Tino Nyawelo

Finding Refuge in Education

 

by Lisa Potter

On a balmy morning in May, 10 newly graduated high schoolers and their families filed into the Sorenson Arts & Education Complex on the University of Utah campus, greeting one another with excited chatter. The parents beamed with pride—many of their sons and daughters were the first in the family to attend college. Tino Nyawelo, assistant professor in the Department of Physics & Astronomy, smiled at the crowd, thinking of his own journey to the university against overwhelming odds. He cleared his throat and quickly won over the room.

Nyawelo was addressing the 2018 cohort of the Refugees Exploring the Foundations of Undergraduate Education In Science (REFUGES) Bridge Program. Based in the Center for Science and Math Education (CSME) at the U, the program aims to encourage underrepresented students to pursue science, technology, engineering, and math (STEM) education at the university level. The seven-week bridge gives freshmen the opportunity to earn credits toward their degree and provides the funding for their tuition, meals, and housing.

Many of the undergraduates are recruited from the REFUGES Afterschool Program, which has provided tutoring, STEM workshops, and college prep and financial aid classes to more than 200 underrepresented students in Salt Lake City. Nyawelo and community partners founded REFUGES to address the challenges faced by refugee youth, minorities, women, and economically disadvantaged students in Utah schools.

Nyawelo, whose family fled violence at the outbreak of the Sudanese civil war, drew on his own experiences to help build REFUGES from the ground up. He fell in love with physics as a high school student in South Sudan, then left the unrest in his country to pursue graduate studies in Europe. When Nyawelo joined the U faculty, he wanted to pay it forward.

Tino Nyawelo

“I see myself in those kids who are brought here as refugees, maybe haven’t had schooling in the camps, and have no English. It’s such a big transition,” explains Nyawelo, director of REFUGES and of diversity & recruitment for CSME. “I’m so passionate about this because I got a lot of help with my education along the way. Mentors and outreach programs in Sudan linked me to my PhD and post-doc studies, and I didn’t pay a penny for my education. Now, I want to give back.”

Bridging the Gap

During the summer bridge program, the students live in the dorms, go on excursions, and tour research labs together to build a strong sense of community. Through the Department of Mathematics and the U’s LEAP learning community, they take two courses that count toward general education credits. During the academic year, bridge students continue LEAP and engage in internship and research experiences. The small class sizes and supportive instructors and administrators help ease the transition.

“A freshman in college has so many things to keep track of, from general education requirements to registration deadlines, financial aid, etc. It can be pretty overwhelming,” says Allyson Rocks, academic coordinator for CSME, who runs logistics for the summer bridge. “The bridge program is a good way to get used to college life instead of getting it all dumped in one semester.”

Both the REFUGES summer bridge and after-school programs have been part of the CSME since 2013. The partnership was a perfect fit; one of the center’s core missions is to increase access to U STEM programming, says Jordan Gerton, director of the CSME. Yet REFUGES is unique in that it sets nontraditional students up for success as undergraduates long before they begin college applications.

“When students aren’t getting a lot of support at home—their family is working, doesn’t know English very well, doesn’t know the school system—they’re much more likely to fall behind, even if they have talent and determination,” says Gerton. “We can’t change the school system, so REFUGES went outside of school to provide that support to keep them moving forward.”

The summer bridge is funded by the Barbara L. Tanner Second Charitable Support Trust, and the CSME and the College of Science support the salaries of the REFUGES staff. The program’s tutors are mainly paid by grants, including from the Department of Workforce Services and the Sudanese Community in Utah. They also receive contributions from individual donors.

Being part of the U helps the students access an amazing team of undergraduate tutors, many of whom went through the REFUGES program themselves. “We hire those students because they look like the REFUGES students. In my experience, I was always unique in my field of theoretical physics. Most of the time, I was the only black person. That’s hard,” says Nyawelo. “Seeing someone who looks like them gives them confidence. They say, ‘If you made it to the U, and you came, like us, as a refugee, then we can make it, too.’ ”

The After-School Program

Like many bridge participants, Jolly Karungi, a member of the 2017 bridge cohort, has had REFUGES in her life for years. Karungi began the after-school program in 2015, a year after moving to Utah following time in a refugee camp in Uganda. Originally from the Democratic Republic of Congo, Karungi, her aunt, and her siblings lived in the camp for three years, then moved to Kampala, Uganda, for another three years before being resettled in Utah.

“When I came here, I didn’t speak any English. I didn’t understand what was going on,” she explains. “I had to catch up. This program helped me a lot.”

The after-school program provides homework tutoring three times per week and includes hands-on STEM workshops for grades 7 through 12. High schoolers take ACT prep courses and financial aid workshops. The program has become a family affair; Karungi’s three younger siblings are participating, and their older brother, Fiston Mwesige, couldn’t be prouder. “They have been through many, many things in the refugee camps. So, when they came here to a completely different system, they needed some guidance to find their way,” says Mwesige. “Now, they spend most of their time thinking about the future, what they can do, how they can help the community, and how they can make the world a better place.”

The years of hard work have already paid off—Karungi recently received a full-ride scholarship to the U from the Alumni Association, and she loved living on campus with her friends over the summer. REFUGES offers more than purely academic support. “People are not just helping you with math and science problems, they’re also helping you with your personal problems,” says Karungi, who is beginning her sophomore year this fall. “It’s the best thing about it. They really care about everyone.”

The REFUGES Afterschool Program helps nontraditional students at two locations: the U campus and the Salt Lake Center for Science Education. This year, all 10 REFUGES high school seniors from the U site were admitted to the U, and seven were offered full-ride scholarships to the U or Westminster College. In all, the group was also offered more than $98,000 in FAFSA scholarships. From the Salt Lake Center for Science Education, 17 seniors were accepted to the U, and the 25 students who completed FAFSA received more than $200,000 in scholarships.

Building Refuges

In 2016, more than 65 million people were forced to flee their homes worldwide, according to the United Nations Refugee Agency. Of those, nearly 22 million were considered refugees. Approximately 60,000 refugees live in Utah, the vast majority of whom live in Salt Lake County, according to the U’s Kem C. Gardner Policy Institute.

To Nyawelo, the numbers are more than just statistics—many of his friends have resettled in Utah, as well as his wife and her family. While pursing graduate studies in Europe, he flew to Salt Lake City frequently, moving officially in 2007 to join the U faculty.

“I knew a lot of refugees in Utah. Some of them were my classmates in South Sudan. I was lucky—I got a scholarship, I went to university. Some of them decided to leave because of a lot of unrest, and they ended up here in Utah. I felt like I was home,” says Nyawelo.

In 2009, he and other members of the refugee community began noticing high rates of school dropouts. After visiting homes, hosting town hall meetings, and organizing a youth summit, a pattern emerged; many refugee youth come to Utah after being in camps for years with little English and intermittent formal schooling. When they arrive here, the school system places them in a grade based on their age, leaving many feeling left behind.

The partners came up with the REFUGES program to help. After winning a grant from the Refugee Services Office, the program expanded to help other communities experiencing similar problems, such as immigrant populations and economically disadvantaged students. There is nothing comparable to REFUGES, explains Gerton, because both Nyawelo and the Utah refugee community are one of a kind.

“This would not be at all possible without Tino…. He built this with his partners from scratch,” says Gerton. “He comes from one of the key refugee communities on Earth, South Sudan. He also happens to be a scientist who also happens to really want to help the community.”

—Lisa Potter is a science writer for University Marketing & Communications.

Engaging STEM Students

ENGAGING STEM STUDENTS


How can we meaningfully engage students in STEM courses? How can we make Science, Technology, Engineering and Mathematics fields (STEM) more inclusive and accessible?

Claudia De Grandi

The retention rate in STEM fields is low—many students who initially plan to pursue a degree in STEM drop out because they don’t identify with the environment they’re exposed to and they don’t enjoy their STEM courses. How can we keep students excited and interested in staying in STEM?

Claudia De Grandi, assistant professor (lecturer) of educational practice in the Physics and Astronomy Department, spends most of her time thinking about how to make her courses more inclusive and how to encourage every student, independently of their background, abilities and identities, to participate and engage in STEM fields successfully.

“I love teaching because of its challenges,” said De Grandi. “Something that worked well in one place may not work in another setting. It’s the role of the teacher to listen to the students and adapt to be in tune with them. My goals are to be equitable and inclusive, although I don’t always achieve it.

Unfortunately, we’re all biased, and it’s our responsibility to keep trying to understand how it feels to be someone else.” De Grandi tries her best to consider the hurdles and inequities each student has to overcome to succeed in school. She has taught at Yale University, Housatonic Community College (Bridgeport, Conn.), and now at the U.

Her teaching style relies on the adoption of evidence-based teaching practices and is informed by the latest results from Physics Education Research (PER). PER is the field of physics that aims to understand and assess how students learn and make sense of physics concepts and identify successful teaching practices and instructional approaches.

In support of previous PER research, De Grandi has found that using active learning techniques and providing opportunities to promote group work are key to student success. “I started implementing group quizzes a few years ago—now I also do group exams. I prompt student reflections (on exam mistakes, performance, and preparation) and on their mindset (growth or fixed),” said De Grandi. “I do like to surprise my students by asking them to talk about something not related to physics. Learning is not just about content—I work to make sure my students are comfortable sitting in class so they can focus on learning.”

Here is what one student said about De Grandi’s teaching: “Claudia is amazing, and she’s one of the main reasons I enjoy coming to class. Her drawings are cute, and her examples are always fun and silly. She includes everyone and really knows how to make a class fun. I was worried I’d hate physics but she definitely made me love it. “

De Grandi grew up in Milan, Italy, where she received her bachelor’s and master’s degrees in physics from the University of Milan. In 2011, she obtained a Ph.D. in theoretical condensed matter physics from Boston University.

She was at Yale University first as a research postdoc and continued as a teaching postdoc through the Yale Center for Teaching and Learning. She joined the U in July 2018 as an assistant professor (lecturer) in the Department of Physics & Astronomy. De Grandi has been actively involved in faculty training on teaching for the past five years and has served as a facilitator and leader for the Summer Institutes on Scientific Teaching (https://www.summerinstitutes.org/) at several U.S. campuses as well as at University College London. She is currently collaborating with the U’s Center for Science and Mathematics Education to bring a Summer Institute to the U next spring. Interested faculty from the College of Science will be invited to participate.

At the U, De Grandi has redesigned and led the Teaching Assistant (TA) Orientation for Physics and Astronomy graduate students. The training focuses on preparing incoming graduate students to teach by promoting group work, being aware of student diversity, and fostering a welcoming environment.

“This spring I’ll be teaching a new course called “Being Human in STEM,” said De Grandi. “Although I’ve taught this course before at Yale, this will be my first time teaching it here, along with a team of colleagues in math, chemistry, and astronomy.”

The course combines academic inquiry and community engagement to investigate diversity and climate within STEM. Students will examine how diverse personal backgrounds shape the STEM experience both at the U and nationally. “The goal is to start a dialogue among STEM faculty and students to identify issues with the STEM environment and develop interventions to help ameliorate these problems,” said De Grandi. “I look forward to teaching the course, and learning, from and with the students.”

 - by Michele Swaner
  First Published in Discover Magazine, Fall 2019

Peter Gibbs

Peter Gibbs: 1924-2019

It is with great sadness that the College of Science announces the passing of Peter Godbe Gibbs. Peter was born Dec 7, 1924 in Salt Lake City, Utah to Lauren Worthen Gibbs and Mary Godbe Gibbs. Peter had three brothers, Edwin, David and William, and one sister, Mary Adele. Peter passed away on July 13, 2019.

In 1953 he married Miriam Starling Kvetensky in Urbana, Illinois. They had 3 children (Doon/Teri (spouse), Victoria and Nicholas/Courtney (spouse)), 5 grandchildren (Colin/Kaitlyn (spouse), Connor/Ale (spouse), Julia, Theo and Alex) and 3 great grandchildren, so far (Nico, Santi and Isla). They remained married until Miriam's death and enjoyed 58 years together.

He is survived by his younger brother, William, and all of his children, grandchildren and great grandchildren.

Perhaps his best-known accomplishment as Chair was creating the Frontiers of Science Lecture Series in 1968, attracting world-renowned scientists across all fields of science to give popular lectures that anyone could understand. In the early days, he attracted well-known scientists, many his friends, by inviting them to ski with us on the weekends, including elaborate dinners at home. Later, as the Frontiers of Science became well-known, the ski weekends were no longer necessary to attract famous speakers. Extremely well-attended, and imitated around the country, these lectures are now an established University Utah Lecture Series.

History


A Lecture Series Spanning Five Decades

The Frontiers of Science lecture series was established in 1967 by University of Utah alumnus and Physics Professor Peter Gibbs. Gibbs and his fellow physics faculty at the U sought to bring notable researchers from around the country to the University to discuss the current “frontiers” in physics research. The larger goal was to present public lectures that would attract attention to important developments in scientific research.

By 1970, the University had hosted 10 Nobel laureates for public Frontiers lectures. By 1993, when Gibbs retired, the Frontiers organizers had hosted another 20 laureates. Today, Frontiers of Science is the longest continuously-running lecture series at the University of Utah.

The first Frontiers event was presented by Peter Gibbs himself, who discussed “Einstein the Sociologist,” on April 1, 1967. Physics Professors David C. Evans, Grant R. Fowles and Jack W. Keuffel presented the remaining three lectures that year. In the meantime, the group worked on scheduling outstanding speakers for the following year.

Gibbs and colleagues made good on their promise to bring exceptional scientists to campus. During the 1968-69 academic year, eight lectures were held, including ones by C.N. Yang from the University of New York at Stony Brook (“Symmetry Principles in Physics”) and Murray Gell-Mann from the California Institute of Technology (“Elementary Particles”). Nobel laureates gave three of the eight presentations that academic year, and during 1969 as a whole, six of thirteen lectures were given by Nobel laureates. Topics included astronomy, mathematics, anthropology, politics and social issues.

Gibbs and the early FOS organizers were extremely adept at recruiting famous and soon-to-be-famous scientists. They also were keenly aware of the state of scientific research and the social climate of the time. President Nixon was in office, the Vietnam War was escalating and student protests were common on university campuses including the U of U. The United States had just put a man on the moon. Personal computers did not exist.

Through the 1970s as many as ten lectures were presented each academic year, but by 1980 the pace had slowed to a more manageable five or six per year. The FOS series had become immensely popular and the topics were broadened to include biology, chemistry, mathematics and the earth sciences.

In the early 1980s, FOS audiences were treated to firsthand accounts of the discovery of the structure of DNA by James D. Watson (“The Double Helix and Destiny,” 1981) and Francis H.C. Crick (“The Two DNA Revolutions,” 1984), the achievement for which they had received a Nobel Prize in 1962.

Many FOS speakers were not so famous or honored when they spoke here, but became so later in their career. For example, F. Sherwood Rowland spoke on “Man’s Threat to Stratospheric Ozone” in the 1978 academic year, and was a co-recipient of the 1995 Nobel Prize in Chemistry for his pioneering studies on the destruction of ozone by chlorofluro- carbons which was his topic in 1978!

From 1994 to 1997, the Frontiers of Science series was complemented by the Davern/Gardner Laureateship. Dean T. Benny Rushing, Biology Professor K. Gordon Lark, and Emeritus Professor Boyer Jarvis wished to honor the memory of two former College of Science faculty members who made extraordinary administrative contributions to the University of Utah: Cedric “Ric” Davern and Pete D. Gardner.

Rushing, Lark and Jarvis secured a generous grant from the George S. and Dolores Doré Eccles Foundation to fund the Davern/Gardner Laureateship. The Laureateship allowed the College to bring a notable scientist to campus to deliver a public lecture and to interact with research teams and faculty that shared the invitee’s scientific interests. Dr. John Cairns gave the first lecture in November 1994. A total of six Davern/Gardner Laureateship lectures were presented until the grant was exhausted.

The history of venues for Frontiers of Science presentations is quite colorful. From 1967 to 1970, various rooms were used, including 103 North Physics, 200 Music Hall and Mark Greene Hall in the College of Business. By 1974, FOS events were often held in the Waldemer P. Read auditorium in Orson Spencer Hall. The Read auditorium featured stadium seating for about 400 people and was primarily used through the 1980s.

By 1990, the Fine Arts auditorium became the venue of choice because it was newer, larger, and had a better sound system. However, the lighting and sound controls were problematic and scheduling conflicts forced organizers to utilize the nearby Social Work auditorium on occasion.

In the meantime, the College of Science was constructing the Aline Wilmot Skaggs Biology Research Building (ASB) that included a beautiful 325-seat lecture auditorium and an adjoining 125-seat room complete with modern sound systems, digital video projectors and lighting. When ASB opened in 1997, the Frontiers series finally had a home within the College.

In 2003, the College of Mines and Earth Sciences joined with the College of Science to co-host FOS and increase the number of lectures devoted to aspects of geology, geophysics and meteorology. The effort was successful and a total of five presentations were scheduled, including Paul F. Hoffman, Sturgis Hooper Professor of Geology, Harvard University (“Snowball Earth: Testing the Limits of Global Climate Change,” 2003) and Peter B. deMenocal, Lamont-Doherty Earth Observatory, Columbia University (“Climate Shifts and the Collapse of Ancient Cultures,” 2004).

In March 2007, Professor Kerry A. Emanuel of MIT discussed the history and science of hurricanes, including how climate change may be influencing storm cycles around the world. He used stunning photos and graphics to explain how hurricanes work, what determines their energy and destructiveness, and the economic and social implications of our policies for dealing with the risks they pose.

In 2008, The 14th Astronomer Royal of Great Britain, Sir Arnold Wolfendale, graced Utah audiences with a superb presentation on “Time: From Harrison’s Clocks to the Possibility of New Physics.” Other international guests were Dr. Jennifer Graves, Distinguished Professor at La Trobe University, Australia, and Dr. Stefan Hell, Nobel laureate and Director of the Max Planck Institute for Biophysical Chemistry in Göttingen, Germany.

New Physics

A decision to take a physics class for “fun” During her senior year at New York University changed the Course of Pearl Sandick’s life. At the time, Sandick was majoring In math and had planned to continue her studies in a Ph.D. Program. “The professor noticed that I was enjoying the physics Class and suggested that I think about a physics graduate program Instead of math,” said Sandick, associate professor of physics and Astronomy and associate chair of the U’s Department of Physics & Astronomy. “I was floored—no professor had ever directly Encouraged me like that before—and she had a good point: I did Enjoy physics. After some serious conversations with my mom and My professors, I decided to make the switch. The encouragement of one professor literally made all the difference.”

She earned a Ph.D. From the University of Minnesota in 2008 and Was a postdoctoral fellow in the Theory Group at the University of Texas at Austin before moving to Utah and the U in 2011.

Beyond the Standard Model

As a theoretical particle physicist, Sandick is able to study some of the largest and smallest things in the universe. Dark matter Is the mysterious stuff that gravitationally binds galaxies and Clusters of galaxies together, but despite large-scale evidence for the existence of dark matter, there are compelling arguments that Dark matter might actually be a new type of elementary particle. Some particles are composite, like protons and neutrons. Electrons Are an example of an elementary particle—they are the most Fundamental building blocks of their type and are not composed of other particles. Other examples of elementary particles include Quarks, neutrinos, and photons.

The Standard Model of Particle Physics is the theory that explains how all the elementary particles interact with each other and combine to form composite objects like protons and neutrons. Pearl Sandick 7 The Standard Model can make amazingly accurate predictions, which are tested in collider experiments and with cosmological observations, but the theory has some shortcomings that make particle physicists think there must be something beyond the Standard Model. For example, the Standard Model does not include a satisfactory explanation for the dark matter in the universe. Sandick’s research, currently supported by the National Science Foundation, is in exploring theories of “new physics” that fix theoretical problems with the Standard Model and explain previously unexplained phenomena like dark matter. “For any interesting new theory, my research proposes ways to experimentally support or falsify it, with the hope of eventually identifying the true fundamental theory of nature,” said Sandick.

Challenges for Women in Physics

Women are still widely underrepresented in physics. In college, Sandick got used to being one of the very few women in the room, and in graduate school, she wanted to become a physics professor at a time when only 5% of full professors in physics were women. “Like many women in male-dominated professions, I’ve experienced my share of ‘gender- related weirdness,’” she said. “Every day I’m thankful that the bulk of my negative gender-related experiences are, and continue to be, primarily exhausting and disappointing rather than dangerous or devastating.” Sandick notes that there are still a lot of equity and cultural issues to address in the field. “Science should be for everyone, and there’s a lot of work to be done to address the complex issues that lead to severe underrepresentation of certain groups. If we want to see change, we need to listen, learn, and do the work to make science more inclusive,” she said.

Sandick is committed to organizations that support women in physics. She has served on the American Physical Society’s (APS) Committee on the Status of Women in Physics (CSWP) and was recently the Chair of the National Organizing Committee for the APS Conferences for Undergraduate Women in Physics (CUWiP) The APS CUWiP hosts approximately 2,000 undergraduate physics majors each January at various locations around the country to discuss science, career paths for physicists, and social issues that can affect the experiences of scientists from underrepresented groups. Locally, she is the founder and faculty sponsor of the University of Utah Women in Physics and Astronomy (WomPA).

When she isn’t teaching or doing research, she spends every minute with her family—a three-year-old daughter and a supportive husband.

“This is an incredibly exciting time for dark matter and particle physics,” said Sandick. “We’re still searching for physics beyond the Standard Model, including an explanation for dark matter, so there’s still a lot of work to be done. Right now, one of the most exciting challenges is using experimental data in novel ways in order to get every bit of information out of it that we possibly can. It’s a great time to be creative in terms of how new physics might look from the theoretical point of view and how it might appear in current or upcoming experiments.”

Distinguished Teaching

Each year, the University of Utah recognizes the achievements of members of its faculty with Distinguished Teaching Awards. This year’s honorees include Gernot Laicher, Professor/Lecturer in the Department of Physics & Astronomy.

Honorees are nominated by students. Here is what students said about Laicher:

"[Laicher] is one of the most effective lecturers I have had the pleasure of taking a course from. His ability to not only understand the questions that we had in each activity but to anticipate difficulties we may encounter based on his experience and to expertly explain how to circumvent them was amazing. Prof. Laicher also shines in his mentoring of students outside of the classroom proper," said one nominator. "He is very clearly concerned with all of his students and is readily available to answer questions and provide guidance outside of the classroom. Importantly, he has served as a fantastic mentor to me and other teaching assistants, giving us excellent guidance in running our labs. He has been a model template for the development of my own teaching style. Simply put, Prof. Laicher is one of the best instructors I have had in my graduate career, one whose instruction has had the most direct effect upon both my work and my teaching ethic. I cannot think of anyone more deserving to be recognized for this work than him."

Laicher has been teaching continuously for 20 years at the U, with his primary teaching responsibilities being in connection with undergraduate and graduate laboratory courses, several of which he designed himself.

"Because of his past research involvement, he has a keen sense of what is required for students to learn in these lab courses in order to successfully make the transition to productive research,” said other nominators.

Laicher received a master's degree in physics from the State University of New York at Buffalo and obtained a Ph.D. in physics from the U.

2019 Research Scholar

The College of Science Research Scholar Award is given annually to one graduating student who demonstrates a record of exceptional success in research and education. From the Class of 2019, we have selected Cameron Own, a highly-accomplished student who is graduating with a bachelor’s degrees in Chemistry, Physics, and a minor in Mathematics this year.

In addition to his studies, Cameron has been heavily involved in research during his time at the U, working in the Armentrout Research Group since he was a freshman. His involvement in the Armentrout Group has led to multiple publications, on three of which Cameron has been the lead author. Furthermore, Cameron’s research has also aided in his success in national scholarship competitions. As a junior, he was awarded a Barry M. Goldwater Scholarship, and as a senior, he was awarded a Winston Churchill Scholarship. This latter award will allow Cameron to ascertain a MPhil at the University of Cambridge next year, after which he will attend Harvard University to obtain a Ph.D.

Cameron has enjoyed his time at the U, and credits his success to the supportive environment provided in the Chemistry Department at the U and in the Armentrout Research Group. Cameron has also received multiple awards from the Chemistry Department, including the Ronald Ragsdale Scholarship and the Ferdinand Peterson Scholarship during his sophomore year. Ultimately, Cameron thinks he wants to go into industry or a start-up following the completion of his degrees, but is open to the idea of becoming a professor. Lastly, Cameron would like to the thank the College of Science for considering him for this award and for creating an environment at the U that focuses on research and scientific curiosity.

Under Pressure

Scientists have solved decades long puzzle about lithium, an essential metal in cellphone and computer batteries. Using extreme pressure experiments and powerful supercomputing, the international team has unraveled the mystery of a fundamental property of lithium. Its atoms are arranged in a simple structure, and may be the first direct evidence of a quantum solid behavior in a metal.

Until now, all previous experiments have indicated that lithium’s atoms had a complex arrangement. The idea baffled theoretical physicists. With only three electrons, lithium is the lightest, simplest metal on the periodic table and should have a simple structure to match.

The new study combined theory and experimentation to discover the true structure of lithium at cold temperatures, in its lowest energy state.

Scientists suggest that rapid cooling led lithium atoms to arrange themselves in complex structure and resulted in misinterpretation of the previous experimental results. To avoid this, Shanti Deemyad, associate professor at the University of Utah who led the experimental aspect of the study, applied extreme pressure to the lithium before cooling down the samples.

Deemyad’s research group prepared the lithium samples in tiny pressure cells at the U. The group then traveled to Argonne National Laboratory to apply pressure up to 10,000 times the Earth’s atmosphere by pressing the sample between the tip of two diamonds. They then cooled and depressurized the samples, and examined the structures at low pressure and temperature using X-ray beams.

The researchers looked at two isotopes of lithium — the lighter lithium 6 and heavier lithium 7. They found that the lighter isotope behaves differently in its transitions to lower energy structures under certain thermodynamic paths than the heavier isotope, a behavior previously only seen in helium. The difference means that depending on the weight of the nuclei, there are different ways to get to the lower energy states. This is a quantum solid characteristic.

Graeme Ackland, professor from the University of Edinburgh, led the theoretical aspect of the study by running the most sophisticated calculations of lithium’s structure to date, using advanced quantum mechanics on the ARCHER supercomputer. Both experimentation and theoretical parts of the study found that lithium’s lowest energy structure is not complex or disordered, as previous results had suggested. Instead, its atoms are arranged simply, like oranges in a box.

The study, from the Universities of Edinburgh and Utah, was published in Science.

Corresponding author Deemyad of the University of Utah Department of Physics & Astronomy, said: “Our experiments revealed that lithium is the first metallic element with quantum lattice structure behavior at moderate pressures. This will open up new possibilities for rich physics.”

Co-author Miguel Martinez-Canales of the University of Edinburgh School of Physics and Astronomy, said: “Our calculations needed an accuracy of one in 10 million, and would have taken over 40 years on a normal computer.”

Lead theoretical author Graeme Ackland of the University of Edinburgh School of Physics and Astronomy, said: “We were able to form a true picture of cold lithium by making it using high pressures. Rather than forming a complex structure, it has the simplest arrangement that there can be in nature.”

Adapted from University of Edinburgh release: http://www.ed.ac.uk/news/2017/piling-on-pressure-solves-mystery-about-metal