he could start gaining clinical experience. “I worked as a home health aide in many different contexts,” he explains, “but mostly dealt with people who had neurological disorders or injuries.” It was during this time that he met a client who, prior to his injury, had worked as a researcher, and the experience pushed Mahoney to look for opportunities in a neuroscience lab. At the same time, Mahoney also worked as a tutor at West High School in Salt Lake City.

Enter Sophie Caron, professor in the School of Biological Sciences who at the time held the endowed Mario Capecchi Chair, named after Utah’s Nobel laureate who holds joint appointments in SBS and Human Genetics at the U. Caron’s lab studies multisensory integration (MI), a process by which brains integrate sensory information into a comprehensive picture of their environment.

The Caron lab, 2020

“For the study of this,” reports Mahoney who graduated with honors last summer but continues working in the Caron lab as a technician, we “used a brain area known as the mushroom body of [the fruit fly] D. melanogaster as a model.” The Caron team characterized the connection of neurons from multiple sensory modalities using a technique known as GFP reconstitution across synaptic partners or GRASP for short. “With knowledge of the patterns underlining MI, this logic could be applied to more complex brains,” says Mahoney, including, potentially, the human brain.

The research culminated in a first publication for Mahoney and his undergraduate colleague Miles Jacob, also credited as a co-author. The article, which made the cover of the journal Cell Reports highlights fundamental differences in the way associate brain centers, notably the mushroom body, integrate sensory information and converge in higher order brain centers. The findings are built  on previous work from the Caron lab that described a pathway conveying visual information from the medulla to the ventral accessary calyx of the mushroom body. “[O]ur study,” reads the article abstract, “defines a second, parallel pathway that is anatomically poised to convey information from the visual system to the dorsal accessary calyx.”

It is these kinds of scientific findings that inspire a young researcher like Brennan Mahoney to keep going. His ambition, in fact, is to apply to an MD/PhD program where he can continue in research that can help health professionals practice the good work that he witnessed first-hand when his father was singularly under their care.

"The efforts of my father's medical team allowed him to live so that he could continue to raise me and my two brothers and continue to live a happy and full life to this day. I hope to be able to help people in that same capacity, be it through direct patient care or through the findings of my future research."

The School of Biological Sciences regularly grants the Research Scholar Award to deserving undergraduate researchers like Brennan Mahoney. You can support these scholarships through a donation here.

by David Pace

Live on campus

Live on campus in a Science Community


One way to deepen your engagement at the U is to live in a College of Science Themed Community: College of Science First Year Floor at Kahlert Village or the Crocker Science House on Officers Circle. These communities are designed to bring students with similar interests, majors, goals, and experiences together.

College of Science First Year Floor


Kahlert Village is the newest residential community on campus and is home to approximately 990 first year students. The building features double and single rooms in cluster and suite-style configurations. Kahlert Village is centrally located on campus, includes a full-service dining facility, and a variety of classroom and study space available for students. A meal plan is required in this living area.

If you are a first year student pursuing a degree in the College of Science the Science First Year Floor is an excellent opportunity for you. Residents support each other through the rigors of their coursework while deepening their connection to the College of Science faculty, alumni, staff, and opportunities.  Resident Advisors are science students who can help mentor you through your academic career.

Crocker Science House


Nestled in Officers' Circle, at the base of the Wasatch foothills and the Shoreline Trail, the Crocker Science House provides a unique opportunity for twelve science students to live and learn together in a beautifully restored building once occupied by military officers. Crocker Science Scholars have the opportunity to attend lectures, dinners, and other events with luminaries of Utah's business, science, and academic communities. In 2018, Mario Capecchi joined the students for dinner and ping-pong. A meal plan is required in this living area.

Crocker Science Scholars come from a variety of geographic, cultural, and academic backgrounds, united by a strong drive to succeed in the physical and life sciences.   Scholars often find that living in close quarters with students from other disciplines helps them with their own work and encourages them to explore avenues of science they would not have considered otherwise.

Frequently asked questions


Housing is full for 2022-23 academic year. Application for 2023-24 opens early 2023.


Women in Mathematics

Women in Mathematics


Last spring, the Math Department’s student chapter of the Association for Women in Mathematics (AWM) planned a conference, with speakers, mini courses, breakout sessions, and professional development panels. About 60 participants were expected. Unfortunately, when the pandemic hit in March, everything changed, and the conference was canceled.

Despite the setback, the chapter still moved forward and will host a series of online activities and communications for attendees. In recognition of these remarkable efforts, the chapter was recently selected as the winner of the 2020 AWM Student Chapter Award for Scientific Excellence. Christel Hohenegger, associate professor of mathematics, serves as faculty advisor for the chapter.

"We are very thankful and excited to have won this award and receive national recognition,” said Claire Plunkett, vice president of the chapter for 2020-2021. “This is a national award from the AWM, and we are one of more than a hundred student chapters, so it’s a great honor to be chosen. We feel the award reflects how our chapter's activities have continued to grow and gain momentum over the past several years, and we’re excited to continue to sponsor events and expand our activities.”

For the academic year, the chapter has invited four speakers and all talks will be held on Zoom. Confirmed speakers include Nilima Nigam, professor of mathematics at Simon Fraser University; Kristin Lauter, principal researcher and partner research manager for the Cryptography and Privacy Research group at Microsoft Research; and Christine Berkesch, associate professor of mathematics at the University of Minnesota. The annual conference has been rescheduled for June 2021.

In addition, the chapter will continue to host joint monthly lunch discussions with the SIAM (Society for Industrial and Applied Mathematics) student chapter; a professor panel in which faculty research is shared with students; joint LaTeX (a software system for document preparation) workshops held with the SIAM student chapter; a screening of a documentary called Picture aScientist, a discussion co-hosted with other women in STEM groups; and bi-weekly informal social meetings. For more information about the U’s AWM chapter, visit http://www.math.utah.edu/awmchapter/.

 - first published by the Department of Mathematics

2020 Research Scholar

Delaney Mosier

Delaney Mosier receives top College of Science award.

Delaney Mosier, a graduating senior in mathematics, has been awarded the 2020 College of Science Research Scholar Award for her cutting-edge work in the area of sea ice concentration, using partial differential equation models.

“I am humbled to receive this award,” said Delaney. “The College of Science is teeming with groundbreaking research, so it’s an overwhelming honor to be considered one of the top researchers in the College. I’m proud to be a representative of the amazing research going on in the field of mathematics.”

Delaney is also proud to receive the award as a woman. “I strive to be a positive role model for girls and women in STEM. I hope that by earning this award, I can inspire other women to consider working on mathematics research.”

In his letter of support for Delaney’s nomination, Distinguished Professor Ken Golden, who has served as her supervisor and mentor, discussed her research abilities, natural leadership skills, and mathematical prowess, indicating that Delaney is one of the most talented and advanced students he has seen in his 30+ years of mentoring.

Super Student

The College of Science Research Scholar Award, established in 2004, honors the College’s most outstanding senior undergraduate researcher. The Research Scholar must be a graduating undergraduate major of the College of Science, achieve excellence in science research, have definite plans to attend graduate school in a science/math field, and be dedicated to a career in science/math research.

Studying the Behavior of Sea Ice

Delaney studies patterns in the behavior of sea ice in polar regions. She’s interested in how physical processes affect these patterns on a short-term basis and how climate change can affect them in the long-term.

The primary goal of her research with Dr. Golden is to understand better how and why sea ice is changing over time. Considered relatively low order, their model allows them to study intimately the details of the sea ice pack, which can provide insights that might not yet be apparent to the climate science community. Her work tries to answer one of the most important research questions of the modern age: Why is polar sea ice melting so rapidly and will it ever recover?

She has always been passionate about the environment and finds the project exciting because it incorporates mathematics along with studying climate. “My project is very dynamic,” she noted. “Each time I meet with Dr. Golden, we discuss something new to incorporate into our model or seek a new way to understand it. It’s thrilling to be a part of such unique and innovative work.”

Utah Strong

She became seriously interested in math because of her 7th grade algebra teacher. “Mrs. Hein fostered an exploratory environment—I collaborated with my peers and was often challenged to explore the world of mathematics for myself,” she said. “I couldn’t get enough of it. To this day, math remains the one activity that I can completely lose myself in. Math challenges my mind in exhilarating and motivating ways.”

Mentors at the U

Delaney credits Dr. Golden with helping her pursue a variety of opportunities that have furthered her career as a mathematician. She also has praise for Dr. Courtenay Strong, associate professor of atmospheric sciences, and Dr. Jingyi Zhu, associate professor of mathematics, who have served as mentors and helped guide her research.

“My friend and roommate, Katelyn Queen, has been a wonderful mentor and inspiration to me throughout my journey,” said Delaney. “She is always willing to give me advice and support me in my endeavors. I have watched her excel in her first year of graduate school, and that has inspired me in moving forward.” She also thanks fellow students and her parents for their love and support. “My parents are simply the best,” said Delaney.

Her favorite teacher at the U is Dr. Karl Schwede, professor of mathematics. “I had Dr. Schwede for several classes and learned so much,” she said. “He has high standards for his students, which motivated me and helped me to retain the material. He is also supportive and helpful.”

When she isn’t studying or doing research, she loves to dance and listen to music. She was a competitive Irish dancer from ages 11 – 17. She is also an avid reader, especially during the summer.

The Future

Goodbye Salt Lake City

Delaney will begin her Ph.D. studies in applied mathematics this fall. She hasn’t yet decided if she will work in industry, continue with climate research, or become a professor. “Whatever I decide to do, my goal is to use mathematics to have an impact on the world,” she said.

 

by Michele Swaner

 

 

Dominique Pablito

Dominique Pablito

"My interest in medicine stems from my childhood experience."

Dominque Pablito grew up in the small town of Aneth, Utah, on the Navajo Nation, and in New Mexico on the Zuni Reservation. She lived in a four-bedroom house with 13 family members, sharing a bedroom with her mother and brother, and visited relatives for extended stays.

“I spent time with my great grandmother, whose house had no running water or electricity,” said Pablito.

Because her grandparents did not speak English, Pablito learned the Zuni and Navajo languages. Pablito said her father, an alcoholic, came in and out of her life.

“I spent time with his family in the Zuni Pueblo,” said Pablito. “I love the connection that the Zuni have with the land and the spirits of the land.”

With access to math and science courses limited in reservation schools, Pablito convinced her family to move.

“We ran out of gas in Saint George, Utah, where I registered for high school even though my family was unable to find housing,” said Pablito. “During my first quarter at my new school, I slept in a 2008 Nissan Xterra with my mother, brother and grandmother while I earned straight As, took college courses at Dixie State University and competed in varsity cross country.”

Pablito met her goal of graduating from high school in three years, racking up honors and college credits.

“My mother told me I would have to excel in school to get a scholarship for college,” said Pablito. “When I graduated at 15 with an excellent GPA, having taken college courses at night and with exceptional ACT and SAT scores, I was sure I would earn the Gates Millennium Scholarship. It wasn’t enough.”

Dominique Pablito

To compensate, she applied for 15 scholarships and was awarded 12, including the Larry H. Miller Enrichment Scholarship—a full ride.

For Pablito, the transition to college life was jarring.

“It was the first time I had my own bed in my own bedroom,” said Pablito. “I missed being so close to my Zuni culture. I brought small kachina figurines with me and did my best to decorate my room like my old homes.”

Despite her hard work in high school, Pablito was not prepared for college academics and sought help from tutors, professors, and TAs.

“I spent late nights watching tutorials on YouTube,” said Pablito. “College retention rates for indigenous students are exceptionally low, so instead of going home for the summer, I sought out research internships and difficult coursework to keep busy.”

Academics were not her only challenge.

“I started college at 15 and by age 16 I had no parents,” said Pablito. “My mother was abusive and we ceased contact. At 17, I was diagnosed with an adrenal tumor, which pushed my strength to its limits. I never felt more alone in my life.”

For support, she turned to her grandparents.

“Hearing their voices speaking the languages I grew up with helped with my loneliness,” said Pablito. “My grandfather didn’t allow me to drop out of college.”

Pablito also reached out to Indigenous student groups.

“I joined AISES and the Hospital Elder Life Program (HELP), which connected me with community elders,” said Pablito. “I tutored students in math and science and assisted in teaching Diné Bizaad (Navajo) to students who had never heard the language. Being a part of these communities has been crucial in my success.”

She also credits her research internships with helping her discover her strengths.

“I decided to major in chemistry when I participated in the PathMaker Research Program at the Huntsman Cancer Institute, where I used biochemistry to investigate DNA damage and repair in cancer cells,” said Pablito. “Dr. Srividya Bhaskara guided me through the world of research, helping me earn many awards and grants.”

In the lab Pablito learned the important lesson that failure is inevitable.

“I began to think that science wasn’t for me, until I understood that failure is a part of research,” said Pablito. “What matters is how you handle that failure.”

She had a different lab experience during an internship at Harvard Medical School and Massachusetts General Hospital. There she used targeted photoactivatable multi-inhibitor liposomes to induce site-specific cell damage in various cancer cells.

“That’s where my research interest in cancer and molecular biology developed,” said Pablito. “That internship taught me how to effectively present scientific data and how important community can be for the success of Native students.”

Her interest in medicine stems from her childhood experience with the Indian Health Service.

“Many of my elders distrusted going to doctors because most health care providers are white,” said Pablito. “My great-grandfathers’ illnesses could have been treated much better had they visited a doctor sooner. I will use my medical training to improve the care of elders on my reservation by integrating culture, language and medicine.”

In addition to earning an MD in family medicine, Pablito plans to earn a doctoral degree in cancer biology and eventually open a lab on the Zuni Pueblo to expose students to research.

“I want to spark an interest in STEM in future generations of Indigenous scholars,” said Pablito. “I want to give them advantages I never had.”

 

by D.J. Pollard
American Indian Science and Engineering Society (AISES).

The AISES magazine, People in Winds of Change, focuses on career and educational advancement for Native people in STEM fields. The article below first appeared in the Spring 2020 Issue.

 

 

2020 Churchill Scholar

Michael Xiao

Five for Five.

Michael Xiao brings home the U's fifth straight Churchill Scholarship.

Five years after the University of Utah became eligible to compete for the prestigious Churchill Scholarship out of the United Kingdom, the university has sported just as many winners. All of them hail from the College of Science, and all were facilitated through the Honors College which actively moves candidates through a process of university endorsement before applications are sent abroad. The effort has obviously paid off.

“These students are truly amazing,” says Ginger Smoak, Associate Professor Lecturer in the Honors College and the Distinguished Scholarships Advisor. “They are not merely intelligent, but they are also creative thinkers and problem solvers who are first-rate collaborators, researchers, learners, and teachers.”

The most recent U of U winner of the Churchill Scholars program is Michael Xiao of the School of Biological Sciences (SBS).

While early on he aspired to be a doctor, Xiao’s fascination with how mutations in the structure of DNA can lead to diseases such as cancer led him to believe that while it would be one thing “to be able to treat someone, to help others, it would be quite another to be able to understand and study the underpinnings of what you’re doing and to be at its forefront.” This is particularly true, right now, he says, with the advent of the coronavirus.

Michael Xiao

The underpinnings of Xiao’s recent success started as early as eighth grade in the basement of his parent’s house where he was independently studying the effects of UV light damage on DNA. To quantify those effects he was invited to join a lab at nearby BYU where faculty member Kim O’Neill, Professor of Microbiology & Molecular Biology mentored him through high school, even shepherding him through a first-author paper.

Since then Xiao has matured into a formidable researcher, beginning his freshman year in the lab of Michael Deininger, Professor of Internal Medicine and the Huntsman Cancer Institute, followed by his move to the lab of Jared Rutter, a Howard Hughes Medical Institute Investigator in biochemistry. With Rutter he studied the biochemistry of PASK and its roles in muscle stem cell quiescence and activation of the differentiation program. His findings provided insight into the role and regulation of PASK during differentiation, as well as a rationale for designing a small molecule inhibitor to treat diseases such as muscular dystrophy by rejuvenating the muscle stem cell population.

Early experience in a research lab is not only about engaging the scientific method through new discoveries but also about making academic connections that lead to auspicious careers.

Sir Winston Churchill

One of those connections for Xiao was with Chintan Kikani now at the University of Kentucky. In fact the two of them are currently finishing up the final numbers of their joint PASK- related research.

The Churchill award, named after Sir. Winston Churchill, will take Xiao to Cambridge University beginning in October. While there, Xiao plans to join the lab of Christian Frezza at the MRC Cancer Unit for a master’s in medical science. After returning from the UK, Xiao plans to pursue an MD/PhD via combined medical school and graduate school training in an NIH-funded Medical Scientist Training Program.

Xiao is quick to thank his many mentors as well as SBS and the Honors College, the latter of which, he says, taught him to think critically and communicate well, especially through writing. Honors “was very helpful in helping me improve in a lot of areas,” he says, “that are important to my work and my personal life as well.”

Denise Dearing, Director of the School of Biological Sciences at the University of Utah describes Michael Xiao as one who “epitomizes how early research opportunities are transformative and how they ‘turbo-charge’ the likelihood of creating world-class scientists. The School is first in line to congratulate him on receiving this extraordinary award.”

 

by David Pace

 

- First Published in OurDNA Magazine, Spring 2020

Related Posts

 

Ana Rosas

Ana Rosas


Every student’s story is one-of-a-kind, and Ana Rosas’ is no exception.

Rosas’ desire to become a doctor was deeply personal. She recalls her grandmother dying just one month after being diagnosed with untreatable and advanced liver cancer. “During my grieving, I thought about what, if anything, could have been done to prolong” her grandmother’s life. Was the late diagnosis due to her grandmother’s Hispanic heritage? Her community’s mistrust of physicians? Socio-economic barriers? “Though I was provided with encouragements,” she wrote in her recent application to medical school, including from select teachers at local Cottonwood High School, “I was also independently driven to learn and become equipped with tools needed to one day give back to my community.”

Ana arrived as a one-year-old in the United States with her mother and aunt, both of whom had been doctors in their native Colombia. But neither woman was eligible to practice medicine in the U.S. Instead, these two single mothers focused on raising their children. Being in a country that unexpectedly eliminated her career did not keep Ana's mother from sharing her expertise. Rosas remembers her mother conducting a hands-on anatomy class with a pig's head on the dining room table, even introducing surgical procedures.

At the University of Utah as a biology major intent on going to medical school, Rosas quickly realized that she didn’t have the same resources or opportunities, finding that she was on her own to navigate, for example, finding a lab to do research. She didn’t know anyone in the health sciences. Seventy emails later she landed in Dr. Albert Park’s lab at Primary Children’s Hospital in Salt Lake City where she worked with her team to better remove laryngeal cysts in infants. The learning curve was steep: literature reviews, in-text citations, and continually managing her share of “imposter syndrome” that started as early as high school where she was a minority. Her work with Park resulted in her presenting a poster at a national Otolaryngology meeting and a first authorship in a related prestigious international journal. “I have not had many undergraduates achieve so much in such a short time,” Park says of Rosas.

Now a senior at the School of Biological Sciences, Rosas has been busy working in not one but two labs. With Kelly Hughes she works with bacteria, specifically Salmonella, and focuses on identifying the secretion signal for a regulatory protein that is required for proper flagellar formation. “I mutagenize the protein,” she says, “by incorporating random amino acid substitutions at each amino acid position of the protein.” Along the way she looks for colonies that are defective. “This way I can send those colonies for sequencing and obtain data that can tell what amino acids are essential for the proper secretion of the protein” under study.

Her second lab experience with Robert C. Welsh in the School of Medicine's Department of Psychiatry brings Rosas' career ambitions back full circle to her heritage and her desire to give back to her community, which is often under-served by the medical profession and under-represented in institutions of higher learning. Using imaging equipment, she and her colleagues are developing a diagnostic and prognostic tool to determine where ALS (Alzheimer’s) patients are in the progression of the disease. Related to that is lab work of another kind. In the “engagement studio” at University Neuropsychiatric Institute (UNI) she is gathering feedback from minority groups to see what obstacles—from language barriers to mistrust of medical authorities–impact their participation in research. “We want to figure out what researchers can do to encourage their cooperation,” she says.

At the same time, while demonstrating that she’s not only successfully balancing on that once precipitous learning curve, Rosas has demonstrated that she’s clearly ahead of it. Currently she is treasurer of the InSTEM group on campus and has helped initiate the new Health Sciences LEAP program which does science outreach in high schools. “I want to help minorities like me,” says Rosas, “better navigate college for the first few years.”  Tanya Vickers who directs the ACCESS program for the College of Science, is most certain she will do exactly that, referring to Rosas as a “remarkable young woman.”

Rosas has indeed come a long way from anatomy lessons on her mother’s kitchen table. Applying to medical schools has provided the chance to reflect on her journey and, considering the barriers and uncertainty she first felt, that journey has proven to be an auspicious one.

 

by David G. Pace

Alex Acuna

Alex Acuna


Alexandra “Alex” Acuna doesn’t even remember her native Venezuela, as she arrived in the U.S. with her parents and two older siblings when she was just a few weeks old. She does recall as a young child huddling in a room for seven months with other families experiencing homelessness at the Road Home Shelter in Salt Lake City where her closest ally was “Mike Wazowski,” a ratty, single-eyed monster toy she hugged day and night.

Eventually, the family moved into a basement apartment with two other families before landing more permanently in government-subsidized housing. “There were a lot of points in our childhood when my siblings and I were skating on thin ice,” she says, referencing everything from food and housing insecurity to fear of deportation; from the stigma of not being part of the majority Latinx community to almost yearly changes in schools. To make matters worse, her parents separated shortly after the family’s arrival. “Survival took up all of our time,” she says.

There was one stabilizing force for the family: food and the community that comes with each cuisine. It started in their modest apartment kitchen with her mother selling empanadas, a cottage industry that grew to a full-fledged Venezuelan restaurant that, in 2014, opened in Salt Lake.

Acuna’s mother, whose college experience was derailed in Venezuela by her first pregnancy, was determined to make sure her children got to the best public schools possible. Even so, as Acuna puts it, once at the UofU she experienced what so many first-generation students do: “I had no access to people who understood the system I was trying to navigate. I didn’t know what I didn’t know. I didn’t know where to look for resources.”

The College of Science’s Access Program was a life ring. Not only did it provide Acuna a scholarship, but a first-year cohort with older students along with housing during the summer before her first year so that she could familiarize herself with campus life. Another important component of the program directed by Tanya Vickers was getting into a lab, something Acuna admits “was not even on my radar.” In Leslie Sieburth’s lab at the School of Biological Sciences Acuna became embedded in a community: “How do you bridge the gap in knowledge,” she asks, “without a network of people?” The answer is you probably don’t, especially with Acuna’s background and lack of opportunities that many college-bound students take for granted.

For three years, Acuna fought self-doubt during “the worst of times” that she was somehow an intruder, a forever-outsider who didn’t belong in a lab that, frankly, she wasn’t even sure the value of. “Tanya was a great mentor,” she says now of Vickers, acknowledging that her mentor helped her see that, while her mother needed her to work in the restaurant, Acuna needed to prioritize her education, a difficult thing to do when you’ve been a character in a shared survival narrative as intense as theirs.

Eventually, the school/work balance was struck. “My mother was never a helicopter mom. But she sees me in the trenches and can now share the glory of it with me.” (Acuna still works weekends in the restaurant, patronized by the flowering Venezuelan community and others in Utah’s capital city.)

Says Sieburth of Acuna, “Alex joined my lab with an enormous amount of raw talent. It was a pleasure to mentor her, and to help her recognize her remarkable facility for research.”

An opportunity seized soon presents other opportunities. In February 2019, Acuna was admitted to the inaugural year of the Genomics Summer Research for Minorities sponsored by the U’s medical school. Currently, she does research in the Tristani-Firouzi lab where the gene-editing and cloning of plants she was doing with Sieburth are now placed for this budding molecular biologist into a medical and physiological context. In the Tristani lab they are studying the genetic component of atrial fibrillation, one of the most common types of cardiac arrhythmia. “It’s given me power to things that I wasn’t even aware of before coming here,” says a grinning Acuna.

What’s next for Alex Acuna? “I know that I’m definitely moving on,” she says of her career as a scientist. “I’m just not clear what direction: academics or medical school.” As a paid undergraduate research assistant, though, one thing she is sure about: “I’ve found a sustainable model. These worlds–personal and professional–they could combine [after all]. They did combine. I understand my ambition, and I now have such sensitivity to activities outside of the lab.”

For Acuna and her family, who are now naturalized citizens of the U.S., their experience is not just an immigrant story of survival; it’s an incomplete narrative born in Venezuela and perpetually vectoring toward real promise.