Utah’s Fly’s Eye Telescope Array

Closing in on the cosmic origins of the “OMG Particle”

The helicopter was flying high through the night sky with its door slightly ajar. Johannes Eser and Matthew Rodencal were in the back controlling a laser pointing out through the gap. They aimed towards a balloon 35 kilometers above them and fired.

It sounds like a scene from a spy movie, but Eser and Rodencal, then at the Colorado School of Mines, were actually testing a plan to spot ultra-high-energy cosmic rays, the most energetic particles ever discovered. They stream across the universe before slamming into our atmosphere and emitting a tiny flash of light. The laser was supposed to mimic that flash.

This twilight helicopter ride happened nearly a decade ago, but is part of a saga that goes back to at least 1991. In October that year, we detected the single most energetic particle ever seen. It had the kinetic energy of a bowling ball dropped from shoulder height, crammed into a subatomic-sized package. It quickly became known as the “Oh-My-God particle” and, naturally enough, scientists were desperate to know where it came from.

Since then, we have spotted many similar particles. Huge ground-based detectors have provided us with maps of where they might come from, together with a shortlist of the extreme cosmic objects that could produce them. But truth be told, we still don’t have all the answers. That is why scientists now want to take the cosmic ray hunt into the atmosphere – and ultimately into space – in an effort to solve the mystery … once and for all.

This story really began with another balloon in 1911. At that time, physicist Victor Hess climbed into a hot air balloon, taking with him instruments to measure levels of radiation as he ascended. He found the readings increased as he went up – contrary to the prevailing belief that they would decline with altitude – and concluded that this radiation must be caused by something coming from space, not Earth. That something became known as cosmic rays, though we now know them to be particles, often protons or clusters of protons and neutrons.

Cosmic rays

When cosmic rays hit our atmosphere, they usually collide with molecules in the atmosphere, producing a shower of energetic particles that rain down. (These descendants of the original particle still contain a lot of energy and have been suspected of interfering with the electronics of aircraft.) It is this shower of secondary particles that we have learned to detect, allowing us to infer the energy of the cosmic ray that produced it. We now know that cosmic rays come in a range of energies. The least energetic are the most common, with each square centimeter of the outer atmosphere being hit once a minute by one of them. The most energetic are much rarer – they strike only once a century per square kilometer.

David Keida

The rays that Hess detected were relatively modest in energy, it turns out, measuring less than 1 gigaelectronvolt (GeV). It wasn’t until the 1960s that more extreme versions were found, when physicist John Linsley used an array of ground detectors in New Mexico to spot the shower created by a cosmic ray with the vastly greater energy of 100 exaelectronvolts (EeV).

That was a staggering find. But the best was yet to come. In the 1980s, a larger project called the Fly’s Eye telescope array was built in Utah [at Dugway Proving Ground, see photo above]. It had more than 100 detectors, each equipped with a 1.5-meter-wide mirror to look for the flash of particles colliding in the atmosphere. Each of the telescope’s detectors were designed to point at a different part of the field of view, in a similar way to insects’ compound eyes. It was this that earned the telescope its name. “We were hoping we might pick up something really unusual,” says David Kieda at the University of Utah, who worked on the telescope at the time.


Read the full article at New Scientist (subscription required).

Darryl Butt: Finding one’s ‘professional self’

Where does a skilled painter, celebrated inter-disciplinary educator and dean of College of Mines & Earth Sciences (CMES) go to advance their career? In the case of Darryl Butt, he becomes the dean of the graduate school. University of Utah Provost Mitzi M. Montoya announced in March that Butt has accepted the offer and will ascend to his new role June 1.

Darryl Butt

Also current Director of the Center for Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials Energy Frontier Research Center, Butt is a celebrated, interdisciplinary educator and oil painter. He promotes a de-silo-ed approach to looking at research problems and projects. Using a “flipped classroom” model and a dynamic (as in changeable, by all involved) syllabus, his vertically integrated approach flattens hierarchies, disassembles firewalls between disciplines, and encourages a sense of belonging among all students.

His monthly painting workshops in the CMES’s advising center are popular and creates a space for the scientifically minded and others to get out of their empirical box and into an integrated one, shot through with creativity, innovation and “flow.” It’s an approach inspired by the 15th century scientist and artist Leonardo da Vinci.

Butt joined the U in 2016 as professor of metallurgical engineering and college dean, establishing strategic plans to address safety and security; student, staff and faculty success; cross-campus collaboration; fiscal stewardship and transparency. Under his leadership, the EpiCenter, a hub of student activity and advising for the college, was created, and the departments of Metallurgical Engineering and Materials Science and Engineering were merged. Butt has also been instrumental in enabling the merger of the CMES and College of Science.

The Graduate School is arguably the perfect fit for Butt. It offers more than 200 graduate degrees and supports more than 8,400 students enrolled in programs that vary from Master of Architecture to a doctorate in Nuclear Engineering.  As dean he will assess ongoing improvements to all academic programs and centers at the U through the Graduate Council Review process and enable the development of interdisciplinary graduate programs for multi-college academic degrees and certificates. Dr. Peter Trapa, Dean of the College of Science, will assume leadership responsibilities of the College of Mines & Earth Sciences which merged last year with the College of Science.

“One of the joys I get from research is watching the development of students and postdocs and helping them find their ‘professional selves,’” says Butt. “I’m looking forward to being their advocate as well as supporting the incredible faculty and staff at the University in support of our ambitious research mission.”

Storm Peak

Storm Peak

Storm Peak is a lab and a classroom.

Over forty years ago what would become the premier, high-elevation atmospheric science laboratory in the Western United States opened at Steamboat Springs Ski Resort in Colorado. Storm Peak, as the facility is called, has been “the perfect place, to have your head in the clouds,” says director Gannet Hallar, professor of atmospheric sciences at the U. The laboratory sits in the clouds about 40 percent of the time in the winter. “That allows us to sample clouds and the particles that make clouds at the same time. And from that, the lab has produced about 150 peer-reviewed publications.”

Named after the peak which stands at 10,500 feet above sea level, the 3,500-square-foot lab is not only the perfect place for established researchers but for budding scientists who are studying what changes a cloud, what makes it snow versus what makes it not snow and what makes more versus less ice in the atmosphere, among other questions.

Storm Peak, Colorado

This year twelve students in the new Science Research Initiative at the College of Science will make the five-hour road trip to Steamboat Springs, then take the chairlift to Storm Peak. Funded by the National Science Foundation and operated under a permit from the U.S. Forest Service, the storied lab has an incredible record of long—term atmospheric measurements, “critical,” according to Hallar, to the success of the site and for the broader understanding we need to improve climate predictions.

Hallar has the advantage of operating out of two locations: Storm Peak where regional air quality through long data records is determined over decades of change, as well as the top floor and roof of the Browning Building at the U’s main Salt Lake campus where she studies urban air quality. One week students and faculty collaborators can be seen using a multifilter showdowband radiometer overlooking the Salt Lake Valley and then the next week literally in the clouds witnessing science in the making. Students “can learn concepts in the classroom and then watch that data appear physically in front of their eyes,” says Hallar. “They can see the concept of photochemistry as it appears, how … the concentration of gases change as the sun comes up.”

As pristine as the air is at Storm Peak, just west of the Continental Divide in the northwest corner of the state, it is also typical of rural areas in the U.S. where coal plant emissions can impact atmospheric composition. Two of those plants are upwind of the facility which makes the measurements Hallar and her team collect even more relevant to other rural locations.

William Anderegg

“What’s amazing about this place is that we have shown over the fifteen plus years that we've run undergraduate programs that it's a place of inspiration.” Students learn how important changes in gases are in terms of public health and climate. “I think it's important for our students to come and see us measuring and calibrating carefully. They can see the care and precision taken to measure greenhouse gases.”

Not all greenhouse gases are human-derived. Wildfires in the West have become a new variable in measuring atmospheric composition, involving forest ecologists like William Anderegg, director of the Wilkes Center for Climate Science and Policy at the U. And there are other measurements being done at Storm Peak that might prove surprising. “We've done studies on how tree emissions change when beetle infestation happens,” says Hallar, which impacts air quality as well.

Storm Peak is just one node in the Global Atmospheric Watch Network, a consortium of labs and observation sites that together address atmospheric composition on all scales, from global and regional to local and urban. Hallar and her team work closely with sites on Mt. Washington and Whiteface, in New Hampshire and New York, respectively, as well Mt. Bachelor in Oregon, among others. Recently, the team submitted a proposal to collaborate with Pico del Este, a field site in Puerto Rico.

It will require collaboration on a global scale to address climate change, and aerosol particle research, says Hallar, “is most definitely the critical measurement that [atmospheric scientists] need to make.” In addition to measuring methane–a critical player because of its warming potential–at Storm Peak, “we can see what we call the Keeling Curve. We can see how carbon dioxide increases every year, but has a seasonal cycle, that is associated with how trees and plants uptake carbon dioxide.

Delivery via snowcat.

Meanwhile, students are preparing for their field trip to Storm Peak in March where the ski resort will not only provide transportation up to the facility via lift but ski passes. A staging facility in west Steamboat Springs houses equipment that includes a snow cat, snowmobiles and other equipment. Up top, bunks are limited to nine, so there is a lot of travel up and down the slopes. But it’s worth it for students to get their collective head in the clouds to work with instrumentation critical to measuring clean air and discovering ramifications more broadly in terms of global warming.

by David Pace, photos by Maria Garcia, Ian McCubbin, and Gannet Hallar.

>> HOME <<

Jessica Haskins

Jessica Haskins

Answering fundamental questions about the chemistry that drives variability in air pollution formation & impacts climate.

There may not be a lot in common with Salt Lake City and Forsyth, GA, population 4,239, but Monroe County’s seat­­–other than being home to the county’s only high school­–does have a small community theater with the same name as one of Salt Lake City’s most notable venues: “The Rose.”

The Rose Theater

In Forsyth, the Rose Theater appears to stage family-friendly shows: “Four Weddings and An Elvis” closes in February. Later, this November 11th, there’s a single-night engagement that looks like an annual outing, “Hometown Gospel Sing.”

The theatre located on Forsyth’s town square is emblematic of the small-town life in which Jessica Haskins grew up before winning a full-ride, need-based scholarship to Massachusetts Institute of Technology (MIT). And her move from rural Georgia to the east coast megalopolis was shocking for reasons other than just the differences in weather and academic rigor. "It was a punch in the face” says Haskins, “coming to MIT, and realizing that the experience of most Black Americans outside the southeast, particularly in STEM fields, is one where they often find themselves the only non-white person in the room.”

In fact, Haskins' time at Mary Persons High School was much more diverse than MIT, ranked at the time by the Princeton Review as the toughest school to get into. “None of the places I have worked at in the last 13 years since I graduated high school have come close to mirroring the racial and socioeconomic diversity I grew up thinking was the norm in all of America,” she says. “As such, it’s never been difficult for me to see the power of privilege and the persistence of systemic racism at every stage of the STEM pipeline as I progressed through it.”

Mary Persons High School

Now an assistant professor in the Department of Atmospheric Sciences at the University of Utah, Haskins is savvier about her own seemingly unlikely journey into higher education. More importantly, perhaps, she’s keenly aware of the challenges “first-gen” college students and other underrepresented populations still face, having to navigate hurdles referred to as the “hidden curriculum” of academia. The term refers to things a neophyte in the academic world should know to maximize their experience and success but doesn’t­. These are things that more privileged students tacitly understand or have been made aware of, like the norm of emailing potential professors to work with in graduate school before they submit their graduate applications or cluing into the notion that graduate students in STEM fields are often actually paid to go to school and do so without accruing debt from tuition.

Paying it Forward
Haskins’ unique perspective of these issues inspired her to use her second government stimulus check during the pandemic to fund a modest scholarship for an underrepresented minority student interested in pursuing an undergraduate STEM degree from her high school. This year, the scholarship went to Maleisha Jackson who is studying computer and robotics engineering at Kennesaw State University, located in north Georgia. “I think people really underestimate the impact that even receiving a 1,000 dollars can do for a student who needs it. I don’t know how I would have afforded a laptop and school supplies for my first year at MIT if I hadn’t received local scholarships like this one, and I want to pay that forward,” Haskins says.

Professor Susan Solomon

Fortunately, MIT treated Haskins well, brokering an “externship” with NASA‘s Goddard Space Flight Center and providing an opportunity to work with Professor Susan Solomon, a 2007 Nobel Peace Prize co-recipient and a National Medal of Science winner awarded by the President. Solomon is best known for being the first to propose the chemical mechanism that is the cause of the Antarctic ozone hole. In the Solomon lab, the budding atmospheric scientist used MLS satellite data & balloon observations to explain fundamental chemical and meteorological differences that prohibit Arctic ozone loss from becoming as severe as Antarctic ozone loss, ultimately resulting in the publication of Haskins’ undergraduate research in the high impact journal, PNAS.

But even with the scholarship to MIT, Haskins required four years of Federal Pell grants and multiple campus jobs to make ends meet and says that even covering graduate application fees was difficult for her. When she was accepted to the University of Washington for graduate school, she was lucky enough to receive an ARCS Foundation fellowship she used to get herself cross-country to Seattle.

Compelling Challenges
Furnished with a PhD, she returned to MIT for a short stint as an NSF Postdoctoral Fellow  before being hired by the U. Needless to say, it wasn’t for the theater that she and her wife moved to Utah’s capital city, but rather the unique (and to her, compelling) challenges facing the state, particularly the winter PM2.5 and summer ozone air quality issues impacting the Wasatch Front, especially during periodic weather “inversions” that trap emissions along the metropolitan valley. An expert in the chemistry of how chloride present in salt impacts air quality, particularly in the winter, Haskins noted, “there is no place in the United States that my research on air quality is more relevant to science and policy than it is in Salt Lake City."

Jessica Haskins

Haskins’ research group at the U is focused on understanding and accurately modeling heterogeneous and multiphase chemistry that transforms natural and anthropogenic (human-derived) gas phase emissions into aerosol particles. These particles make up a key component of smog known as particulate matter (PM2.5). It turns out that, globally, exposure to PM2.5 is the fifth greatest risk factor for death, ranking only behind tobacco use and several other factors related to obesity. But in addition to their impact on human health, these aerosols formed through chemical reactions in the atmosphere also have direct impacts on climate and the Earth’s temperature by reflecting and absorbing light.

Today, more episodes of unhealthy air quality in the U.S., including in Salt Lake City, are experienced in the winter rather than summer, pointing to a shift in the chemistry responsible for formation of secondary pollutants like PM2.5, and ozone. This chemical regime shift has the unintended consequence of rendering past policy solutions to summer air quality issues largely ineffective in the winter. The ineffectiveness left scientists and policy makers with questions about how well they understand the underlying chemistry and what the most effective means are to mitigate such issues now and in a changing world.  Haskins’ past and future research focuses on understanding this type of chemical shift through the lens of atmospheric chemistry with an eye towards understanding how future policy and climate solutions will impact the Earth’s temperature and air pollution formation.

Global Implications
The relevance of such research is not restricted to the intermountain west but has global implications. Large-population countries, like India and China, may have fewer interventions to maintain quality air such as EPA-recommended “scrubbers” on power plants, less stringent policies around automobile emissions and higher rates of open-air waste incineration. “I think what’s most exciting about the prospect of being here at the U,” says Haskins, “is the fact that what we learn about the drivers of variability in air pollution formation and how to control them here in Utah have a global relevance that can help inform policy makers in the East on the fastest and most effective ways to clean up their air quality.”

Haskins' interdisciplinary research sits at the intersection of atmospheric science and chemistry and strives to deepen our understanding of the complex cascade of reactions between our emissions and atmospheric oxidants. Those oxidants control how long gases like methane stay in the atmosphere. It’s a gumbo of considerations that turns, for Haskins, on her understanding of concentrations of common atmospheric oxidants like OH, O3, NO3, and Cl radicals that are dependent on everything from atmospheric water vapor concentrations, exposure to sunlight, temperature, aerosol surface area, emissions of gases like NOx from combustion, etc. She notes that “these processes are challenging to measure and therefore challenging to represent in models, and much remains to be discovered!”

Perhaps unique to her approach is the determination to centralize, assimilate and “exploit” the data already collected from satellites, observation networks, aircraft campaigns, government records and relevant available datasets to improve models. “One of the largest looming challenges our field faces now and, in the future, will be connecting an ever-growing dataset of highly localized measurements to scientifically accurate, but computationally efficient representations in predictive global models,” Haskins has written.

A Lot of Data
All of those data sets along with new ones yet to be collected are key to improving the accuracy and speed of global models of atmospheric composition. “Drawing on my experience in both the measurement and modeling community, my research program will serve to bridge this already significant but growing gap between the data we have and the data we use to inform predictive models and decision makers. Basically, we have a lot of data, and I want to use it,” Haskins says.

The upcoming projects in her group include re-analyzing old measurements to extract new constraints for models, new applications of machine learning and artificial intelligence to atmospheric chemistry problems and integrating data from product databases, patent applications, and other public records. “We’re still catching up with being able to efficiently use data from a variety of sources beyond just measurements made by those of us in academia–especially when you consider how rapidly new computation methods like machine learning have evolved,” she states.  The application of artificial intelligence methods has only just begun to be applied to atmospheric chemistry problems, she explains, “but could greatly improve the speed and accuracy of our models.”

It's an exciting time to be an atmospheric scientist rooted in chemistry, and Jessica Haskins is looking forward to better understanding and communicating the relevant chemical drivers of variability in air pollution formation. But here in the high desert climate that has precious little in common with her Georgian home–except for that community theater thing–she is enthusiastic about building a diverse and collaborative research group in the Department of Atmospheric Sciences at the U and looks forward to preparing others for an auspicious career in science.

by David Pace

A.A.U. Membership



"It is difficult to overstate the importance of AAU Membership. This elevates the U to an exceptional category of peer institutions."
- Dean Peter Trapa


The University of Utah is one of the newest members of the prestigious Association of American Universities, which for more than 100 years has recognized the most outstanding academic institutions in the nation.

Mary Sue Coleman, president of the Association of American Universities (AAU), announced Wednesday that University of Utah President Ruth V. Watkins has accepted an invitation to join the association, along with the University of California, Santa Cruz and Dartmouth College. The three new members bring the number of AAU institutions to 65.

AAU invitations are infrequent; this year’s invitations are the first since 2012.



“AAU’s membership is limited to institutions at the forefront of scientific inquiry and educational excellence,” said Coleman. “These world-class institutions are a welcome addition, and we look forward to working with them as we continue to shape policy for higher education, science, and innovation.” - Mary Sue Coleman


About the AAU
The AAU formed in 1900 to promote and raise standards for university research and education. Today its mission is to “provide a forum for the development and implementation of institutional and national policies promoting strong programs of academic research and scholarship and undergraduate, graduate and professional education.”

A current list of member institutions can be found here. The membership criteria are based on a university’s research funding (the U reached a milestone of $547 million in research funding in FY2019); the proportion of faculty elected to the National Academies of Science, Engineering and Medicine; the impact of research and scholarship; and student outcomes. The U has 21 National Academies members, with some elected to more than one academy.

An AAU committee periodically reviews universities and recommends them to the full association for membership, where a three-fourths vote is required to confirm the invitation.

Leaders of AAU member universities meet to discuss common challenges and future directions in higher education. The U’s leaders will now join those meetings, which include the leaders of all the top 10 and 56 of the top 100 universities in the United States.


“We already knew that the U was one of the jewels of Utah and of the Intermountain West. This invitation shows that we are one of the jewels of the entire nation.” - H. David Burton


U on the rise
In FY2019 the U celebrated a historic high of $547 million in sponsored project funding, covering a wide range of research activities. These prestigious awards from organizations such as the U.S. Department of Energy, National Institutes of Health and National Science Foundation are supporting work in geothermal energy, cross-cutting, interdisciplinary approaches to research that challenge existing paradigms and effects of cannabinoids on pain management.

They also are funding educational research programs with significant community engagement, such as the U’s STEM Ambassador Program and the Genetic Science Learning Center’s participation in the All of Us Research Program.

“AAU is a confirmation of the quality and caliber of our faculty and the innovative work they are doing to advance knowledge and address grand societal challenges. Our students and our community will be the ultimate beneficiaries of these endeavors. " - President Ruth Watkins


On Nov. 4, 2019, the U announced a $150 million gift, the largest single-project donation in its history, to establish the Huntsman Mental Health Institute. These gifts and awards are in addition to the ongoing support of the U from the Utah State Legislature.

This fall the university welcomed its most academically prepared class of first-year students. The freshman cohort includes 4,249 students boasting an impressive 3.66 average high school GPA and an average ACT composite score of 25.8. The incoming class also brings more diversity to campus with both a 54% increase in international students and more bilingual students than the previous year’s freshman class. Among our freshmen who are U.S. citizens, 30% are students of color.

The U’s focus on student success has led to an increased six-year graduation rate, which now sits at 70%—well above the national average for four-year schools. The rate has jumped 19 percentage points over the past decade, making it one of only two public higher education research institutions to achieve this success.



by Dr. Nalini Nadkarni, professor emerita, School of Biological Sciences

Introduction - October 6, 2022
For forty years, I’ve documented the ecological values that trees provide, like stabilizing soils and providing wildlife habitat. Listen

Autumn Colors - October 13, 2022
The process of moving out the chlorophyll reveals the yellow and orange of other leaf pigments. Listen

Why Apples? - October 20, 2022
Flowering plants have evolved so that their seeds will land in the best place to flourish, the very definition of biological fitness. Listen

The Wonders of Cork - October 28, 2022
Humanity has used cork for millennia. It's light, buoyant, and elastic, thanks to the 40 million air cells per cubic inch. Listen

Body Language - November 3, 2022
I noticed an odd branch on a small maple tree that started growing horizontally but then took a sharp vertical turn. Listen

Baseball Bats - November 10, 2022
Baseball bats use wood from ash trees to provide just the right feel for hitting homers. Listen

Symbolic Power - November 17, 2022
Why do trees pop up on our flags, stamps and money? Listen

Sycamore Trees - November 23, 2022
These trees thrive in city settings because of their rapid growth and tolerance of pollution. Listen

Good Old Trees - December 1, 2022
Habitats thrive when they have plenty of veterans trees in the mix. Listen

Music - December 8, 2022
The conductor’s baton is the smallest instrument in the orchestra pit and it makes no sound.   Listen

Holiday Wreaths - December 15, 2022
With the holidays come evergreen wreaths on people’s doors and windows. Where does all of this holiday greenery come from? Listen

Mistletoe - December 20, 2022
Given the biological purpose of mistletoe it is pretty strange that this parasite is also a symbol of love. Listen

Hermann Hesse - December 29, 2022
One of my favorite books is an essay by the German writer Hermann Hesse, who received the Nobel Prize for Literature in 1946. Listen

Petrified Trees - January 5, 2023
On a recent camping trip in Nevada, I visited a display of petrified wood. Listen

Trees and Trains - January 12, 2023
Each mile of train track passes over 3,000 railroad ties – nearly all of them made from trees. Listen

Into the Canopy - January 19, 2023
It wasn’t all that long ago that scientists called the tree canopy "the last biotic frontier." Listen

Trees and Money - January 26, 2023
I recently discovered that not a single tree is cut down to make America's money! Listen

Tu BiShvat - February 2, 2023
One of my favorite ways to honor trees is celebrating Tu BiShvat, the Jewish holiday that commemorates the “New Year for the Trees.” Listen

Tree Architecture - February 9, 2023
The diversity in tropical forests is mind-boggling. Costa Rica alone hosts nearly 2,000 types of trees! Listen

Gambel Oaks - February 16, 2023
We know that when it comes to people, unassuming doesn’t mean uninteresting. The same holds true for trees.Listen

Originally published @ https://www.kuer.org/podcast/treenote

Fellow of the AAAS

Fellow of the AAAS

Jennifer Shumaker-Perry

Jennifer Shumaker-Perry is among the 506 newly-elected Fellows of the American Association for the Advancement of Science (AAAS).

AAAS members have been awarded this honor because of their scientifically or socially distinguished efforts to advance science or its applications. Other fellows currently at the U including Nancy Songer, dean of the College of Education, Thure Cerling, recipient of the 2022 Rosenblatt Prize and Mario Capecchi, 2007 Nobel laureate. The U’s first Fellow was geologist and former university president James Talmage, elected in 1906. Election as a Fellow is an honor bestowed upon AAAS members by their peers.

New Fellows will be presented with a gold and blue (representing science and engineering, respectively) rosette pin and gather in spring 2023 in Washington, D.C. Fellows will also be announced in the AAAS News & Notes section of the journal Science in February 2023.

Shumaker-Parry, professor of chemistry, was elected for “significant contributions to the design and study of plasmonic nanomaterials, and promotion of graduate education integrating science, business, and communication for broad and diverse career pathways.”

“It’s an honor to have been nominated and selected to be an AAAS Fellow,” she says.

“The nomination also highlights the importance of all aspects of training the next generation of scientists including mentoring students through teaching relevant classes, collaborating on research, and advising and supporting them.”

Her research group studies how light interacts with metal nanoparticles.

“At the nanoscale, metal particles don’t behave like bulk materials,” she says. “Instead, the optical behavior of metal nanomaterials can be tuned by controlling the size, shape or assembly of nanoparticles.”

Learning how to fine-tune the interactions between light and nanoparticles by manipulating the properties of the nanomaterials can aid the design of systems to transfer information using light and monitors of human and environmental health.

Shumaker-Parry is the director of the Biotechnology track of the U’s Professional Master of Science and Technology program, which “provide(s) professional scientists an opportunity to earn a graduate science or math degree that increases their core scientific knowledge and quantitative skills,” according to the program description.

“I have learned so much from advising and teaching students who bring their work experiences and unique perspectives to the program,” she says. “Most of them are working full-time or part-time, so they add a lot of industry-based scenarios to classroom discussions. My role is to help the students create a path through the program that aligns with their career goals.”

“I am excited to see the elections of Dr. Bandarian, Dr. Schmidt and Dr. Shumaker-Parry as AAAS Fellows,” says Peter Trapa, dean of the College of Science. “This recognition demonstrates their lasting contributions to their disciplines, as well as their impacts on future scientists. The University of Utah is a national leader in scientific research and education, and our three new Fellows embody this leadership.”

The tradition of AAAS Fellows began in 1874. Currently, members can be considered for the rank of Fellow if nominated by the steering groups of the Association’s 24 sections, or by any three Fellows who are current AAAS members (so long as two of the three sponsors are not affiliated with the nominee’s institution), or by the AAAS chief executive officer. Fellows must have been continuous members of AAAS for four years by the end of the calendar year in which they are elected. AAAS Fellow’s lifetime honor comes with an expectation that recipients maintain the highest standards of professional ethics and scientific integrity.

Each steering group reviews the nominations of individuals within its respective section and a final list is forwarded to the AAAS Council, which votes on the aggregate list.

by Paul Gabrielsen, first published in @theU.

>> Home <<

GSL Strike Team

Great Salt Lake Strike Team

Utah’s public research universities – The University of Utah and Utah State University – formed the Great Salt Lake Strike Team to provide a primary point of contact for policymakers as they address the economic, health, and ecological challenges created by the record-low elevation of Great Salt Lake. Together with state agency professionals, the Strike Team brings together experts in public policy, hydrology, water management, climatology, and dust to provide impartial, data-informed, and solution-oriented support for Utah decision-makers. The Strike Team does not advocate but rather functions in a technical, policy-advisory role as a service to the state.

The Great Salt Lake Strike Team developed an evaluation scorecard to create apples-to-apples comparisons of the most often proposed options. By briefly outlining these policies and providing necessary context, options, and tradeoffs, we give an overview of expected water gains, monetary costs, environmental impacts, and feasibility. Many options work in conjunction with others, particularly “Commit Conserved Water to Great Salt Lake” which is foundational to shepherding water conserved through other policy options to the lake.

Strike Team Policy Options

Commit Conserved Water to Great Salt Lake
Coupled with accurate quantification, appropriate procedural mechanisms, and practicable means of delivery, stakeholders may be able to commit conserved water to Great Salt Lake.

Agriculture Water Optimization
Agriculture water optimization provides immediate and improved resilience to producers and builds the foundation of flexibility, infrastructure, and methods required to make more water available for Great Salt Lake.

Optimize Municipal and Industrial Water Pricing
By optimizing water pricing in Utah, policymakers can improve water management and increase water deliveries to Great Salt Lake.

Limiting Municipal and Industrial Water Use Growth
Efficiency and conservation in new and existing M&I water use creates savings for future growth and can also conserve water to be delivered to Great Salt Lake.

Water Banking and Leasing
The State of Utah or the Great Salt Lake Trust could lease water for Great Salt Lake, reallocating water from willing sellers to willing buyers.

Active Forest Management in Great Salt Lake Headwaters
Thinning Utah’s forests is not likely to substantially increase the amount of water reaching the GSL. Although thinning can improve forest health and reduce the risk of severe wildfire, it does not always increase streamflow.

Great Salt Lake Mineral Extraction Optimization
Mineral extractors working on Great Salt Lake collectively hold over 600,000 acre-feet of water rights. The state is currently working with these companies to encourage innovative processes for new mineral development.

Import Water
Importing water to Great Salt Lake from the Pacific Ocean (or other sources) is feasible but would be expensive, slow, and controversial.

Increase Winter Precipitation with Cloud Seeding
Cloud seeding can marginally enhance the amount of snowfall in mountainous regions of primary water sources.

Raise and Lower the Causeway Berm
Raising the adaptive management berm at the Union Pacific Railroad causeway breach between the North and South Arms of Great Salt Lake would effectively act as a dam. This would keep freshwater inflows of the major tributaries in the South Arm where salinity levels are reaching a critical threshold.

Mitigate Dust Emission Hotspots
Implementing dust control measures on exposed portions of the Great Salt Lake lakebed would reduce the impacts of dust on human health.


Visit the Gardner Policy Institute to view the latest updates.


>> HOME <<


Fellow of the AAAS

Fellow of the AAAS

Vahe Bandarian is among the 506 newly-elected Fellows of the American Association for the Advancement of Science (AAAS).

AAAS members have been awarded this honor because of their scientifically or socially distinguished efforts to advance science or its applications. Other fellows currently at the U including Nancy Songer, dean of the College of Education, Thure Cerling, recipient of the 2022 Rosenblatt Prize and Mario Capecchi, 2007 Nobel laureate. The U’s first Fellow was geologist and former university president James Talmage, elected in 1906. Election as a Fellow is an honor bestowed upon AAAS members by their peers.

New Fellows will be presented with a gold and blue (representing science and engineering, respectively) rosette pin and gather in spring 2023 in Washington, D.C. Fellows will also be announced in the AAAS News & Notes section of the journal Science in February 2023.

Bandarian, professor of chemistry and associate dean for student affairs in the College of Science, was elected for “discoveries in the field of tRNA modifications and key contribution to mechanistic basis of radical-mediated transformations leading to complex natural products.”

“I was thrilled when I heard the news and humbled by it,” he says.

Bandarian’s lab studies how bacterial enzymes participate in producing natural chemical products, including many products that aren’t required for the bacteria to grow, but can provide a competitive advantage in the bacteria’s ecosystem.

“These compounds span a large swath of chemical space and include modified bases in RNA, modified peptides and small molecules,” he says. “Our overall goal is to discover and understand the details of these enzymatic transformations.”

Beyond studying natural processes, Bandarian is also interested in how the process of biosynthesis, including these enzymes, can be used to produce designed compounds that could have therapeutic properties.

by Paul Gabrielsen, first published in @theU.

>> Home <<

$1M Grant to Chemists

$1M Grant to Chemists

Grant from the W.M. Keck Foundation will help chemists learn how molecules crystallize, potentially saving time in developing new drugs and industrial materials.

Michael Grünwald

Michael Grünwald, Ryan Looper and Rodrigo Noriega, of the University of Utah Department of Chemistry, received a $1 million grant from the W.M. Keck Foundation funding studies of currently unpredictable aspects of the process of crystallization. Accurate models of how molecules come together to form solid structures will help save time in developing new pharmaceuticals and industrial materials, since researchers will be able to bypass lengthy and expensive screening processes.

“Developing a new drug that is effective, safe and affordable is an enormously expensive and time-consuming process”, says Michael Grünwald. “With our research on how drug molecules crystallize, we hope to really speed things up, so that new antibiotics or antivirals drugs can reach patients more quickly and cheaply.”

Rodrigo Noriega

Predicting how molecules will form crystals is, in the researchers’ words, “extraordinarily difficult.” A crystal is an arrangement of atoms or molecules in a repeating pattern, held together by attractive forces between them. While these atoms or molecules, like Legos, could possibly be arranged in many different ways, the principles of thermodynamics suggest that they will simply arrange themselves in the crystalline structure that maximizes their favorable interactions, just like magnets arrange themselves in a pattern dictated by the magnetic forces between them. This principle works very well for many simple crystalline substances, like table salt or gold, which only have one or two types of atoms and always form the same crystal structure.

Unfortunately, it often doesn’t work that way for organic drug molecules. These molecules are made up of tens or hundreds of atoms and can produce a variety of crystal structures. Often, when developing a new drug, only one of these structures has the “Goldilocks” properties of being stable enough that the drug doesn’t degrade but unstable enough that it can dissolve in the human body.  Identifying which of these different crystal structures, or polymorphs, is the right one and how to reproducibly make the right polymorph requires dedicated teams of researchers, significant experimentation and time—ultimately delaying the delivery of life-saving medicines to the patient.

Ryan Looper

Grünwald, Looper and Noriega, along with graduate students and postdoctoral researchers, have an idea that may help make the process of predicting crystal structures simpler. Current models of crystal formation assume that crystals are built one molecule at a time. But the U team proposes that they’re likely built in chunks of two, three or more molecules, called oligomers, and that this process, rather than leading to the crystal structure favored by thermodynamics, instead picks crystallization pathways that are favored kinetically. Favoring one process over another kinetically simply means picking the faster option—like choosing restaurant X over Y because, even though you like Y’s food better, the wait is much shorter at X.

The team brings together a diverse set of researchers that study chemistry in very different ways: Grünwald is a chemical theorist who develops computer simulations to describe chemical processes, Noriega is a spectroscopist who studies the behavior of molecules in solution and Looper is a medicinal chemist who prepares and studies new drug substances. “Combining our expertise will allow us to build new models, compare them to experiments and extract insights to design new chemical systems”, says Noriega. As a group they aim to create a set of tools to help other chemists select the crystal structures they want and produce them quickly and purely.

“Crystal structure prediction of new drug molecules has the potential to really impact people’s well-being by expediting the development process and lowering the cost,” Looper says. “I am excited about our ideas to improve the drug development process, but many questions remain unanswered. The idea that thermodynamics might not accurately predict crystallization is quite controversial in the field. The Keck foundation’s support of our research is essential to provide new evidence to convince scientists to think a different way.”

About the W. M. Keck Foundation 

The W. M. Keck Foundation was established in 1954 in Los Angeles by William Myron Keck, founder of The Superior Oil Company.  One of the nation’s largest philanthropic organizations, the W. M. Keck Foundation supports outstanding science, engineering and medical research.  The Foundation also supports undergraduate education and maintains a program within Southern California to support arts and culture, education, health and community service projects.

by Paul Gabrielsen, first published in @theU.

>> HOME <<