2019 Churchill Scholar

Cameron Owen of Boise, Idaho, a senior honors student majoring in chemistry and physics and minoring in mathematics, has received the prestigious Churchill Scholarship to study at the University of Cambridge in the United Kingdom. He is one of only 15 students nationally to receive the award this year and is the fourth consecutive Churchill Scholar from the U.

“Cameron’s achievement is a testament to his scientific curiosity and diligence in his undergraduate research,” said Dan Reed, senior vice president for Academic Affairs. “A fourth Churchill Scholarship award in as many years demonstrates the value of undergraduate research and mentorship experiences at the U, and that our students are among the best and brightest in the world.”

The Churchill Scholarship, established in 1963 at the request of Winston Churchill, provides undergraduates with outstanding academic achievement in the science, technology, engineering and math fields the opportunity to complete a one-year master’s program at the University of Cambridge. Students go through a rigorous endorsement process in order to apply, but only after their home institution has been vetted with the Winston Churchill Foundation. The U was added to the foundation in 2014.

Owen, a recipient of a 2018 Barry Goldwater Scholarship, came out of high school with an interest in chemistry. He joined the lab of Peter Armentrout, Distinguished Professor of Chemistry, after hearing about Armentrout’s research in his honors science cohort. While at the U, Owen has published his research and traveled twice to the Netherlands as part of the National Science Foundation Research Experience for Undergraduates program.

Owen and Armentrout, in an ongoing collaborative effort with the Air Force Research Laboratory, are currently studying the activation of methane by metal atoms, particularly gold, in the gas phase. Methane activation, the process of breaking the carbon-hydrogen bond of methane, and subsequent functionalization could eventually be used to convert the enormous amounts of methane from natural and shale gas feedstocks into usable products like methanol or ethane. “I want the activation of methane into liquid fuels and other viable products to be environmentally beneficial and economically advantageous,” Owen said. “Current processes that activate methane are exorbitant in both time and energy.”

At Cambridge, Owen will explore how methane chemically attaches to the surfaces of certain metals. “My project will be purely theoretical,” he said. “But I’ll be able to apply what I’ve learned about certain metals that react with methane in the gas phase to potential catalysts of the future. You can extend those results to better understand the activation of other greenhouse gases in order to create more effective real-world catalysts.”

Owen is looking to continue his work in a doctoral program after his return from Cambridge.

Ryan Watts

Dr. Ryan Watts, BS’00 in Biology, is the CEO and Co-Founder of Denali Therapeutics, a biotechnology company focused on finding treatments and cures for neurodegenerative illnesses, such as Alzheimer’s and Parkinson’s disease.

Watts and his colleagues at Denali are passionate about discovering drug therapies to help over 22 million people across the world who are fighting crippling neurodegenerative illnesses. In fact, Alzheimer’s disease and other age-related neurodegenerative diseases are reaching epidemic proportions. Expressed solely in financial terms, the cost of treating people with Alzheimer’s and other dementias is estimated to exceed $260 billion by 2020 in the U.S. alone.

Watts graduated from Cottonwood High School and came to the University of Utah, reflecting his desire to attend a top-tier research institution. As an undergraduate, Watts received the opportunity to conduct research in the Department of Biology. It was there that Ryan discovered the passion that would determine his career path. Along with his undergraduate research experience, Ryan served as a teaching assistant for Dr. Baldomero “Toto” Olivera and was a Pediatric Technician in Surgery at Primary Children’s Medical Center.

Watts was particularly impacted by his interactions with Dr. Olivera because he recognized how Olivera’s biochemical insights could be translated into treatments for pain. Ryan excelled in the lab and the classroom, and upon graduation was accepted into Stanford University’s Biological Sciences doctoral training program.

At Stanford, Ryan continued to distinguish himself in research and received his Ph.D. in 2004, focusing on the molecules that regulate nervous system development. Afterwards, he accepted a position at Genentech. During his eleven-year tenure there, Watts focused initially on developing therapies for cancer, then switched his attention to neurodegenerative diseases. He led Genentech’s entry into Alzheimer’s disease discovery and drug development, eventually building and leading their newly created Neuroscience Labs.

Watts and a select group of neuroscientists and investors eventually formed a biotech startup named Denali Therapeutics. In contrast to the broad approach of companies like Genentech, Denali would be fully specialized in solving the mystery of neurodegeneration.

Founded in 2015, and headquartered in South San Francisco, Denali Therapeutics has already raised more than $349 million and grown to more than 110 employees. As the name Denali suggests, the treatment and study of neurodegenerative diseases pose significant challenges. These conditions, and therefore the therapies targeting them, are difficult to track. In contrast to cancer, neurodegeneration is both more difficult to target than cancerous tumors and has fewer and less well-defined biomarkers.

Reflecting on his time as a student at the U, Watts has some advice for the current generation of students. “Build connections with the incredible faculty at the U and explore opportunities to get in the research lab as soon as possible. Top notch research universities like the U offer a unique chance to discover original insights as part of your education.”

2017 Churchill Scholar

Michael Zhao, a Salt Lake City native and senior in mathematics pursuing an honors degree at the U, has received the prestigious Churchill Scholarship to study at the University of Cambridge in the United Kingdom. Zhao is one of only 15 students in the U.S. to receive this award and is the second Churchill Scholar from the U.

“It’s a common perception that skill in mathematics is only due to talent, but hard work counts for much more,” said Zhao. “Having mentors is also extremely helpful, and I am indebted to many faculty members, graduate students and engineers for their guidance and encouragement.”

Zhao was drawn to math at an early age. Through an “Art of Problem Solving” online course he was introduced to number theory. He likens this first encounter to how the Hubble Space Telescope revealed thousands of ancient galaxies in what appeared to be a small, blank patch of the night sky.

In high school, he attended the Canada/USA Mathcamp and took math courses at the U. Upon graduating he was awarded a fouryear Eccles Scholarship – supported by the George S. and Dolores Doré Eccles Foundation–to continue his studies at the U.

In his freshman year at the U, Zhao took a yearlong reading course exploring algebraic number theory with Gordan Savin, a professor in mathematics. He continued his studies by taking reading courses with

Dragan Milicic, a professor in mathematics, and graduate courses in algebraic geometry, number theory, and representation theory. “We often have discussions on various topics related to these courses. I was always impressed that talking to Mike feels more like talking with a colleague and not a student,” said Milicic.

Zhao has also done research in computer science. In the summer of 2015, he participated in the Research in Industrial Projects for Students Program held on the campus of the Hong Kong University of Science and Technology. His project used computer vision techniques to create a logo recognition application for Android phones. In spring 2016, he was awarded the prestigious Barry Goldwater scholarship for excellence in STEM research.

This past summer, Zhao was an intern at Google. He developed a software-testing framework that allowed engineers to select exactly the servers they needed to handle login action in their software tests, thereby reducing computer memory usage and server startup times. “He is on a path to becoming a very powerful figure in whatever industry he chooses,” said Tyler Sellmayer, Zhao’s supervisor at Google. “His superpower is the ability to hold an enormous abstract structure in his head, and to speak intelligently about any aspect of it at any time.”

Currently, Zhao is working on his Honor’s thesis in number theory. His thesis advisor, Gordan Savin, says of Zhao: “Mike is one of the strongest undergraduate students we have had since I have been at the University of Utah, more than 20 years. For someone his age, he already has an incredible level of maturity and mathematical knowledge.”

Zhao will use the Churchill Scholarship to pursue a Master of Advanced Study in Pure Mathematics at Cambridge starting in the fall. Upon completion, Zhao plans to come back to the U.S. to complete his doctorate in mathematics focusing on number theory. “It wasn’t easy to choose in what area I wanted to specialize, even within computer science and mathematics, since they were all very exciting. Only by trying many different things – an internship, several research projects – was I able to make a decision,” said Zhao. Zhao aspires to become a professor, and hopes to make contributions to pure mathematics through research and teaching.

“Many times, pure mathematics research found its way to important applications, such as cryptography, relativity and GPS. From a different perspective, I believe research is important since it enriches society just as much as art, literature or philosophy,” said Zhao.

The Churchill Scholarship, established in 1963 at the request of Winston Churchill, provides undergraduates with outstanding academic achievement in the science, technology, engineering and math fields the opportunity to complete a one-year master’s program at the University of Cambridge. The Churchill Scholarship has been called “the most academically challenging of the U.K. scholarships.”

2016 Churchill Scholar

Mackenzie SimperSalt Lake City native and senior in mathematics at the University of Utah, has received the prestigious Churchill Scholarship to study at the University of Cambridge in the United Kingdom. Simper becomes one of only 15 students nationally to receive this award and is the first Churchill Scholar for the University of Utah.

“Mackenzie’s receipt of the Churchill Scholarship marks a tremendous milestone for the university. As our first Churchill Scholar, we have no doubt that she will be an excellent representative of our university and state. Mackenzie has forged the path for other U Churchill Scholars to follow,” said the U’s Senior Vice President for Academic Affairs Ruth Watkins.

The Churchill Scholarship, established in 1963 at the request of Sir Winston Churchill, provides undergraduates with outstanding academic achievement in the science, technology, engineering and math fields the opportunity to complete a one-year master’s program at the University of Cambridge. Students go through a rigorous endorsement process in order to apply, but only after their home institution has been vetted with the Winston Churchill Foundation. The University of Utah was recently added to the foundation in spring 2014. The scholarship has been called “the most academically challenging of the U.K. scholarships.”

“The process of applying was intense, but it was very beneficial for me to think about what I want to do in the future. I am also grateful to the people who I met throughout the process and the many opportunities the math department has provided.  I am excited to go to Cambridge and be the U’s first Churchill scholar,” said Simper

Simper initially planned to attend medical school, which prompted her decision to double major in mathematics and biology at Salt Lake Community College. She soon realized, though, that math was a spectacular field with many applications and areas to explore. When she transferred to the University of Utah in fall 2014, she knew that math was the subject she wanted to pursue.

“Math is so much fun. My research has allowed me to work on problems that truly interest me, and has shown me the connections between different areas of math.  Any student who is excited by math should try doing research, because it is a chance to experience math in a completely different way than in the classroom,” said Simper.

Under the direction of Tom Alberts, assistant professor in mathematics at the University of Utah, Simper has worked on two research projects over the past year and half. One focused on the stochastic heat equation on Markov Chains. The second studied the Bak-Sneppen model, a simplified model of evolution that incorporates natural selection and spatial interaction between species. She is currently writing up the results of this second project for publication.

“I’m proud to have called her my student and research collaborator, just as the mathematics department as a whole is proud of her as one of our best students ever,” said Alberts.

Simper continued her research experience this past summer on aNational Science Foundation Research Experience for Undergraduates fellowship, where she did research with Bjorn Sandstede, a professor in applied mathematics at Brown University. Her project focused on dynamical systems with noise, studying them both analytically and numerically. This research was the basis for another publication in progress and was the focus of a presentation she gave to the University of Utah Department of Mathematics.

Sandstede said that Simper’s “intellectual achievements are outstanding; she is passionate about mathematics and is one of the most creative and advanced undergraduate students I have known and worked with during my career.”

Recently, Simper was awarded the Alice T. Schafer Prize for Undergraduate Women in Mathematics, which highlights one outstanding undergraduate woman nationally who demonstrates high quality of performance in advanced mathematics course, a real interest in mathematics and an ability for independent work.

Simper will use the Churchill Scholarship to pursue a Master of Advanced Study in Pure Mathematics at the University of Cambridge starting in the fall.  Don Tucker, professor in math at the University of Utah and mentor to Simper, said, “She will be a credit to our nation both as a scholar and as a person.” Upon completion, Simper plans to come back to the U.S. to complete her doctorate in mathematics.

Simper aspires to become a professor, and hopes through research and teaching to inspire students to realize math is more than just solving equations, it is all around them. Alberts, described Simper as such: “Mackenzie has tremendous faith in the ability of mathematics research to make important contributions to humanity and to improve the lives of others.”