Clarivate’s Most Cited

Peter Stang


Distinguished Professor Peter J. Stang.

Peter Stang & President Obama.

Seated in the Great Hall of the People in Beijing, China.

Chinese International Science & Technology Cooperation Award.

Peter Stang One of Clarivate's Most Cited Scientists.

Each year, Clarivate identifies the world’s most influential researchers ─ the select few who have been most frequently cited by their peers over the last decade. In 2022, fewer than 7,000, or about 0.1%, of the world's researchers, in 21 research fields and across multiple fields, have earned this exclusive distinction.

Peter Stang is among this elite group recognized for his exceptional research influence, demonstrated by the production of multiple highly-cited papers that rank in the top 1% by citations for field and year in the Web of Science.

Peter Stang was born in Nuremberg, Germany to a German mother and Hungarian father. He lived in Hungary for most of his adolescence. In school, he took rigorous mathematics and science courses. At home, he made black gunpowder from ingredients at the drugstore, and developed a pH indicator from the juice of red cabbage that his mother cooked, and sold to his "fellow chemists".

In 1956, when Stang was in the middle of his sophomore year in high school, he and his family fled the Soviet invasion of Hungary and immigrated to Chicago, Illinois. Not speaking English, Stang failed his American history and English courses but scored at the top of his class in science and math. His teachers were confused by his performance and gave him an IQ test. Stang was confused by the unfamiliar format of the test and scored a 78. In spite of this, Stang was admitted to DePaul University and earned his undergraduate degree in 1963. He received his Ph.D. in 1966 from the University of California, Berkeley.

After a postdoctoral fellowship at Princeton Universitywith Paul Schleyer, he joined the chemistry faculty at the University of Utah in 1969. He became dean of the College of Science in 1997 and stepped down as dean in 2007. He is a member of the National Academy of Sciences, The American Academy of Arts and Sciences and a foreign member of the Chinese Academy of Sciences. He was editor-in-chief of the Journal of Organic Chemistry from 2000 to 2001.

    Awards & Honors

    • Priestley Medal, (2013)
    • National Medal of Science, (2010)
    • Paul G. Gassman Distinguished Service Award of the ACS Division of Organic Chemistry, (2010)
    • F.A. Cotton Medal for Excellence in Chemical Research of the American Chemical Society (2010)
    • Honorary Professor CAS Institute of Chemistry, Beijing, Zheijiang U; East China Normal U and East China U of Science and Technology, (2010)
    • Fred Basolo Medal for Outstanding Research in Inorganic Chemistry, (2009)
    • Foreign Member of the Hungarian Academy of Sciences, (2007)
    • ACS Award for Creative Research and Applications of Iodine Chemistry, (2007)
    • Linus Pauling Award, (2006)
    • Foreign Member of the Chinese Academy of Sciences (2006)
    • Fellow of the American Academy of Arts and Sciences (2002)
    • Member of the National Academy of Sciences.
    • ACS George A. Olah Award in Hydrocarbon or Petroleum Chemistry, (2003)
    • Member, AAAS Board of Directors, (2003–2007)
    • Robert W. Parry Teaching Award, (2000)
    • ACS James Flack Norris Award in Physical Organic Chemistry, (1998)
    • University of Utah Rosemblatt Prize for Excellence, (1995)
    • Utah Award in Chemistry, American Chemical Society, (1994)
    • Utah Governor's Medal for Science and Technology, (1993)
    • Honorary Doctorate of Science (D. Sc. honoris causa) Moscow State University, Moscow, Russia (1992)
    • Fulbright Senior Scholar, (1987–1988)
    • Univ. of Utah Distinguished Research Award, (1987)
    • Fellow AAAS, JSPS Fellow (1985, 1998)
    • Lady Davis Fellowship (Visiting Professor), Technion, Israel, (1986, 1997)
    • Humboldt "Senior U.S. Scientist" Award, (1977, 1996, 2010)
    • Associate Editor, Journal of the American Chemical Society (1982–1999)
    • National Organic Symposium Executive Officer (1985)

     

    first published @ chem.utah.edu

    >> Home <<

    How Trees Grow

    How Trees Grow


    William Anderegg

    What we’re still learning about how trees grow.

    What will happen to the world’s forests in a warming world? Will increased atmospheric carbon dioxide help trees grow? Or will extremes in temperature and precipitation hold growth back? That all depends on whether tree growth is more limited by the amount of photosynthesis or by the environmental conditions that affect tree cell growth—a fundamental question in tree biology, and one for which the answer wasn’t well understood, until now.

    A study led by University of Utah researchers, with an international team of collaborators, finds that tree growth does not seem to be generally limited by photosynthesis but rather by cell growth. This suggests that we need to rethink the way we forecast forest growth in a changing climate and that forests in the future may not be able to absorb as much carbon from the atmosphere as we thought.

    “A tree growing is like a horse and cart system moving forward down the road,” says William Anderegg, an associate professor in the U’s School of Biological Sciences and principal investigator of the study. “But we basically don’t know if photosynthesis is the horse most often or if it’s cell expansion and division. This has been a longstanding and difficult question in the field. And it matters immensely for understanding how trees will respond to climate change.”

    The study is published in Science and is funded by the U.S. Department of Agriculture, the David and Lucille Packard Foundation, the National Science Foundation, the U.S. Department of Energy and the Arctic Challenge for Sustainability II.

    Growth rings - oldest growth is at the top.

    Source vs. sink

    We learned the basics in elementary school—trees produce their own food through photosynthesis, taking sunlight, carbon dioxide and water and turning it into leaves and wood.

    There’s more to the story, though. Converting carbon gained from photosynthesis into wood requires wood cells to expand and divide.

    So trees get carbon from the atmosphere through photosynthesis. This is the trees’ carbon source. They then spend that carbon to build new wood cells—the tree’s carbon sink.

    If the trees’ growth is source-limited, then it’s limited only by how much photosynthesis the tree can carry out and tree growth would be relatively easy to predict in a mathematical model. So rising carbon dioxide in the atmosphere should ease that limitation and let trees grow more, right?

    But if instead the trees’ growth is sink-limited, then the tree can only grow as fast as its cells can divide. Lots of factors can directly affect both photosynthesis and cell growth rate, including temperature and the availability of water or nutrients. So if trees are sink-limited, simulating their growth has to include the sink response to these factors.

    The researchers tested that question by comparing the trees’ source and sink rates at sites in North America, Europe, Japan and Australia. Measuring carbon sink rates was relatively easy—the researchers just collected samples from trees that contained records of growth. “Extracting wood cores from tree stems and measuring the width of each ring on these cores essentially lets us reconstruct past tree growth,” says Antoine Cabon, a postdoctoral scholar in the School of Biological Sciences and lead author of the study.

    Measuring carbon sources is tougher, but doable. Source data was measured with 78 eddy covariance towers, 30 feet tall or more, that measure carbon dioxide concentrations and wind speeds in three dimensions at the top of forest canopies, Cabon says. “Based on these measurements and some other calculations,” he says, “we can estimate the total forest photosynthesis of a forest stand.”

    Decoupled

    The researchers analyzed the data they collected, looking for evidence that tree growth and photosynthesis were processes that are linked, or coupled. They didn’t find it. When photosynthesis increased or decreased, there was not a parallel increase or decrease in tree growth.

    “Strong coupling between photosynthesis and tree growth would be expected in the case where tree growth is source limited,” Cabon says. “The fact that we mostly observe a decoupling is our principal argument to conclude that tree growth is not source-limited.”

    Surprisingly, the decoupling was seen in environments across the globe. Cabon says they did expect to see some decoupling in some places, but “we did not expect to see such a widespread pattern.”

    The strength of coupling or decoupling between two processes can lie on a spectrum, so the researchers were interested in what conditions led to stronger or weaker decoupling. Fruit-bearing and flowering trees, for example, exhibited different source-sink relationships than conifers. More diversity in a forest increased coupling. Dense, covered leaf canopies decreased it.

    Finally, coupling between photosynthesis and growth increased in warm and wet conditions, with the opposite also true: that in cold and dry conditions, trees are more limited by cell growth.

    Cabon says that this last finding suggests that the source vs. sink issue depends on the tree’s environment and climate. “This means that climate change may reshape the distribution of source and sink limitations of the world forests,” he says.

    A new way to look forward

    The key takeaway is that vegetation models, which use mathematical equations and plant characteristics to estimate future forest growth, may need to be updated. “Virtually all these models assume that tree growth is source limited,” Cabon says.

    For example, he says, current vegetation models predict that forests will thrive with higher atmospheric carbon dioxide. “The fact that tree growth is often sink limited means that for many forests this may not actually happen.”

    That has additional implications: forests currently absorb and store about a quarter of our current carbon dioxide emissions. If forest growth slows down, so do forests’ ability to take in carbon, and their ability to slow climate change.

    Find the full study @ science.org.

    Other authors of the study include Steven A. Kannenberg, University of Utah; Altaf Arain and Shawn McKenzie, McMaster University; Flurin Babst, Soumaya Belmecheri and David J. Moore, University of Arizona; Dennis Baldocchi, University of California, Berkeley; Nicolas Delpierre, Université Paris-Saclay; Rossella Guerrieri, University of Bologna; Justin T. Maxwell, Indiana University Bloomington; Frederick C. Meinzer and David Woodruff, USDA Forest Service, Pacific Northwest Research Station; Christoforos Pappas, Université du Québec à Montréal; Adrian V. Rocha, University of Notre Dame; Paul Szejner, National Autonomous University of Mexico; Masahito Ueyama, Osaka Prefecture University; Danielle Ulrich, Montana State University; Caroline Vincke, Université Catholique de Louvain; Steven L. Voelker, Michigan Technological University and Jingshu Wei, Polish Academy of Sciences.

     

    - by Paul Gabrielsen, first published in @theU

     

    >> BACK <<

     

    NAS 2022 Membership

    Erik Jorgensen and valeria molinero elected to the national academy of sciences


    Valeria Molinero, distinguished professor of chemistry, and Erik Jorgensen, distinguished professor at the School of Biological Sciences, were elected May 3 as members of the National Academy of Sciences. Both are faculty members in the U’s College of Science.

    Molinero and Jorgensen are among 120 U.S. scientist-scholars and 30 foreign associates elected at the Academy’s Annual Meeting in Washington, D.C. They join 15 other current University of Utah researchers who’ve been elected to the Academy. The National Academies, which also include the National Academy of Engineering and National Academy of Medicine, recognizes scholars and researchers for significant achievements in their fields and advise the federal government and other organizations about science, engineering and health policy. With today’s elections, the number of National Academy of Sciences members stands at 2,512, with 517 foreign associates.

    Meet Valeria Molinero

    Valeria Molinero

    Molinero is the Jack and Peg Simons Endowed Professor of Theoretical Chemistry and the director of the Henry Eyring Center for Theoretical Chemistry. She is a theoretical chemist and uses computer and statistical models to explore the science of how crystals form and how matter changes from one phase to another down to the atomic scale.

    Much of her work has involved the transition between water and ice and how that transition occurs in the formation of clouds, in insects with antifreeze proteins, and in food products, especially those containing sugars. Her work has implications for any process in which control of the formation and growth of ice crystals is critical, including snowmaking at ski resorts, protection of crops from freezing, preservation of human organs and tissue for transplant, and production of ice cream and gelato, her favorite food. In 2020, she and her international colleagues demonstrated that the smallest possible nanodroplet of water that can freeze into ice is around 90 molecules, a finding that earned them the 2020 Cozzarelli Prize from the journal Proceedings of the National Academy of Sciences.
    She is a fellow of the American Academy of Arts & Sciences and recipient of several U awards, including the Distinguished Scholarly and Creative Research Award in 2019, the Extraordinary Faculty Achievement Award in 2016, the Camille Dreyfus Teacher-Scholar Award in 2012 and the College of Science Myriad Faculty Award for Research Excellence in 2011. She has also been honored by the Beckman Foundation with its Young Investigator Award, and by the International Association for the Properties of Water and Steam with its Helmholtz Award.
    She heard about her election between the news of a new publication with postdoctoral scholar Debdas Dhabal and preparations for a doctoral student’s dissertation defense. She received a phone call from colleague Dale Poulter, a distinguished professor emeritus and National Academy of Sciences member, to announce her election. “I was shocked,” she says. “To say it was a surprise would not do it justice. It was fantastic.”
    Minutes later, she went into the dissertation defense, reflecting on the range of accomplishments represented by the publication, the election and the defense. “All the research is made essentially there, in the work of the students and postdocs,” she says. “There’s satisfaction that comes from seeing someone grow from the beginning of the Ph.D. into an accomplished researcher.”

    Meet Erik Jorgensen

    Erik Jorgensen

    Jorgensen is a juggernaut in neuroscience research and a prolific collaborator across disciplines; he is a Howard Hughes Medical Institute investigator and holds adjunct positions in the Department of Biomedical Engineering and in the Eccles Institute of Human Genetics. His lab’s innovative approach to understanding the brain has helped push neuroscience forward. Jorgensen’s research explores the connections between neurons, known as synapses. While explaining his work, Jorgensen, a geneticist who studies the synapse, can transport you to an almost galactic place–the observable universe of the brain.

    “Synapses are contacts between nerve cells in your brain. Think of all the stars you can see on a moonless night. Multiply that by 100 billion. That’s how many synapses you have that can hold and process a lot of information,” Jorgensen has said. “Your grandmother lives there, your childhood friends, embarrassment, fear, love, and hate.”

    Jorgensen focuses on the molecular machinery that makes synaptic transmission work. Nerve cells store neurotransmitters in tiny packets, known as synaptic vesicles. Synaptic vesicles fuse to the cell wall of another neuron and releases its neurotransmitters, depleting the vesicle in the process before creating new ones. In addition to studying synaptic vesicle fusion and regeneration, Jorgensen also develops tools for others investigating massively complex neural networks. He and his lab are creating methods to help geneticists manipulate the genomes of model organisms such as nematodes C. elegans, creating ways to use super-resolution microscopy to track single proteins, and utilizing electron microscopy to capture cellular events in real time. As of 2020, Jorgensen has been a collaborator in the National Science Foundation-funded Neuronex 2 Project,  where he and collaborator Brian Jones focus on the neural connections in the retina. Jorgensen and Jones are part of a collection of teams receiving more than $50 million over five years as part of the NSF’s Next Generation Networks for Neuroscience program (NeuroNex). A total of 70 researchers, representing four countries, will investigate aspects of how brains work and interact with the environment around them.

    “We need to be able to see them,” he said. “to study their architecture, and track the proteins in the synapse. How can we do that? It ends up that light is too big to see the structure of a synapse…That is why we use a different subatomic particle-an electron-to visualize the structure of the synapse. We use electron microscopes.”

    Past and present U researchers in the National Academies

    Below are lists of current or former University of Utah faculty elected to one or more of the National Academies. Note that some were elected before or after their tenure at the university, and that some have died since their election.

    National Academy of Sciences: Brenda Bass, Cynthia Burrows, Mario Capecchi, Dana Carroll, Thure Cerling, James Ehleringer, Kristen Hawkes, James O’Connell, Baldomero “Toto” Olivera, C. Dale Poulter, Peter Stang, Wesley Sundquist, Polly Wiessner, Henry Harpending, Jesse D. Jennings, Cheves Walling, Sidney Velick, John R. Roth, Josef Michl, Ray White, Julian Steward, Jeremy Sabloff, Henry Eyring and Louis Goodman and Mary C. Beckerle.

    National Academy of Engineering: Jindrich Kopecek, R. Peter King, Adel Sarofim, Sung Wan Kim, Gerald Stringfellow, Donald Dahlstrom, George Hill, Jan D. Miller, Milton E. Wadsworth, Thomas G. Stockham, John Herbst, Stephen C. Jacobsen, Willem J. Kolff, Alex G. Oblad, Anil Virkar and William A. Hustrulid.

    National Academy of Medicine: Mario Capecchi, Wendy Chapman, Sung Wan Kim, Vivian Lee, Baldomero “Toto” Olivera, Stephen C. Jacobsen, Eli Adashi, Paul D. Clayton and Homer R. Warner.

    Media Contacts

    Valeria Molineroprofessor, Department of Chemistry

    Erik Jorgensenprofessor, Department of Biology

    Paul Gabrielsenresearch/science communications specialist, University of Utah Communications
    Mobile: 801-505-8253

    Distinguished Service

    Distinguished Service


    Pearl Sandick

    Pearl Sandick receives Distinguished Service Award.

    Pearl Sandick, Associate Professor of Physics and Astronomy and Associate Dean of Faculty Affairs for the College of Science, has received the Linda K. Amos Award for Distinguished Service to Women. The award recognizes Sandick’s contributions to improving the educational and working environment for women at the University of Utah. Amos was the founding chair of the Presidential Commission on the Status of Women, was a professor of nursing, and served for many years as Dean of the College of Nursing and as Associate Vice President for Health Sciences. Throughout her career, Amos was the champion for improving the status and experience of women on campus.

    “This is a great honor. I’m privileged to work with amazing students and colleagues who understand the value of a supportive community,” said Sandick. “I am really proud of what we’ve accomplished so far, and I’m excited to start to see the impact of some more recent projects.”

    Sandick is a theoretical particle physicist, studying some of the largest and smallest things in the universe, including dark matter, the mysterious stuff that gravitationally binds galaxies and clusters of galaxies together.

    Upon her arrival as an assistant professor in 2011, Sandick founded the U’s first affinity group for women in physics and astronomy. For the last two decades, the national percentage of women physicists at the undergraduate level has hovered around 20%. The percentage at more advanced career stages has slowly risen to that level, thanks in part to supportive programming designed to increase retention. The goal of the affinity group within the department is to foster a sense of community and provide opportunities for informal mentoring and the exchange of information, ideas, and resources. The group has also been active in outreach and recruiting. As of fall 2021, the group is now known as PASSAGE, a more inclusive group focused on gender equity in physics and astronomy.

    Within the department and in the College of Science, Sandick has improved a number of processes, including writing an effective practices document for faculty hires, based in large part on research related to equitable and inclusive recruitment practices and application review. As Associate Dean, she worked with the College of Science Equity, Diversity, and Inclusion Committee (which she currently chairs) to create college-wide faculty hiring guidelines, which were adopted in 2020. She was also instrumental in several other structural and programmatic initiatives to create a supportive environment in the department, such as the development of a faculty mentoring program and the establishment of “ombuds liaisons” to connect department members with institutional resources.

    Through her national service related to diversity and inclusion, Sandick has gained a variety of expertise that she has brought back to the campus community. For example, she has given workshops in the department, the college, and across campus on communication and negotiation, implicit bias, conflict management, and mentorship.

    Here are comments from women in the Department of Physics & Astronomy, who have participated with Dr. Sandick in activities sponsored by PASSAGE:

    “Being part of PASSAGE has allowed us to connect with others who share similar experiences in the department. It has also helped us connect with people, both within the university community and at other institutions, who have served as role models and mentors.” –Tessa McNamee and Callie Clontz, undergraduates

    "PASSAGE became a lifeline during the pandemic and continues to be so. It helps equip members with the tools that they need in various aspects of academia. Professor Sandick makes it her mission to guide us, especially in a time of crisis. I am personally thankful to her and to all of the group members.” –Dr. Ayşegül Tümer, Postdoctoral Research Associate

    In addition to her research, Sandick is passionate about teaching, mentoring, and making science accessible and exciting for everyone. She has been recognized for her teaching and mentoring work, with a 2016 University of Utah Early Career Teaching Award and a 2020 University of Utah Distinguished Mentor Award. In 2020, she also was named a U Presidential Scholar. As discussed earlier, women are still widely underrepresented in physics, and Sandick is actively involved in organizations that support recruitment, retention, and advancement of women physicists. She has served on the American Physical Society (APS) Committee on the Status of Women in Physics and as the chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics. She is currently chair of the APS Four Corners Section, which serves approximately 1,800 members from the region.

    - by Michele Swaner, first published at physics.utah.edu

    >> BACK <<

     

    Carbon Nanotubes

    Carbon Nanotubes


    Vikram Deshpande

    Long carbon nanotubes reveal subtleties of quantum mechanics.

    Vikram Deshpande had a hunch that carbon nanotubes held a lot of promise as a building block. He suspected that their unusual electrical and thermal properties and extraordinary strength could be modified for specific purposes by adding nanofabricated structures.

    Working with nanotubes more than a micron long, the University of Utah physicist and his team found that the nanotubes held surprises, even without being adorned with those structural bells and whistles. “We started seeing all this richness in the data and had to investigate that before making the experiment more complicated,” Deshpande says. “Because they are only a nanometer or so in diameter, they are excellent playgrounds for studying the quantum mechanics of electrons in one dimension.”

    But thin walls also mean little shielding. Impurities on the surface scatter electrons in the nanotube, and that initially prevented Deshpande from getting clean data.

    His solution was to both clean the nanotubes and run his experiments in a DRY ICE 1.5K 70 mm cryostat made by ICEoxford. The UK-based company’s cryostat allows him to suspend nanotubes between supports and run a current through them. The nanotubes heat up to several hundred degrees, and the impurities are knocked off the surface.

    ICEoxford cryogenic equipment.

    The setup is cooled by pumped helium-4 at around 1.5 K, which is important, says Deshpande. “A lot of cryogenic equipment is vacuum-based, but the heat injected into the nanotube has no way out except along the tube, which is very ineffective.” Another boon is the fact that the cryostat is top loading so it’s easy to access. Within 12 hours of installing a new sample, the entire system is cooled and ready for testing.

    With a good nanotube in place and thoroughly clean, Deshpande applies voltage to inject electrons and explore their quantum behavior.

    A major influence on electron behavior inside the nanotube is the quality of the end contacts. The electrons travel unimpeded within the tube, known as the ballistic regime. But the ease at which they can escape the tube affects their behavior radically.

    Using low-conductivity contacts, Deshpande’s team measured the energy required to add individual electrons to the tube. Subtle changes in the energy showed that the electrons were falling into an ordered pattern called a Wigner crystal—effectively a solid made of pure electrons—which occurs only at very low density. “Lower electron density is obtained with longer lengths, which make our experimental signature possible,” Deshpande says. His team reported their results in Physical Review Letters (volume 123, page 197701, 2019).

    Last year the team published another paper in Physical Review Letters (volume 126, page 216802, 2021) with results from high-conductance contacts. They found the electrons’ wave-functions spread along the tube, creating quantum interference, analogous to light in an interferometer. There was not only interference similar to the Fabry-Perot effect between electrons bouncing back and forth, but also a more subtle interference caused by slight variations in the nanotubes, such as chirality. “These are exquisite measurements of delicate quantum effects that we can only see because our long nanotubes accumulate measurable phase difference between these modes,” Deshpande says.

    He has also made use of the DRY ICE cryostat’s ability to apply magnetic fields up to 9 teslas. “If you thought the data so far were rich, you should see what happens in a magnetic field!” he says.

    Phil Dooley is a freelance writer and former laser physicist based in Canberra, Australia.

     

    - by Phil Dooley, first published in Physics Today

     

    >> BACK <<

     

    IF/THEN Ambassador

    IF/THEN Ambassador


    Janis Louie

    IF/THEN is designed to activate a culture shift among young girls to open their eyes to STEM careers.

    The august statuary of Washington, D.C. will soon include a University of Utah chemistry professor. A 3D-printed statue of Janis Louie will stand with 119 other statues of women in science, technology, engineering and math (STEM) in and around the National Mall from March 5-27.

    The exhibit places Louie among the largest collection of statues of women ever assembled, according to the Smithsonian Institution, and celebrates the participants in the IF/THEN Ambassador program that is “designed to activate a culture shift among young girls to open their eyes to STEM careers,” according to the initiative’s website.

    “I hope visitors feel inspired, encouraged and empowered,” says Louie. “For me, the exhibit is meant to show that STEM isn’t for one type of person, STEM is for everyone!”

    Inspiring a Generation

    The IF/THEN Ambassador Program is sponsored by Lyda Hill Philanthropies as part of the IF/THEN initiative. The initiative aims to “advance women in STEM by empowering current innovators and inspiring the next generation of pioneers.”

    The Ambassadors program is a part of that initiative, and assembled high-profile women in STEM to act as role models for middle school-age girls. Ambassadors received media and communications training and then engaged in outreach work nationally.

    Dr. Louie and family.

    After selection in 2019, Louie traveled to a three-day conference with the other Ambassadors. “It was amazing!” she says. “It is the only conference I have ever been to that was 100% female scientists!”

    It was a diverse group. “The featured women hail from a variety of fields,” she says, “from protecting wildlife, discovering galaxies and building YouTube’s platform to trying to cure cancer.”

    Later, Louie appeared on an episode CBS’ Mission Unstoppable to draw connections between chemistry and the world around us. She also pitched in when another Ambassador’s summer STEM camp needed to go online with the onset of the COVID-19 pandemic.

    “She asked a variety of the Ambassadors to present to the girls over Zoom, so that the STEM camp could still be impactful,” Louie says. “I was delighted to be one of the presenters!”

    Meeting her statue

    The process of creating the 120 statues was very different from the traditional sculpture techniques that created the hundreds of other statues in Washington, D.C. At the initial conference, Louie and the other Ambassadors each took a turn being digitally scanned in a booth with 89 cameras and 25 projectors so that the statues could later be 3D printed. (Learn more about the process of creating the exhibit here.)

    When completed, the orange statues appeared in Dallas and New York City before the full exhibit was first unveiled in Dallas, Texas in May 2021. Washington, D.C. is the exhibition’s second stop.

    Louie and her family traveled to Dallas to see her statue.

    “It was surreal, in the best way!” she says, of meeting her doppelgänger.  “My children were able to see not only myself but a field of orange statues of women pioneers—and I was thanked by someone visiting the exhibit for making a difference.”

    Meet the other Ambassadors featured in the exhibit here.

     

    by Paul Gabrielsen, first published in @theU

     

    Photos courtesy of the IF/THEN® Collection

     

    Student Spotlights


    Ty Mellor

    Sage Blackburn

    Research Scholar

    Phi Beta Kappa

    Fulbright Scholar

    Outstanding Graduate Student

    Research Scholar

    Outstanding Post-Doc

    NSF Fellowship

    Outstanding Post-Doc

    >> HOME <<


    2022 ASBMB Fellow

    2022 ASBMB Fellow


    Vahe Bandarian

    Vahe Bandarian, professor of chemistry, has been named a 2022 fellow of the American Society for Biochemistry and Molecular Biology (ASBMB).

    “Fellows are recognized for their contributions to the ASBMB, as well as meritorious efforts to advance the molecular life sciences through sustained outstanding accomplishments in areas such as scientific research, diversity, education, mentorship and service to the scientific community,” according to the ASBMB.

    Bandarian’s research interests are “centered in developing molecular level understanding of biosynthesis of complex natural products.” Specifically, he and his colleagues have studied how queuosine, a component of transfer RNA, is synthesized and used by organisms. He also studies how enzymes participate in complex chemical reactions.

    A nominator wrote that Bandarian’s career displays “example after example of newly discovered chemistry, newly discovered enzymes and biochemical mysteries solved.”

    He serves on the Minority Affairs Committee, the Women in Biochemistry and Molecular Biology Committee and the editorial board of the Journal of Biological Chemistry.

    Bandarian is the second U faculty member to be named an ASBMB Fellow. Wesley Sundquist, distinguished professor of biochemistry, was a part of the inaugural class of fellows in 2021.

    The fellows will be recognized in April at the 2022 ASBMB Annual Meeting in Philadelphia.

     

    Story originally published in @theU

    Extraordinary Black Hole

    A Different Kind of Black Hole


    Astronomers discovered a black hole unlike any other. At one hundred thousand solar masses, it is smaller than the black holes we have found at the centers of galaxies but bigger than the black holes that are born when stars explode. This makes it one of the only confirmed intermediate-mass black holes, an object that has long been sought by astronomers.

    Anil Seth

    “We have very good detections of the biggest, stellar-mass black holes up to 100 times the size of our sun, and supermassive black holes at the centers of galaxies that are millions of times the size of our sun, but there aren’t any measurements of black between these. That’s a large gap,” said senior author Anil Seth, associate professor of astronomy at the University of Utah and co-author of the study. “This discovery fills the gap.”

    The black hole was hidden within B023-G078, an enormous star cluster in our closest neighboring galaxy Andromeda. Long thought to be a globular star cluster, the researchers argue that B023-G078 is instead a stripped nucleus. Stripped nuclei are remnants of small galaxies that fell into bigger ones and had their outer stars stripped away by gravitational forces. What’s left behind is a tiny, dense nucleus orbiting the bigger galaxy and at the center of that nucleus, a black hole.

    “Previously, we’ve found big black holes within massive, stripped nuclei that are much bigger than B023-G078. We knew that there must be smaller black holes in lower mass stripped nuclei, but there’s never been direct evidence,” said lead author Renuka Pechetti of Liverpool John Moores University, who started the research while at the U. “I think this is a pretty clear case that we have finally found one of these objects.”

    The study published on Jan. 11, 2022, in The Astrophysical Journal.

    A decades-long hunch

    B023-G078 was known as a massive globular star cluster—a spherical collection of stars bound tightly by gravity. However, there had only been a single observation of the object that determined its overall mass, about 6.2 million solar masses. For years, Seth had a feeling it was something else.

    “I knew that the B023-G078 object was one of the most massive objects in Andromeda and thought it could be a candidate for a stripped nucleus. But we needed data to prove it. We’d been applying to various telescopes to get more observations for many, many years and my proposals always failed,” said Seth. “When we discovered a supermassive black hole within a stripped nucleus in 2014, the Gemini Observatory gave us the chance to explore the idea.”

    A wide-field image of M31 with the red box and inset showing the location and image of B023-G78 where the black hole was found.

    With their new observational data from the Gemini Observatory and images from the Hubble Space Telescope, Pechetti, Seth and their team calculated how mass was distributed within the object by modeling its light profile. A globular cluster has a signature light profile that has the same shape near the center as it does in the outer regions. B023-G078 is different. The light at the center is round and then gets flatter moving outwards. The chemical makeup of the stars changes too, with more heavy elements in the stars at the center than those near the object’s edge.

    “Globular star clusters basically form at the same time. In contrast, these stripped nuclei can have repeated formation episodes, where gas falls into the center of the galaxy, and forms stars. And other star clusters can get dragged into the center by the gravitational forces of the galaxy,” said Seth. “It’s kind of the dumping ground for a bunch of different stuff. So, stars in stripped nuclei will be more complicated than in globular clusters. And that’s what we saw in B023-G078.”

    The researchers used the object’s mass distribution to predict how fast the stars should be moving at any given location within the cluster and compared it to their data. The highest velocity stars were orbiting around the center. When they built a model without including a black hole, the stars at the center were too slow compared their observations. When they added the black hole, they got speeds that matched the data. The black hole adds to the evidence that this object is a stripped nucleus.

    “The stellar velocities we are getting gives us direct evidence that there’s some kind of dark mass right at the center,” said Pechetti. “It’s very hard for globular clusters to form big black holes. But if it’s in a stripped nucleus, then there must already be a black hole present, left as a remnant from the smaller galaxy that fell into the bigger one.”

    The researchers are hoping to observe more stripped nuclei that may hold more intermediate-mass black holes. These are an opportunity to learn more about the black hole population at the centers of low-mass galaxies, and to learn about how galaxies are built up from smaller building blocks.

    “We know big galaxies form generally from the merging of smaller galaxies, but these stripped nuclei allow us to decipher the details of those past interactions,” said Seth.

    Other authors include Sebastian Kamann of the Liverpool John Moores University; Nelson Caldwell, Harvard-Smithsonian Center for Astrophysics; Jay Strader, Michigan State University; Mark den Brok, Leibniz-Institut für Astrophysik Potsdam; Nora Luetzgendorf, European Space Agency; Nadine Neumayer, Max Planck Institüt für Astronomie; and Karina Voggel, Observatoire astronomique de Strasbourg.

    - by Lisa Potter, published in @theU and the Deseret News

     

    >> BACK <<

     

    Of Mice and Monarchs

    Of Mice and Monarchs


    Sara Weinstein, Postdoctoral Researcher

    Monarch butterflies possess a potent chemical armor. As caterpillars, they eat plants filled with toxic cardenolides that build up in their bodies and make them unpalatable to most—but not all—predators. In central Mexico, where the largest winter monarch aggregations occur, scientists observed that rodents attack monarchs that fall to the ground. In particular, the black-eared mouse (Peromyscus melanotis) specializes in these bitter-tasting insects, eating as many as 40 per night.

    In a new study, University of Utah biologists found that mice at California monarch overwintering sites can also consume monarch butterflies. Working at one of the largest monarch aggregations outside of Mexico, Pismo State Beach Monarch Butterfly Grove, the researchers discovered that the western harvest mouse (Reithrodontomys megalotis) also ate the grounded monarchs. However, with the precipitous decline in western monarch populations, this butterfly buffet may be in jeopardy.

    A harvest mouse munching on a monarch.

    The authors do not think that rodents are contributing to the western monarch decline, nor that the monarchs are the only thing that mice can eat. Rather, documenting this new feeding behavior is a reminder of how little we know about the interactions that may be lost as insect populations decline.

    “We are in an insect apocalypse right now. There are estimates that 40% of studied invertebrate species are threatened and that over 70% of flying insect biomass is already gone. This is devastating on its own and is also going to have enormous impacts on the other organisms that feed on insects,” said Sara Weinstein, the postdoctoral researcher who led the study.

    “Western monarchs and other western butterflies need conservation attention and part of that awareness-raising is illuminating the many ways these animals are interconnected to other insects, birds, mammals, as well as our human communities. This study helps us appreciate more deeply how fewer butterflies means less food for other native animals” said Emma Pelton, senior conservation biologist at the Xerces Society.

    Weinstein with a lab-reared monarch.

    The study published in the journal Ecology on Dec. 12, 2021.

    To study mouse-monarch interactions, the researchers first trapped rodents in the grove in February 2020. The rodents were released, but their feces were kept to screen for monarch DNA—which they found in one sample. This first survey occurred in late winter as monarchs were leaving the aggregation and few remained for mice to munch. Weinstein and colleagues intended to return the following fall during peak monarch season. However, after years of decline, the western monarch population crashed.

    “At a site where 100,000 butterflies used to roost, in 2020 there where were fewer than 200 monarchs. So, we had to change tactics,” Weinstein said. “We tested whether rodents would feed on the butterflies using captive-reared monarchs.”

    Weinstein set up lab-reared monarch carcasses under camera traps and captured footage of wild harvest mice eating butterflies. She also caught a half dozen mice and offered them monarchs. The mice ate monarchs, typically favoring the abdomen or thorax, high-calorie parts with fewer toxins.

    “Many rodent species are likely to have some resistance to cardenolides in monarchs, due to genetic changes at the site where these toxins bind,” said Weinstein. “The Pismo Grove is one of hundreds of western monarch aggregation sites, and it seems likely that, at least in the past, rodents throughout the western monarch range may have supplemented their winter diets with monarchs. If you can handle the cardenolides in a monarch, their bodies are full of fat and offer a pretty good meal.”

    Animation of mouse eating a butterfly.

    Mouse eating an entire monarch butterfly.

    This meal will be a lot harder to find, as over 90% of western monarchs have disappeared in the last 40 years. The missing beauties will surely impact the ecosystem that depends on them for food.

    Denise Dearing, Distinguished Professor at the U, was senior author of the study. Photos and animations by Sara Weinstein.

    Find the study, “Harvest mice (Reithrodontomys megalotis) consume monarch butterflies (Danaus plexippus), in the journal Ecology: https://doi.org/10.1002/ecy.3607

     

    by Lisa Potter, first published in @theU

     

    >> BACK <<

     

    James Webb Space Telescope

    James Webb Space Telescope


    In December 2020 the James Webb Space Telescope (JWST) finally launched. The $10 billion observatory is a twenty-year joint effort of NASA, the European Space Agency, and the Canadian Space Agency, and the most powerful telescope ever developed. Its mission—peer 13.5 billion lightyears back in time to the earliest stages of the universe.

    Anil Seth

    JWST’s launch date was December 25 from Europe’s Spaceport in Kourou, French Guiana. Longtime fans of the telescope are celebrating it as a Christmas miracle. It was the first planned to launch in 2007, but decades of delays and false hope drove the project from its initial budget of $500 million up to its current $10 billion cost.

    You can watch recorded launch video and future NASA livestreams at  https://www.nasa.gov/nasalive.

    The stakes are high for Anil Seth, associate professor in the Department of Physics & Astronomy. Out of more than 1,000 proposals for observation time on the telescope, Seth’s is one of 266 that were approved. He spoke with AtTheU to talk about this cosmic milestone.

    What is the James Webb Space Telescope?

    It is the largest and most powerful telescope that we’ve ever sent into space—the primary mirror is about the size of a typical house. It’s really big compared to the Hubble Space Telescope, which has a primary mirror the size of a bedroom. Hubble uses the ultraviolet and visible light to create jaw-dropping images of deep space that fundamentally changed our understanding of the cosmos. JWST will be much, much, much farther away than Hubble, located almost one million miles from Earth. From there, it can detect the faintest traces of infrared light, the wavelength of light emitted by everything that produces heat.

    NASA assembly, July 2017

    The telescope’s primary power is to detect faint galaxies far, far away. It’ll be able to pick up the infrared light spectrum of planets, newly forming stars, black holes, and other faint objects in ways that we’ve never been able to before. Almost every astronomer is probably going to want to use JWST for something. We saw so much using the Hubble Space Telescope. With JWST, we’ll be able to see more than we can imagine. It’s very exciting.

    The launch date has been pushed back several times including once this week. Is the telescope launch tricker then usual?

    The size makes it really hard to launch. The telescope has three big segments—a sunshield the size of a tennis court, the house-sized primary mirror, and the secondary mirror, Right now, it’s all packaged up like a Christmas present to fit inside the rocket. After launch, the segments will begin to unfold. It’s a complicated process involving hundreds of steps that have to work perfectly. This has never been done before—one error and the whole project could fail. That’s why people are so stressed out!

    Where will JWST orbit in space?

    It’s going to orbit the sun almost one million miles away from Earth. It will live at what is called a Lagrange point, a location where gravity from the earth and sun are equal. And will just sit there, orbiting with the Earth around the sun. This ensures that the telescope will always point away from the sun.

    Full-scale model, September 2005

    Anything warm emits infrared light—stars, humans, every other thing on Earth. To make an infrared-detecting telescope, the equipment needs to be extremely cold, so its heat doesn’t interfere with infrared readings from space. That’s what the sun shield is for. The massive mylar sail will create a shadow that prevents the telescope from absorbing heat. The sunshade will begin to unfurl a week after launch, starting with 107 release mechanisms that have to fire simultaneously. The sun shield will then always be between the telescope and sun, keeping the telescope really cold. If this doesn’t happen right…it’ll be bad.

    JWST’s location also provides a wide-open view for observations. The Hubble space telescope orbits the Earth just over 300 miles up, which means the planet sometimes blocks the telescope’s vision as it orbits the earth every 90 minutes. At JWST’s Lagrange position, it’s much easier to keep a single orientation in the sky for a longer time and to make observations constantly. So we’ll end up getting more data each year from JWST than from Hubble.

    You will be one of the first astronomers to get observation time on the JWST. Can you tell us about your research?

    I study black holes. Every black hole has stuff falling onto it that emits light. It turns out that a lot of that light gets emitted at infrared wavelengths. This telescope is much, much, more sensitive to those wavelengths than any other previous telescope. The problem is that we’ve never seen what a faint black hole looks like at these wavelengths.

    The Andromeda Galaxy, approximately 2.5 million light-years from Earth.

    I’m leading a project that will look at places where we know black holes exist, because we’ve measured them from the motions of the stars around them, but that are very faint. These are so much fainter than something like a quasar, which is where the black hole is devouring as much material as it can. The black holes I’m interested in are just sipping their material, and they’re much more typical of the average black hole in the universe. We’re basically looking unique signatures in this wavelength spectrum that will tip us off to a black hole is present. One of the objects we’ll focus on is the first one ever photographed.

    - by Lisa Potter, first published at @theU

     

    NASA J.W.S.T. VIDEO


    >> BACK <<