$1M Grant to Chemists

$1M Grant to Chemists


Grant from the W.M. Keck Foundation will help chemists learn how molecules crystallize, potentially saving time in developing new drugs and industrial materials.

Michael Grünwald

Michael Grünwald, Ryan Looper and Rodrigo Noriega, of the University of Utah Department of Chemistry, received a $1 million grant from the W.M. Keck Foundation funding studies of currently unpredictable aspects of the process of crystallization. Accurate models of how molecules come together to form solid structures will help save time in developing new pharmaceuticals and industrial materials, since researchers will be able to bypass lengthy and expensive screening processes.

“Developing a new drug that is effective, safe and affordable is an enormously expensive and time-consuming process”, says Michael Grünwald. “With our research on how drug molecules crystallize, we hope to really speed things up, so that new antibiotics or antivirals drugs can reach patients more quickly and cheaply.”

Rodrigo Noriega

Predicting how molecules will form crystals is, in the researchers’ words, “extraordinarily difficult.” A crystal is an arrangement of atoms or molecules in a repeating pattern, held together by attractive forces between them. While these atoms or molecules, like Legos, could possibly be arranged in many different ways, the principles of thermodynamics suggest that they will simply arrange themselves in the crystalline structure that maximizes their favorable interactions, just like magnets arrange themselves in a pattern dictated by the magnetic forces between them. This principle works very well for many simple crystalline substances, like table salt or gold, which only have one or two types of atoms and always form the same crystal structure.

Unfortunately, it often doesn’t work that way for organic drug molecules. These molecules are made up of tens or hundreds of atoms and can produce a variety of crystal structures. Often, when developing a new drug, only one of these structures has the “Goldilocks” properties of being stable enough that the drug doesn’t degrade but unstable enough that it can dissolve in the human body.  Identifying which of these different crystal structures, or polymorphs, is the right one and how to reproducibly make the right polymorph requires dedicated teams of researchers, significant experimentation and time—ultimately delaying the delivery of life-saving medicines to the patient.

Ryan Looper

Grünwald, Looper and Noriega, along with graduate students and postdoctoral researchers, have an idea that may help make the process of predicting crystal structures simpler. Current models of crystal formation assume that crystals are built one molecule at a time. But the U team proposes that they’re likely built in chunks of two, three or more molecules, called oligomers, and that this process, rather than leading to the crystal structure favored by thermodynamics, instead picks crystallization pathways that are favored kinetically. Favoring one process over another kinetically simply means picking the faster option—like choosing restaurant X over Y because, even though you like Y’s food better, the wait is much shorter at X.

The team brings together a diverse set of researchers that study chemistry in very different ways: Grünwald is a chemical theorist who develops computer simulations to describe chemical processes, Noriega is a spectroscopist who studies the behavior of molecules in solution and Looper is a medicinal chemist who prepares and studies new drug substances. “Combining our expertise will allow us to build new models, compare them to experiments and extract insights to design new chemical systems”, says Noriega. As a group they aim to create a set of tools to help other chemists select the crystal structures they want and produce them quickly and purely.

“Crystal structure prediction of new drug molecules has the potential to really impact people’s well-being by expediting the development process and lowering the cost,” Looper says. “I am excited about our ideas to improve the drug development process, but many questions remain unanswered. The idea that thermodynamics might not accurately predict crystallization is quite controversial in the field. The Keck foundation’s support of our research is essential to provide new evidence to convince scientists to think a different way.”

About the W. M. Keck Foundation 

The W. M. Keck Foundation was established in 1954 in Los Angeles by William Myron Keck, founder of The Superior Oil Company.  One of the nation’s largest philanthropic organizations, the W. M. Keck Foundation supports outstanding science, engineering and medical research.  The Foundation also supports undergraduate education and maintains a program within Southern California to support arts and culture, education, health and community service projects.

by Paul Gabrielsen, first published in @theU.

>> HOME <<

Magnesium Pollution?

Magnesium Pollution?


Salt Lake City, Utah

Research helps explain Salt Lake City's persistent air quality problems.

The 2.4 million people who live along Utah’s Wasatch Front experience some of the most severe winter particulate matter air pollution in the nation. Now, analysis of measurements taken during National Oceanic and Atmospheric Administration (NOAA) research flights in 2017 indicates that emissions from a single source, a magnesium refinery, may be responsible for a significant fraction of the fine particles that form  the dense winter brown clouds that hang over Salt Lake City.

The finding was published this week in the journal Environmental Science and Technology.

Lead author Carrie Womack, a scientist with the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder working at NOAA, said analysis of airborne measurements directly from the plume rising from the US Magnesium refinery during a 2017 winter air pollution study in Utah found that emissions of chlorine and bromine, known as halogenated compounds, were significant contributors to the persistent winter brown clouds.

Carrie Womack

“I was struck by the complexity of chemical reactions in the atmosphere,” said U professor John Lin, of the Department of Atmospheric Sciences and a co-author of the study. “Changes in the chemical ingredients of the atmosphere could lead to unexpected outcomes through inter-linked chemical pathways.”

US Magnesium, the largest magnesium producer in North America, extracts the metal from the brine of the Great Salt Lake, at a plant upwind of Salt Lake City.

Particulate matter contains microscopic solids or liquid droplets that are so small that they can be inhaled and cause serious health problems. Particles less than 2.5 microns in diameter, also known as fine particles or PM2.5, pose the greatest risk to health, affecting both lungs and your heart.

“Understanding what causes this PM2.5 formation is the first step in reducing it,” Womack said. “One aspect of our study was characterizing known point sources in the area.”

John Lin

The Utah Division of Air Quality requires reporting of particulate precursors, such as chlorine and nitrogen oxide emissions, which are then shared with the US Environmental Protection Agency. However, NOAA’s measurements also identified significant emissions of bromine, a reactive chemical that is not required to be reported. Modeling demonstrated that the chlorine and bromine emitted by the refinery were responsible for 10 – 25% of regional PM2.5 during winter pollution episodes.

“Our measurements of chlorine and nitrogen oxides agree with what the facility reports to regulators,” Womack said. “But what we found suggests that bromine industrial emissions may deserve a closer look.”

Pollution control regulations and cleaner technologies adopted since the 1970s have steadily improved air quality in the US. Yet some valleys in the Intermountain West still experience high levels of PM2.5 during winter. In Utah’s urban Salt Lake Valley, wintertime levels of PM2.5 exceed national air quality standards an average of 18 days per year. The majority of exceedances occur in December, January and early February during a period when strong, multi-day inversions known as persistent cold air pools develop that trap pollution close to the surface.

These exceedances have been specifically associated with adverse health effects in the region, including a 42% higher rate of emergency room visits for asthma during the latter stages of air pollution events from 2003-2008, according to one study.

Prior to the NOAA study, the chemical composition of PM2.5 in northern Utah, and how it forms, had received considerably less attention than in other regions of the nation despite the severity of the problem in Utah.

“We could see during our research flights in 2017 that the air around the plant was unlike anything we had sampled previously due to the high chlorine emissions,” said NOAA scientist Steven Brown, who led the field campaign. “We were surprised that it had such a large effect on winter PM2.5 across the entire region.”

“Close to the plant, we didn’t even need to check the instruments to know we were flying through the plume,” Womack added. “We could smell it. It smelled like bleach!”

The dominant contributor to regional particulate matter is ammonium nitrate, which is responsible for up to 70% of fine particulate mass during inversion periods and 40% outside of inversions. Ammonium nitrate is a secondary pollutant formed by reactions between ammonia, nitrogen oxides (NOx), and volatile organic compounds (VOCs). The NOAA model demonstrated that halogen emissions from US Magnesium speed up the conversion of NOx and VOCs to ammonium nitrate particulate matter.

Researchers have shared their findings with Utah officials, who had sought NOAA’s help in understanding their poor winter air quality. A previous paper by Womack in 2019 documented other sources of winter smog.

The Utah Department of Environmental Quality is currently conducting a study to identify sources of ammonia.

While the new paper is based on measurements taken in 2017, Womack said emissions of chlorine, which accompany the unreported emissions of bromine, have not shown any sign of significant decline in the last five years.

Researchers from the University of Utah, the University of Toronto, the University of Washington, and the U.S. EPA also participated in the study.

Find the full study here.

By Theo Stein, originally published @theU.

 

 

CAPE-K

CAPE-K


Gerald “Jay” Mace

U researcher to lead study of clouds in cleanest air on Earth.

The Southern Ocean is a remote region of the world that holds significant influence over the Earth’s climate. Compared with other areas on Earth, its atmosphere is relatively untouched by atmospheric particles that come from human activities. This makes the Southern Ocean a unique place to study what the atmosphere might have been like in preindustrial times.

Climate projections for the entire Earth are sensitive to interactions of aerosols, clouds and precipitation in the atmosphere over the Southern Ocean. Seasonal variations in Southern Ocean aerosol properties are well documented, but to improve the accuracy of climate models, scientists need more information about the properties of low clouds and precipitation in the region.

An upcoming field campaign supported by the U.S. Department of Energy (DOE) will fill in knowledge gaps about the seasonal cycle of clouds and precipitation over the Southern Ocean. As a result, these data are expected to have big impacts on regional and global climate modeling.

Roger Marchand

The Cloud And Precipitation Experiment at Kennaook (CAPE-K) is scheduled to run from April 2024 to September 2025 in northwestern Tasmania.

Gerald “Jay” Mace, a professor of atmospheric sciences at the University of Utah, is the lead scientist of CAPE-K. His co-lead is Roger Marchand, a research professor at the University of Washington.

The campaign’s science team consists of scientists from universities and research institutions in the United States and Australia.

CAPE-K received support from a recent DOE proposal call for field campaigns that would improve the understanding and modeling of clouds and aerosols, as well as their interactions and coupling with the Earth’s surface.

DOE’s Atmospheric Radiation Measurement (ARM) user facility will provide instruments and infrastructure for CAPE-K. For 30 years, ARM has collected atmospheric data in under-observed regions around the world, including the Southern Ocean. ARM data are freely available for scientists worldwide to download and use.

A powerful collaboration

CAPE-K will take place in a region unlike many others on the planet.

“It’s the only place where there’s a circumpolar ocean current on Earth,” says Mace, who has current funding for Southern Ocean research through DOE’s Atmospheric System Research (ASR). “And so, you have this shoaling of deep water that absorbs carbon and heat. And then that, coupled with other things like recovering ozone, is causing the Southern Hemisphere to be in a state of change.”

The campaign will enable three science objectives:

  1. Document the seasonal cycle of Southern Ocean low-cloud and precipitation properties and examine how they co-vary with aerosol and with dynamical and thermodynamical factors.
  2. Compare and contrast these relationships with observations from other surface sites and campaigns, including other ARM sites.
  3. Study aerosol-cloud-precipitation interactions in pristine marine low clouds and explore how these interactions can best be represented in models at various scales.

ARM plans to conduct CAPE-K at the Kennaook/Cape Grim Baseline Air Pollution Station. This station is managed by the Australian Bureau of Meteorology (BOM) and the Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Established in 1976, the station often measures clean air masses that have not passed over land. This is an important vantage point to have as scientists try to determine how much influence human activities have on the Earth’s energy balance.

“The CAPE-K campaign will provide important information on aerosol-cloud-precipitation interactions to help reduce a large source of uncertainty in current climate models,” says DOE ARM Program Manager Sally McFarlane. “The Kennaook/Cape Grim Baseline Air Pollution Station is an ideal location for this study due to its extensive long-term record of aerosol and gas-phase chemistry measurements and its unique location, which results in frequent sampling of pristine air masses from the Southern Ocean.”

For CAPE-K, ARM will provide a portable observatory called an ARM Mobile Facility, which consists of instruments, shelters, and data and communications systems. ARM instruments operate 24 hours a day, seven days a week, with onsite technicians monitoring the facility around the clock.

In addition to collecting continuous data on cloud and precipitation properties, ARM plans to provide aerosol measurements that will complement those from the baseline station.

Mace is the first person to serve as a lead scientist for multiple ARM Mobile Facility deployments. In 2010 and 2011, Mace led an ARM campaign in Colorado that measured the properties of wintertime clouds and precipitation around the ski town of Steamboat Springs.

Return trips to the Southern Ocean

CAPE-K will mark ARM’s first trip back to the Southern Ocean since 2018, when it finished conducting simultaneous campaigns in the region.

Over a five-month span, ARM instruments collected data on a supply vessel that traveled back and forth between a port in southeastern Tasmania and a set of research stations in the Antarctic.

The other campaign was a two-year deployment to Macquarie Island, which is about halfway between New Zealand and Antarctica, to study surface radiative fluxes and cloud and aerosol properties.

Several researchers from CAPE-K’s science team worked on those two ARM campaigns.

Marchand led the Macquarie Island campaign and was a co-investigator for the other Southern Ocean campaign. CAPE-K co-investigator Alain Protat, from BOM, was also co-investigator for both of ARM’s past Southern Ocean campaigns.

Protat is a CAPE-K co-investigator along with CSIRO’s Ruhi Humphries and Melita Keywood.

CAPE-K also has a modeling and analysis team, which includes former BOM head of research Peter May. He helped set up an ARM site that operated in Darwin, Australia, from 2002 to 2014.

Once CAPE-K is underway, the campaign will benefit even more from established partnerships with BOM and CSIRO.

The CSIRO-operated R/V Investigator will be stationed off Kennaook in July and August 2025—wintertime in the Southern Hemisphere. The ship will then travel into the air masses that flow from the prevailing southwesterly winds to collect data on aerosol, cloud, and precipitation properties.

Mace has been a passenger on the Investigator for past data-collecting missions. He looks forward to boarding the vessel again and seeing what scientific discoveries emerge from CAPE-K.

“We’re going to expect to see very clean air masses, very low aerosol air masses—perhaps some of the cleanest on Earth,” he says.

By Katie Dorsey, originally published @theU.

 

 

Loudest Stadium … according to science

Thatcher Building

South Physics Building

Widtsoe Building

Skaggs Building

Cowles Building

Science Campus

Fletcher Building

Crocker Science Center

‘Life of Tree’ Returns to Life in the Crocker Science Cntr.