Storm Peak

Storm Peak


Storm Peak is a lab and a classroom.

Over forty years ago what would become the premier, high-elevation atmospheric science laboratory in the Western United States opened at Steamboat Springs Ski Resort in Colorado. Storm Peak, as the facility is called, has been “the perfect place, to have your head in the clouds,” says director Gannet Hallar, professor of atmospheric sciences at the U. The laboratory sits in the clouds about 40 percent of the time in the winter. “That allows us to sample clouds and the particles that make clouds at the same time. And from that, the lab has produced about 150 peer-reviewed publications.”

Named after the peak which stands at 10,500 feet above sea level, the 3,500-square-foot lab is not only the perfect place for established researchers but for budding scientists who are studying what changes a cloud, what makes it snow versus what makes it not snow and what makes more versus less ice in the atmosphere, among other questions.

Storm Peak, Colorado

This year twelve students in the new Science Research Initiative at the College of Science will make the five-hour road trip to Steamboat Springs, then take the chairlift to Storm Peak. Funded by the National Science Foundation and operated under a permit from the U.S. Forest Service, the storied lab has an incredible record of long—term atmospheric measurements, “critical,” according to Hallar, to the success of the site and for the broader understanding we need to improve climate predictions.

Hallar has the advantage of operating out of two locations: Storm Peak where regional air quality through long data records is determined over decades of change, as well as the top floor and roof of the Browning Building at the U’s main Salt Lake campus where she studies urban air quality. One week students and faculty collaborators can be seen using a multifilter showdowband radiometer overlooking the Salt Lake Valley and then the next week literally in the clouds witnessing science in the making. Students “can learn concepts in the classroom and then watch that data appear physically in front of their eyes,” says Hallar. “They can see the concept of photochemistry as it appears, how … the concentration of gases change as the sun comes up.”

As pristine as the air is at Storm Peak, just west of the Continental Divide in the northwest corner of the state, it is also typical of rural areas in the U.S. where coal plant emissions can impact atmospheric composition. Two of those plants are upwind of the facility which makes the measurements Hallar and her team collect even more relevant to other rural locations.

William Anderegg

“What’s amazing about this place is that we have shown over the fifteen plus years that we've run undergraduate programs that it's a place of inspiration.” Students learn how important changes in gases are in terms of public health and climate. “I think it's important for our students to come and see us measuring and calibrating carefully. They can see the care and precision taken to measure greenhouse gases.”

Not all greenhouse gases are human-derived. Wildfires in the West have become a new variable in measuring atmospheric composition, involving forest ecologists like William Anderegg, director of the Wilkes Center for Climate Science and Policy at the U. And there are other measurements being done at Storm Peak that might prove surprising. “We've done studies on how tree emissions change when beetle infestation happens,” says Hallar, which impacts air quality as well.

Storm Peak is just one node in the Global Atmospheric Watch Network, a consortium of labs and observation sites that together address atmospheric composition on all scales, from global and regional to local and urban. Hallar and her team work closely with sites on Mt. Washington and Whiteface, in New Hampshire and New York, respectively, as well Mt. Bachelor in Oregon, among others. Recently, the team submitted a proposal to collaborate with Pico del Este, a field site in Puerto Rico.

It will require collaboration on a global scale to address climate change, and aerosol particle research, says Hallar, “is most definitely the critical measurement that [atmospheric scientists] need to make.” In addition to measuring methane–a critical player because of its warming potential–at Storm Peak, “we can see what we call the Keeling Curve. We can see how carbon dioxide increases every year, but has a seasonal cycle, that is associated with how trees and plants uptake carbon dioxide.

Delivery via snowcat.

Meanwhile, students are preparing for their field trip to Storm Peak in March where the ski resort will not only provide transportation up to the facility via lift but ski passes. A staging facility in west Steamboat Springs houses equipment that includes a snow cat, snowmobiles and other equipment. Up top, bunks are limited to nine, so there is a lot of travel up and down the slopes. But it’s worth it for students to get their collective head in the clouds to work with instrumentation critical to measuring clean air and discovering ramifications more broadly in terms of global warming.

by David Pace, photos by Maria Garcia, Ian McCubbin, and Gannet Hallar.

>> HOME <<

75 Years of ATMOS

75 Years of ATMOS


John Horel

Following World War II, scientifically based understanding of the atmosphere had several drivers. There was the need for government agencies to ensure protection of lives and property; the need to improve agriculture, water resources, aviation and surface transportation; and new opportunities provided by live TV weather forecasts to inform the public. In the ‘70s and ‘80s a second modernization wave led to improved weather models and surface and satellite observations that increased expectations for scientists to have advanced university undergraduate and graduate training. Atmospheric science is a field that continues to develop new technologies, bringing to bear what we know and continue to learn about numerical methods, computer sciences, physics and chemistry, among other disciplines.

Today, the U’s Department of Atmospheric Sciences (ATMOS), formerly the Department of Meteorology, is the leading program of weather and climate-related research, education, and public service in the Intermountain West. With its 75th anniversary this year, we are reminded that this is a story about intrepid pioneers in the field and expansion to embrace studying environmental phenomena on spatial scales from the entire globe to tiny particles and on temporal scales from centuries to microseconds. It’s a story about the men and women who built the buildings, developed the curricula, and conducted research, training, and service relevant to residents in Utah, the nation, and beyond.

James Vern Hales

Thank you for joining us in recalling, experiencing in the moment, and re-committing to the work of the Department of Atmospheric Sciences at the University of Utah.

Past is Prologue
After serving in the U.S. Army Air Corps in the Pacific Theatre during WWII, Vern Hales returned to Utah in 1946 to teach meteorology courses at the U in the physics department. In what must have been very limited spare time, while founding the department at the U, he completed his doctorate at UCLA in 1952 on atmospheric radiative transfer. “My interest became cloud seeding at the nearby airport,” he recalled. “I had many opportunities to experiment with different techniques of clearing the sky for airplanes.”

Hales was not the only one to emerge from the crucible of war to become an atmospheric scientist at the U. One of the department’s longest serving faculty members (1957-1986) was Donald R. Dickson who received his B.S. and M.S. degrees from ATMOS in 1950 and 1953, respectively. Dickson’s service in the Army Air Corps led to injuries in the line of duty for which he received three Bronze Star medals and was recognized for his service in the European African Middle East Theatre.

Don Dickson

Following Hales, Dickson took over the position of chair from 1963 to 1972, a time of exponential growth at the U. By 1950 student enrollment had more than doubled since the end of the War, then more than doubled again by 1970. A new campus was called for by President Ray Olpin who pushed an aggressive initiative through which ninety buildings would be planned, designed and constructed between 1945 and 1975.

The Browning Building
In 1971, during Dickson’s tenure as chair, the U saw the construction and opening of the William Browning Mines and Mineral Industries Building, the new home of ATMOS and much of the College of Mines and Earth Sciences (CMES). Later, the nearby Intermountain Network Scientific Computer Center (INSCC) building also opened and currently accommodates ATMOS offices, classrooms, and a lecture hall.

Before and during the move to the Browning, the connection of ATMOS to UCLA continued when a research scientist at the Los Angeles campus, Shih-Kung Kao, was recruited in 1960. He was department chair from 1973 until his untimely death in 1981. Kao led research on many aspects of atmospheric dynamics, including the transport of fallout from open-air atomic tests, of which the last one occurred in Nevada in 1962. While Kao was Chair, research funding increased substantively, and the graduate program expanded. In addition, the Air Force’s officer training and degree programs, already underway, led to the department’s largest undergraduate enrollments in its history.

Jan and Julia Nogues Paegle

As the program grew, Dr. Hales hired Aylmer H. Thompson. “A. H.” as he was known, who also worked during the late 1950s on a Ph.D. at UCLA. Additional connections between ATMOS and UCLA might suggest a conspiracy of sorts, but the recruitment of Jan and Julia Nogues Paegle who had met at the California campus was all above board. In fact, one of the reasons the Pageles chose the U was because of the University’s accommodation to hire married researchers as couples. Julia recalls how the U was one of the nodes within the first nationwide computer network known as ARPANET that predated the Internet. Now professors emeriti, the Paegles mentored dozens of doctoral and masters degree students. While their contributions are noteworthy across all aspects of research, teaching, and service, they energized the department in new directions with tropical and Southern Hemisphere research that brought many students and visitors from South America.

Kuo-Nan Liou

The arrival of faculty member Kuo-Nan Liou in 1975 accelerated the department’s growth. As an international leader in radiative transfer and cloud process research, he established the largest research group in the department’s history, involving staff, research faculty, postdoctoral researchers, and graduate students. He served as department chair immediately before reversing the flow of faculty exchange from UCLA to Utah by heading to UCLA himself in 1997. Deservedly, Liou received many awards from his peers for his work at the U and at UCLA, including the American Meteorological Society Charney and Rossby Awards, and recognition from the American Geophysical Union, National Academy of Engineering, and Chinese Academy of Sciences.

In 1977, two years following Liou’s arrival, the faculty was joined by Norihiko Fukuta, a world leader in cloud microphysics research with a state-of-the-art cloud chamber on the 8th floor of the Browning. Poor wintertime air quality episodes in northern Utah that are often accompanied by supercooled fog led Fukuta to innovative research in the late 1980s to seed fog layers at the Salt Lake City airport and elsewhere with liquid carbon dioxide droplets.

John (Jack) Geisler

The College helped to expand the department by hiring prominent scientists as chairs in 1986 and 1999. John (Jack) Geisler was pried away from Florida to become ATMOS chair in 1982 and continued in the position until his retirement in 1996. His research and teaching centered on large-scale dynamics in the tropics and global modeling, and his long tenure as chair provided the foundation for the department’s growth in research, teaching, and service pertaining to Utah and around the globe. Staff emerita Leslie Allaire remembers frequent trips Geisler made to Brazil with the Paegles to study the impacts of tropical sea surface temperature variations (El Niño/La Niña) on weather around the globe. There were also Geisler’s tales, she says, of spearing piranha in the Amazon.

Recruited from Texas A&M in 1999, Edward Zipser served as chair until 2005. Zipser has the record for being an academic with the longest involvement (1960-2022) in aircraft field programs. His extensive contributions to the field have been recognized, including being the department’s second recipient of the American Meteorological Society’s Carl-Gustaf Rossby Research Medal.

The first of many faculty brought to the U during Geisler’s fifteen-year tenure as chair was Dale Durran (subsequently followed by John Horel, Steven Krueger, James Steenburgh, and Gerald Mace). Dale’s research on terrain-flow interactions began at the U and continued at the University of Washington after his departure in 1997. Geisler’s era encompassed expanded opportunities relying on federal research funding from NSF, DOE, NOAA, and NASA to improve numerical models and analyze satellite imagery leading to improved understanding of year-to-year variations and long-term trends in the climate system. Coincidentally, the advent of the Weather Channel with its around-the-clock updates of local and distant weather along with weather information at everyone’s fingertips via the internet have helped raise the public’s and prospective students’ awareness of career opportunities in the field.

Graduation 1965 - Don Dickson, Vern Hales, Wilford Zdunkowski, Shih-Kung Kao, Edward (Ward) Hindman

Air Currents
Atmospheric scientists, often found staring at a computer screen, live for the great outdoors. That they spend a good deal of their spare time craning their necks at the sky and taking photos of clouds are indicators of their passion for knowing what’s going up and what’s coming down.

James “Jim” Steenburgh

Currently, the department has research programs that run the gamut of winter weather from snapping photos of individual snowflakes to simulating precipitation in the Himalayas. Sensors onboard light rail cars and electric buses monitor asthma-inducing air quality in the Salt Lake Valley while other equipment tracks dust plumes rising from the shrinking Great Salt Lake. Studies are underway examining clouds over the Arctic and South Atlantic as well as hurricane genesis. Providing real-time data and graphics to government personnel fighting wildfires and improving models that simulate the smoke from those wildfires is increasingly important for the residents of the West, as is the measurement and evaluations of the chemical make-up of polluted air during the state’s notorious winter temperature inversions.

With the Twitter handle, @ProfessorPowder, James “Jim” Steenburgh is a Fulbright Scholar, author and blogger at the whimsically-named Wasatch Weather Weenies. He studies how storms interact with downstream topography to create optimal snow fall and the “Greatest Snow on Earth,” key to Utah’s winter sports economy.

Kevin Perry

West of the Wasatch, Kevin Perry travels across the lakebed of the Great Salt Lake using a specially designed fat tire bicycle pulling a trailer crammed with instruments. He and his colleagues, including research faculty Sebastian Hoch, are currently testing how much wind energy it takes to disturb the playa’s crust of the terminal lake and move the resulting dust which now contains toxins like arsenic into the urbanized Wasatch Front.

To assist the National Weather Service in its mission to protect lives and property, MesoWest team led by current chair John Horel has acquired and distributed over the internet environmental data available publicly from tens of thousands of locations around the nation. Cloud-based software has expanded on the tools available from MesoWest to monitor weather conditions for protection of lives and property from hazardous weather and for widespread commercial applications. The department’s reputation as a premier program in mountain meteorology has now been bolstered as operator of Storm Peak Laboratory located at the top of the Steamboat Springs Ski Area in Colorado. The facility is one of only a handful of high elevation weather research labs in the world and is under the direction of Gannet Hallar who joined the ATMOS faculty in 2016.

Gannet Haller

Our history is not simply about the academic faculty and its leadership. The department currently houses excellent research faculty, instructors, staff, post-doctoral researchers, and hundreds of undergraduate and graduate students. Visit atmos.utah.edu for a more complete listing of faculty, staff and students who have played and continue to play prominent roles in the Department of Atmospheric Sciences.

Whither Weather Now?
The next revolutions affecting weather forecasting will likely involve greater reliance on AI/machine learning tools and probabilistic numerical model guidance. Forecasting the exact high temperature tomorrow will continue to become less important than communicating accurately the risks and uncertainties of hazardous weather and climate variability and trends such as floods, droughts and heat waves.

The 2002 Salt Lake Winter Olympics accelerated mountain weather research in the department. Installing weather sensors at venues, running high-resolution weather forecast models, ATMOS student venue volunteers, and daily weather briefings with the local Olympic Committee were ATMOS’s high-profile activities as scientists partnering with private and federal forecasters to embody the games’ motto to “Light the fire within.”

Whether the capital city will again host the Olympics in 2030 or ‘34 and involve weather support from ATMOS remains uncertain. What is certain is that the department is ready for its next seventy-five years. There’s the newly established Wilkes Center for Climate Science and Policy headed up by atmospheric scientist John Lin and forest ecologist William “Bill” Anderegg. The Center epitomizes the drive towards multidisciplinary science to address seemingly intractable issues surrounding climate change with the onus of providing data-driven deliverables to policy makers.

New Applied Science Building

Finally, in 2025 ATMOS will relocate into facilities on lower campus, part of the Applied Sciences Project. The Department of Physics and Astronomy will also be tenants as will the Wilkes Center alongside teaching labs and classrooms wherein virtually every STEM student at the U will eventually intersect for a course, a practicum or a lecture. Embedded in the new building will be an expansion of the Science Research Initiative (SRI) wherein first-semester science students find themselves in a lab or in the field (or both) to learn by doing.

A catalyst for much of the multidisciplinary approach to fundamental and applied science is the merger of the College of Mines and Earth Sciences, where ATMOS is situated, with the College of Science. Seven departments and one school will now be more closely aligned administratively, pedagogically and in cross-pollinating research, teaching, and service. One of the first examples to have emerged from the new alignment is the establishment of a new major and minor of Earth & Environmental Science: a robust mix of atmospheric science, geology and ecology that will also intersect with virtually every department in the merged College.

What's up out there?
The simple answer to this question is a lot has happened in the department and is continuing to happen today. From dark times following a world war, through new innovations of technology, theory and research, the future will be sunny. As we like to say here: Sky’s the limit.

By David Pace, originally published @ atmos.utah.edu

>> HOME <<

 

Downstream

Downstream


Thorn Merrill

Skiing at Alta.

Great Salt Lake is at the lowest point in its recorded history.

Without the lake, skiers and riders of the Wasatch have little hope of continuing to enjoy the mountains surrounding Salt Lake City.

In Downstream, professional skier and atmospheric scientist Thorn Merrill, explains that the health of Great Salt Lake and the enjoyment of the Greatest Snow on Earth are inexorably linked.

Thorn Merrill is a graduate student in the Department of Atmospheric Sciences at the University of Utah. His research focuses on local air pollution issues, namely dust that impacts Wasatch Front in Utah.

Merrill graduated from Bates College with a B.S. in Geology and a minor in Mathematics. Merrill moved to Salt Lake City in 2020.

To learn more about the issues facing the Great Salt Lake, please visit: https://www.fogsl.org

 

Downstream is a video by Zach Coury, originally published @ YouTube.

>> HOME <<


 

Jessica Haskins

Jessica Haskins


Answering fundamental questions about the chemistry that drives variability in air pollution formation & impacts climate.

There may not be a lot in common with Salt Lake City and Forsyth, GA, population 4,239, but Monroe County’s seat­­–other than being home to the county’s only high school­–does have a small community theater with the same name as one of Salt Lake City’s most notable venues: “The Rose.”

The Rose Theater

In Forsyth, the Rose Theater appears to stage family-friendly shows: “Four Weddings and An Elvis” closes in February. Later, this November 11th, there’s a single-night engagement that looks like an annual outing, “Hometown Gospel Sing.”

The theatre located on Forsyth’s town square is emblematic of the small-town life in which Jessica Haskins grew up before winning a full-ride, need-based scholarship to Massachusetts Institute of Technology (MIT). And her move from rural Georgia to the east coast megalopolis was shocking for reasons other than just the differences in weather and academic rigor. "It was a punch in the face” says Haskins, “coming to MIT, and realizing that the experience of most Black Americans outside the southeast, particularly in STEM fields, is one where they often find themselves the only non-white person in the room.”

In fact, Haskins' time at Mary Persons High School was much more diverse than MIT, ranked at the time by the Princeton Review as the toughest school to get into. “None of the places I have worked at in the last 13 years since I graduated high school have come close to mirroring the racial and socioeconomic diversity I grew up thinking was the norm in all of America,” she says. “As such, it’s never been difficult for me to see the power of privilege and the persistence of systemic racism at every stage of the STEM pipeline as I progressed through it.”

Mary Persons High School

Now an assistant professor in the Department of Atmospheric Sciences at the University of Utah, Haskins is savvier about her own seemingly unlikely journey into higher education. More importantly, perhaps, she’s keenly aware of the challenges “first-gen” college students and other underrepresented populations still face, having to navigate hurdles referred to as the “hidden curriculum” of academia. The term refers to things a neophyte in the academic world should know to maximize their experience and success but doesn’t­. These are things that more privileged students tacitly understand or have been made aware of, like the norm of emailing potential professors to work with in graduate school before they submit their graduate applications or cluing into the notion that graduate students in STEM fields are often actually paid to go to school and do so without accruing debt from tuition.

Paying it Forward
Haskins’ unique perspective of these issues inspired her to use her second government stimulus check during the pandemic to fund a modest scholarship for an underrepresented minority student interested in pursuing an undergraduate STEM degree from her high school. This year, the scholarship went to Maleisha Jackson who is studying computer and robotics engineering at Kennesaw State University, located in north Georgia. “I think people really underestimate the impact that even receiving a 1,000 dollars can do for a student who needs it. I don’t know how I would have afforded a laptop and school supplies for my first year at MIT if I hadn’t received local scholarships like this one, and I want to pay that forward,” Haskins says.

Professor Susan Solomon

Fortunately, MIT treated Haskins well, brokering an “externship” with NASA‘s Goddard Space Flight Center and providing an opportunity to work with Professor Susan Solomon, a 2007 Nobel Peace Prize co-recipient and a National Medal of Science winner awarded by the President. Solomon is best known for being the first to propose the chemical mechanism that is the cause of the Antarctic ozone hole. In the Solomon lab, the budding atmospheric scientist used MLS satellite data & balloon observations to explain fundamental chemical and meteorological differences that prohibit Arctic ozone loss from becoming as severe as Antarctic ozone loss, ultimately resulting in the publication of Haskins’ undergraduate research in the high impact journal, PNAS.

But even with the scholarship to MIT, Haskins required four years of Federal Pell grants and multiple campus jobs to make ends meet and says that even covering graduate application fees was difficult for her. When she was accepted to the University of Washington for graduate school, she was lucky enough to receive an ARCS Foundation fellowship she used to get herself cross-country to Seattle.

Compelling Challenges
Furnished with a PhD, she returned to MIT for a short stint as an NSF Postdoctoral Fellow  before being hired by the U. Needless to say, it wasn’t for the theater that she and her wife moved to Utah’s capital city, but rather the unique (and to her, compelling) challenges facing the state, particularly the winter PM2.5 and summer ozone air quality issues impacting the Wasatch Front, especially during periodic weather “inversions” that trap emissions along the metropolitan valley. An expert in the chemistry of how chloride present in salt impacts air quality, particularly in the winter, Haskins noted, “there is no place in the United States that my research on air quality is more relevant to science and policy than it is in Salt Lake City."

Jessica Haskins

Haskins’ research group at the U is focused on understanding and accurately modeling heterogeneous and multiphase chemistry that transforms natural and anthropogenic (human-derived) gas phase emissions into aerosol particles. These particles make up a key component of smog known as particulate matter (PM2.5). It turns out that, globally, exposure to PM2.5 is the fifth greatest risk factor for death, ranking only behind tobacco use and several other factors related to obesity. But in addition to their impact on human health, these aerosols formed through chemical reactions in the atmosphere also have direct impacts on climate and the Earth’s temperature by reflecting and absorbing light.

Today, more episodes of unhealthy air quality in the U.S., including in Salt Lake City, are experienced in the winter rather than summer, pointing to a shift in the chemistry responsible for formation of secondary pollutants like PM2.5, and ozone. This chemical regime shift has the unintended consequence of rendering past policy solutions to summer air quality issues largely ineffective in the winter. The ineffectiveness left scientists and policy makers with questions about how well they understand the underlying chemistry and what the most effective means are to mitigate such issues now and in a changing world.  Haskins’ past and future research focuses on understanding this type of chemical shift through the lens of atmospheric chemistry with an eye towards understanding how future policy and climate solutions will impact the Earth’s temperature and air pollution formation.

Global Implications
The relevance of such research is not restricted to the intermountain west but has global implications. Large-population countries, like India and China, may have fewer interventions to maintain quality air such as EPA-recommended “scrubbers” on power plants, less stringent policies around automobile emissions and higher rates of open-air waste incineration. “I think what’s most exciting about the prospect of being here at the U,” says Haskins, “is the fact that what we learn about the drivers of variability in air pollution formation and how to control them here in Utah have a global relevance that can help inform policy makers in the East on the fastest and most effective ways to clean up their air quality.”

Haskins' interdisciplinary research sits at the intersection of atmospheric science and chemistry and strives to deepen our understanding of the complex cascade of reactions between our emissions and atmospheric oxidants. Those oxidants control how long gases like methane stay in the atmosphere. It’s a gumbo of considerations that turns, for Haskins, on her understanding of concentrations of common atmospheric oxidants like OH, O3, NO3, and Cl radicals that are dependent on everything from atmospheric water vapor concentrations, exposure to sunlight, temperature, aerosol surface area, emissions of gases like NOx from combustion, etc. She notes that “these processes are challenging to measure and therefore challenging to represent in models, and much remains to be discovered!”

Perhaps unique to her approach is the determination to centralize, assimilate and “exploit” the data already collected from satellites, observation networks, aircraft campaigns, government records and relevant available datasets to improve models. “One of the largest looming challenges our field faces now and, in the future, will be connecting an ever-growing dataset of highly localized measurements to scientifically accurate, but computationally efficient representations in predictive global models,” Haskins has written.

A Lot of Data
All of those data sets along with new ones yet to be collected are key to improving the accuracy and speed of global models of atmospheric composition. “Drawing on my experience in both the measurement and modeling community, my research program will serve to bridge this already significant but growing gap between the data we have and the data we use to inform predictive models and decision makers. Basically, we have a lot of data, and I want to use it,” Haskins says.

The upcoming projects in her group include re-analyzing old measurements to extract new constraints for models, new applications of machine learning and artificial intelligence to atmospheric chemistry problems and integrating data from product databases, patent applications, and other public records. “We’re still catching up with being able to efficiently use data from a variety of sources beyond just measurements made by those of us in academia–especially when you consider how rapidly new computation methods like machine learning have evolved,” she states.  The application of artificial intelligence methods has only just begun to be applied to atmospheric chemistry problems, she explains, “but could greatly improve the speed and accuracy of our models.”

It's an exciting time to be an atmospheric scientist rooted in chemistry, and Jessica Haskins is looking forward to better understanding and communicating the relevant chemical drivers of variability in air pollution formation. But here in the high desert climate that has precious little in common with her Georgian home–except for that community theater thing–she is enthusiastic about building a diverse and collaborative research group in the Department of Atmospheric Sciences at the U and looks forward to preparing others for an auspicious career in science.

by David Pace

Luke Reuschel

Luke Reuschel


Luke Reuschel

Learning at Mach 1.8.

Waiting for the signal to take off was adrenaline-inducing; the anticipation of the flight ahead was exciting all by itself. But nothing compares to when the pilot puts the jet into full throttle and you’re slammed to the back of your seat as the pilot shoots the jet out of the gate. It’s something I’ll never forget.

This flight was the culmination of my experiential learning component for my major in the Department of Atmospheric Sciences (ATMOS), where I decided to do a career-focused internship at Naval Air Station Lemoore, in California. It took a week of intensive training to prepare my fellow midshipmen and I to ride “rear-seat” in an F/A-18F Super Hornet.

Getting Ready to Fly
Before we could get a chance to fly, however, we had to do safety training, specifically designed for the type of jet we were going to be in. The first thing we learned was the configuration of the backseat, such as the ejection seat which has seven individual straps to keep you firmly secured to the seat in case you eject from the jet. Simply riding in the Super Hornet has hazards, such as G-LOC, which stands for “G-Force Induced Loss of Consciousness.” As the name suggests, this causes passengers to lose consciousness due to the force of gravity outweighing your body’s ability to pump blood to the brain. We learned the Anti-G Straining Maneuver (AGSM) to combat this.

Ejection Seat Training

We then had to learn post-ejection safety and maneuvering techniques, such as how to untangle our parachutes and how to inflate our life vest in the event of an ejection over water. Lastly, we had to be medically cleared for flight activity. Now, we were ready to fly.

Flying With The Squadron
I was assigned to the Strike Fighter Squadron 122, the primary training squadron on base. The two-seat squadrons are designed to instruct Naval Flight Officers whose primary job is to ride full-time in the backseat of a two-seat plane, like Goose in the movie Top Gun. Because instructors would sometimes fly solo, the other Midshipmen and I had the opportunity to hop in the back. I was lucky and managed to get multiple flights in the F-18 jet, my first occurring only three days after I completed my initial training.

After takeoff, the jets do a “G-warmup,” where you pull seven G’s for a few seconds in order to familiarize your body to the rigors of naval aviation. Once the pilots have finished their training for the day, they are allowed to show off their flying skills. The pilots call this “raging,” and during this time we did some barrel rolls, quick turns, and low-level flying.

SAR Training

The Naval Search and Rescue Team
After my F-18 flights, I was able to do additional training with the Naval Search and Rescue team, SAR for short. I did two helicopter rides with them. During the first ride, I was assigned to be the “victim” of a car accident, where I was deposited into a hard-to-reach ravine for the SAR team to pull me out of. I was hoisted out of the ravine by helicopter, and to speed up the evacuation process, the helicopter began to travel forward before I was fully secured in the cabin. This meant I was flying through a valley, dangling from a helicopter, at high speed.

The second helicopter ride was much less thrilling. We flew to another base in Salinas, California. The Search and Rescue team were required to be stationed there while the F-18s were doing training events over the ocean, because the Salinas base is closer to the ocean and allows for a faster response time in the case of an accident. Once the F-18 training was over, we were allowed to return to the Lemoore base.

Cleared for Flight

Flight Simulator and METOC
The naval aviators in training use a flight simulator several times a week because they need the practice, but don’t get to fly actual jets every day. I was allowed to go into the flight simulator and experience what it was like to not just ride in the F-18, but to pilot it as well.

Ultimately, while the life of a fighter pilot or flight officer is very enticing, I am still comfortable with my decision to be a Meteorologist and Oceanographer (METOC) for the Navy. I’m commissioning as an officer this spring, and my time at Naval Air Station Lemoore has helped me grow more confident in my decision to join the navy, and the career path I have in front of me.

Editor’s note: The Experiential Learning component is required for all ATMOS majors. You can help fund thrilling and educational experiences like Luke Reuschel’s by making a donation to ATMOS undergraduate education.

by Luke Reuschel, first published @ atmos.utah.edu.

>> HOME <<

Groundbreaking

Applied Science Groundbreaking


Dean Peter Trapa

On Friday, Feb. 10, the University of Utah held a groundbreaking ceremony for the Applied Sciences Project, a $93.5 million endeavor that includes renovation of the historic William Stewart Building and a new 100,000-square-foot building with modern teaching labs and state-of-the-art research facilities. The completed spaces will house world-class scientists addressing the country’s most urgent issues, including energy, air quality, climate change and water management, and provide additional classrooms and experiential learning opportunities for crucial undergraduate STEM courses.

“Utah is growing, and we need to expand,” said U President Taylor Randall to the crowd at the Applied Sciences Project ceremony. “This project will help us increase capacity to educate new generations of STEM leaders and provide the expertise to sustain Utah’s STEM economy to keep Utah vital.”

Gary Crocker

The Wilkes Center for Climate Science & Policy and the Departments of Physics & Astronomy and Atmospheric Sciences will relocate to the new building upon its completion in late 2024. The researchers will use the facilities for a range of activities, such as forecasting hazardous weather, predicting the Wasatch Front’s winter particulates and summer ozone, developing new advances in semiconductors and quantum materials and managing the Willard Eccles Observatory telescope at Frisco Peak. The partnership between these departments is a component of the merger between the College of Science and the College of Mines and Earth Sciences, announced last year.

“In the end, when all is said and done, the core objective of philanthropy has always been the impact that a gift might have on individual lives. Ann and I know very personally that the College of Science is the pivotal portal in this state through which students wishing to enter the sciences and science-based profession must pass,” said Gary Crocker. “Ann and I have seen this virtuous cycle. Science leading to commercial innovation, leading to better jobs and better communities.”

President Taylor Randall

The project will boost the capacity for crucial undergraduate courses, allowing departments to address record STEM enrollment. Classes taught in the buildings are necessary for 37 different STEM degree programs and nine pre-professional programs, including all engineering, pre-medical and computer science majors. Along with access to modern experiential teaching spaces, students will avoid bottlenecks in high-demand courses, helping reduce graduation time.

“The collaborative and interdisciplinary nature of this project will bring together faculty and students who will work together to address the grand challenges of our day and make great advances in fundamental research,” said Peter Trapa, dean of the College of Science.

The Utah State Legislature approved the project in 2020 and the state appropriated $64.8 million in funding for the project. Both the university and the legislature consider the project a high priority because it supports the state’s STEM economy.

Dean Darryl Butt

“The Applied Sciences Building will be a home base, a catalyst for learning and innovation in the 21st century, and will touch thousands of lives,” said Darryl Butt, dean of the College of Mines and Earth Sciences.

When completed, the Crocker Science Center and the two buildings in the Applied Science Project will form the Crocker Science Complex. The complex, made possible by an $8.5 million gift from Gary and Ann Crocker, will form a dynamic interdisciplinary STEM hub on the east side of the U campus.

Visit our Applied Science Project pages for more information.

Visit our UGIVE page to make a donation in support of the Applied Science Project.

Renderings


 

>> Home <<

 

Saving Great Salt Lake

Saving Great Salt Lake


William Anderegg

The Great Salt Lake can be saved. This is how we do it.

Decisions to bring more water to the Great Salt Lake need to be based on the best available science and data. That’s why last fall, at the request of our university presidents and Utah’s policymakers, we launched a new kind of partnership called the Great Salt Lake Strike Team.

This team is a joint effort between Utah’s research universities — the University of Utah and Utah State University — and state agencies. Our goal is to provide data and answers to key questions needed for saving the Great Salt Lake. The effort aims to be impartial, data-driven and rapid.

On Feb. 8, we’re sharing our key findings in a policy assessment report. We’re focused on answering crucial questions. How did we get here? What are our options going forward?

Our report’s key findings are both stark and hopeful. The lake is currently sliding toward catastrophe. While a long-term drought and climate warming are exacerbating the stress, human water use is the largest driver of low lake levels. Fortunately, we have many policy levers that can help return the lake to healthy levels.

Brian Steed

The report provides a policy assessment and “scorecards” for some of the most-discussed options for bringing more water to the lake. We’ve synthesized the benefits, costs and trade-offs of these options. Also important, our report provides science-based scenarios for refilling the lake to certain target levels and the additional water required for each scenario.

While we do not advocate for any specific policies, we have four concrete recommendations that will help clarify and guide efforts to save the lake:

First, the state should set a target lake level range, based on the matrix developed by the Utah Division of Forestry, Fire, and State Lands and a timeline to reach that lake level. Once a target and timeline have been set, annual evaluations of progress and recalibrations will be important.

Second, wet years will be crucial to helping refill the lake. Wet years — like 2023 is turning out to be — are the time to increase conservation and ensure that conserved water makes it to the lake.

Finally, further in-depth policy analyses can guide specific actions. Research on existing and potential policies, building on expertise around the state and our strike team, will be important for informing data-driven decisions in the next few years.

This “strike team” partnership has been incredibly productive. It represents the land-grant and flagship universities working together, collaborating with state agencies, to serve our great state. It leverages our complementary strengths in water modeling, water policy, climate, hydrology and air quality.

We firmly believe the Great Salt Lake can be saved. Refilling the lake to levels that ensure Utahns’ health and prosperity will require state leadership, research university technical expertise, and individual and collective action.

The next several years are a crucial window to turn the tide, though success requires us to remember that this is a marathon and not just a sprint. As a state, we have the know-how, science, innovation, problem-solving spirit and leadership to rise to the challenge.

William Anderegg is the director of the Wilkes Center for Climate Science and Policy and an associate professor of biology at the University of Utah. His research focuses on water resources, drought, climate change and forests.

Brian Steed is the executive director of the Janet Quinney Lawson Institute for Land, Water, and Air at Utah State University. He’s previously overseen the Utah Department of Natural Resources and the U.S. Bureau of Land Management.

 

By Brian Steed and William Anderegg, originally published @DeseretNews.

 

>> HOME <<


 

Magnesium Pollution?

Magnesium Pollution?


Salt Lake City, Utah

Research helps explain Salt Lake City's persistent air quality problems.

The 2.4 million people who live along Utah’s Wasatch Front experience some of the most severe winter particulate matter air pollution in the nation. Now, analysis of measurements taken during National Oceanic and Atmospheric Administration (NOAA) research flights in 2017 indicates that emissions from a single source, a magnesium refinery, may be responsible for a significant fraction of the fine particles that form  the dense winter brown clouds that hang over Salt Lake City.

The finding was published this week in the journal Environmental Science and Technology.

Lead author Carrie Womack, a scientist with the Cooperative Institute for Research in Environmental Sciences at the University of Colorado Boulder working at NOAA, said analysis of airborne measurements directly from the plume rising from the US Magnesium refinery during a 2017 winter air pollution study in Utah found that emissions of chlorine and bromine, known as halogenated compounds, were significant contributors to the persistent winter brown clouds.

Carrie Womack

“I was struck by the complexity of chemical reactions in the atmosphere,” said U professor John Lin, of the Department of Atmospheric Sciences and a co-author of the study. “Changes in the chemical ingredients of the atmosphere could lead to unexpected outcomes through inter-linked chemical pathways.”

US Magnesium, the largest magnesium producer in North America, extracts the metal from the brine of the Great Salt Lake, at a plant upwind of Salt Lake City.

Particulate matter contains microscopic solids or liquid droplets that are so small that they can be inhaled and cause serious health problems. Particles less than 2.5 microns in diameter, also known as fine particles or PM2.5, pose the greatest risk to health, affecting both lungs and your heart.

“Understanding what causes this PM2.5 formation is the first step in reducing it,” Womack said. “One aspect of our study was characterizing known point sources in the area.”

John Lin

The Utah Division of Air Quality requires reporting of particulate precursors, such as chlorine and nitrogen oxide emissions, which are then shared with the US Environmental Protection Agency. However, NOAA’s measurements also identified significant emissions of bromine, a reactive chemical that is not required to be reported. Modeling demonstrated that the chlorine and bromine emitted by the refinery were responsible for 10 – 25% of regional PM2.5 during winter pollution episodes.

“Our measurements of chlorine and nitrogen oxides agree with what the facility reports to regulators,” Womack said. “But what we found suggests that bromine industrial emissions may deserve a closer look.”

Pollution control regulations and cleaner technologies adopted since the 1970s have steadily improved air quality in the US. Yet some valleys in the Intermountain West still experience high levels of PM2.5 during winter. In Utah’s urban Salt Lake Valley, wintertime levels of PM2.5 exceed national air quality standards an average of 18 days per year. The majority of exceedances occur in December, January and early February during a period when strong, multi-day inversions known as persistent cold air pools develop that trap pollution close to the surface.

These exceedances have been specifically associated with adverse health effects in the region, including a 42% higher rate of emergency room visits for asthma during the latter stages of air pollution events from 2003-2008, according to one study.

Prior to the NOAA study, the chemical composition of PM2.5 in northern Utah, and how it forms, had received considerably less attention than in other regions of the nation despite the severity of the problem in Utah.

“We could see during our research flights in 2017 that the air around the plant was unlike anything we had sampled previously due to the high chlorine emissions,” said NOAA scientist Steven Brown, who led the field campaign. “We were surprised that it had such a large effect on winter PM2.5 across the entire region.”

“Close to the plant, we didn’t even need to check the instruments to know we were flying through the plume,” Womack added. “We could smell it. It smelled like bleach!”

The dominant contributor to regional particulate matter is ammonium nitrate, which is responsible for up to 70% of fine particulate mass during inversion periods and 40% outside of inversions. Ammonium nitrate is a secondary pollutant formed by reactions between ammonia, nitrogen oxides (NOx), and volatile organic compounds (VOCs). The NOAA model demonstrated that halogen emissions from US Magnesium speed up the conversion of NOx and VOCs to ammonium nitrate particulate matter.

Researchers have shared their findings with Utah officials, who had sought NOAA’s help in understanding their poor winter air quality. A previous paper by Womack in 2019 documented other sources of winter smog.

The Utah Department of Environmental Quality is currently conducting a study to identify sources of ammonia.

While the new paper is based on measurements taken in 2017, Womack said emissions of chlorine, which accompany the unreported emissions of bromine, have not shown any sign of significant decline in the last five years.

Researchers from the University of Utah, the University of Toronto, the University of Washington, and the U.S. EPA also participated in the study.

Find the full study here.

By Theo Stein, originally published @theU.