Teaching Excellence

Early Career Teaching Award


Gail Zasowski Receives Early Career Teaching Award

Gail Zasowski, Assistant Professor in the Department of Physics & Astronomy, has been awarded an Early Career Teaching Award from the University of Utah. This is considered the highest teaching award for pre-tenured faculty and recognizes significant contributions to teaching at the university through new and innovative methods. The University Teaching Committee evaluates nominees based on a teaching portfolio, a curriculum vitae, letters of support, and student evaluations. This year the committee selected six early-career faculty from across campus for the award, including Zasowski.

“I am honored and grateful to the U for this recognition,” said Zasowski. “The U’s educational mission is being fulfilled every day in so many enthusiastic, impactful, and creative ways, and it’s very exciting (and fun!) for me to be a part of that.”

David Kieda, Dean of the Graduate School, Distinguished Professor of Physics & Astronomy, and Co-Director, Consortium for Dark Sky Studies, nominated Zasowski for the award. Anil Seth, Associate Professor of Physics & Astronomy, and Tobin Wainer, Research Assistant and Associate Instructor in the department, were among those who wrote letters of support.

Seth described Zasowski’s excellence in teaching and mentoring students, particularly within her research group.

“Gail’s approach to mentoring within her research group is very student focused. She engages her students not just about the science they are doing, but also by encouraging them to develop non-research professional skills from networking to writing. She regularly checks in with students about their career goals and is flexible in her assignment of student projects to accommodate their interests.”

Wainer noted her approach to teaching STEM classes.

“Through my work with Dr. Zasowski, I have come to learn that not only is she a brilliant scientist, but she is a model for how professors should approach teaching STEM classes. What sets Dr. Zasowski apart is her compassion for people in the department, her dedication to being the best professor she can be, and her willingness to expend exuberant effort to help others."

Zasowski, who joined the university in 2017, is an astronomer whose research focuses on understanding how galaxies produce and redistribute the heavy elements that shape the universe and enable life in it. She has taught classes ranging from introductory astronomy up through graduate-level courses on stars and galaxies. She has also mentored a large number of undergraduate students, graduate students, and postdoctoral researchers through a variety of research projects that explore these topics.

In addition to her work at the U, she serves as the Scientific Spokesperson for the current generation of the Sloan Digital Sky Survey, an international astronomical project to collect and analyze data from stars, galaxies, and black holes throughout the universe. As spokesperson, she works hard to ensure that the functioning of the collaboration is efficient, transparent, and equitable for its more than 800 astronomers and engineers spread across the globe.

Zasowski was named a Cottrell Scholar in 2021 by the Research Corporation for Science Advancement, which honors early-career faculty members for the quality and innovation of not only their research programs but also their educational activities and their academic leadership. With the support of that award, she is currently developing a new peer-mentoring program within the Department of Physics & Astronomy, called the PANDA Network. She, other faculty and staff, and a number of undergraduate students are running a pilot program this spring, with the hope of launching the full program for new physics majors later this year.

by Michele Swaner, first published @ physics.utah.edu

Paul Ricketts

Paul Ricketts


Swan Nebula

Blue Snowball Nebula

Orion Nebula

Your Guide to the Nighttime Sky

Astronomy has a special place with many, including the Physics & Astronomy Department! We love helping the community explore the stars and learn more about the universe around them. Paul Ricketts and his team of AstronomUrs gather every Wednesday night at the South Physics Observatory.

Paul has been with the U's Physics & Astronomy Department since 2005, directing the South Physics Building telescopes and other astronomy projects. He also has helped build a new observatory in southern Utah. We asked Paul for his thoughts about his programs and astronomy.

Q: What do you enjoy most about directing your program?

The best things are working with so many people to bring science into the world and seeing the reactions of people in all levels and walks of life.

Q: What is your favorite memory/story of your program(s)?

No single memory stands out—it's more like a collection of experiences that build on and are included in everything I do now. There are too many stories to share just one—to understand the stories, you need to experience some of the work we do.

Q: What is your favorite object to observe?

Once again, there are no singular objects that I enjoy more than others but a few are worth seeing: the Swan Nebula, Whirlpool Galaxy, Orion Nebula, and the Blue Snowball Nebula with the 32” telescope at the Willard Eccles Observatory in southern Utah. The Swan and Orion are the closest views I can imagine experiencing in real life that are similar to what you’d see in detail, without color, to images from the Hubble Telescope.

Q: What's the best way for a student to contact you if they're interested in your programs?

The easiest way is to find me on Wednesday night is at the Star Parties, or email at paul.ricketts@astro.utah.edu.
If you're interested in Star Parties check out the website for the South Physics Observatory.
If you're interested in the AstronomUrs and Outreach, check out their website.

First published @ physics.utah.edu

 

 

Lauren Bustamante

Lauren Bustamante


 

Lauren Bustamante senior academic advisor, joined the Department of Mathematics in August 2021.

What was your previous job before you came to the Math Department?

I joined the U in 2020. Prior to my role here in the Math Department, I worked at the School of Medicine as the pre-medical laboratory science advisor. I have been working in higher education since 2016, and my first role as an academic advisor was in 2018 at Utah Valley University in the School of Arts.

What are your duties in your current position?

I advise all math majors in their academic planning. I am also a Bridge advisor with the U’s Academic Advising Center. This allows me to review general education exceptions for the College of Science undergrads, along with other responsibilities. Last but not least, I am on the curriculum, awards, and convocation committees.

What do you enjoy about working with students?

I enjoy interacting with students and seeing their drive and passion to succeed. I love helping and guiding students through all levels of their educational journey. Every student is unique, and working with each and every one of them presents a different challenge or obstacle to solve. The best part of advising is seeing my students grow and use the skills of self-efficacy—students recognizing that they have the ability to succeed at the tasks they take on. Advising students is more than telling them what classes to take—advising is guiding students to explore their wants, desires, and interests while attending the U. Helping students figure out who they are and what they are capable of brings joy to the work I do.

Hours and/or days when you can meet with students? Where are you located?

I meet with students Monday through Friday virtually at the moment; but, hopefully, one day I can meet with them in person. My hours vary but they are from 9 a.m. to 5 p.m. I’m located in LCB 212.

To get the most from an advising session, how should students prepare for a meeting with you?

I always advise my students to come prepared. When I mean prepared, it’s best if you have some questions ready to ask me or concerns you’d like to talk about. Every meeting is different, but an effective meeting is accomplished when a student has an idea of what they need.

What was your undergraduate degree? Where did you receive it?

I received a master’s degree in academic advising from Kansas State University in 2020. My bachelor’s degree was in psychology from the University of La Verne (in Southern California) in 2015.

- by Michele Swaner, first published at math.utah.edu

NSF CAREER Award

NSF CAREER Award


Priyam Patel receives National Science Foundation CAREER Award.

Priyam Patel, assistant professor of mathematics at the U, has received a National Science Foundation CAREER Award. The National Science Foundation's CAREER Award is the most prestigious NSF award for faculty members early in their careers as researchers and educators. It recognizes junior faculty members who successfully integrate education and research within their organizations. The award comes with a federal grant for research and education activities for five consecutive years.

Priyam Patel

“I'm thrilled to receive the award, and I'm very excited to have the ability to pursue the research and educational projects the grant will afford,” said Patel. “The award also recognizes the support the Math Department and the University of Utah provide to faculty.”

Patel works in geometry and topology. The two areas differ in that geometry focuses on rigid objects where there is a notion of distance, while topological objects are much more fluid. In her research, Patel’s goals are to study and understand curves on surfaces, symmetries of surfaces, and objects called hyperbolic manifolds and their finite covering spaces. Topology and geometry are used in a variety of fields, including data analysis, neuroscience, and facial recognition technology. Patel’s research doesn’t focus on these applications directly since she works in pure mathematics.

She is currently working on problems concerning groups of symmetries of certain surfaces. Specifically, she has been studying the mapping class groups of infinite-type surfaces, which is a new and quickly growing field of topology. “It’s quite exciting to be at the forefront of it. I would like to tackle some of the biggest open problems in this area in the next few years, such as producing a Nielsen-Thurston type classification for infinite-type surfaces,” she said. She is also interested in the work of Ian Agol, professor of mathematics at Berkeley, who won a Breakthrough Prize in 2012 for solving an open problem in low-dimensional topology. Patel would like to build on Agol’s work in proving a quantitative version of his results. Other areas she’d like to explore are the combinatorics of 3-manifolds and the theory of translation surfaces.

Patel joined the Math Department in 2019.

by Michele Swaner, first published @ math.utah.edu

Camille-Dreyfus Award

Luisa Whittaker-Brooks recognized with the Camillle-Dreyfus Teacher Scholar Award


Luisa Whittaker-Brooks, an assistant professor in the department of chemistry, is among 16 early career chemists named as a 2021 Camille Dreyfus Teacher-Scholar. Selected by the Camille and Henry Dreyfus Foundation, Camille Dreyfus Teacher-Scholars receive an unrestricted $100,000 research grant.

“I was actually having a meeting with my undergraduate students when I received a text message from my Ph.D. advisor with the news,” Whittaker-Brooks says. “The only thing I could think about after the text was how instrumental my undergrads were in getting this award.”

Camille Dreyfus Teacher-Scholars, according to the Dreyfus Foundation, “are within the first five years of their academic careers, have each created an outstanding independent body of scholarship, and are deeply committed to education.”

Whittaker-Brooks’ award cites her research in “designer hybrid organic-inorganic interfaces for coherent spin and energy transfer.” Her research group, their website says, is “driven by two of the greatest challenges of our time –sustainable energy and low cost electronics for daily use applications. We plan to embark in these new endeavors by synthesizing and elucidating the functional properties of well-defined and high-quality materials for applications in photovoltaics, thermoelectrics, batteries, spintronics, and electronics.”

Story originally published in @theU

Sahar Kanishka

Undergraduate Research Award


Sahar Kanishka

Biology major receives 2021 Outstanding Undergraduate Researcher Award.

Sahar Kanishka remembers daily where her family came from, where they are now, and what opportunity there is for her at the School of Biological Sciences (SBS).

“I’ve always wanted to be a doctor ever since I was younger,” she recently explained in a video interview. “Because my family’s from Afghanistan and they actually fled from the Soviet invasion, they were telling me how the medical resources over there were very scarce when they were escaping. Like things we take for granted here [in the United States]. I want to be able to give back in some way. And that’s my way of giving back, becoming a doctor and contributing what I’ve learned here.”

What Kanishka, now in her junior year as an honors student, is learning happens largely in the Gagnon lab at the SBS where she and her colleagues are studying vertebrate lineage and cell fate choice along with cell signaling and genome engineering. Their subject model is the living zebrafish with which they are attempting to answer the question of how biology builds an animal with millions of cells. The question is complicated by the fact that those millions of cells are continually sharing information while shape-shifting at the same time.

Zebrafish

A living organism is the culmination of science turning chaos and cacophony into a kind of marvelous symphony. Using CRISPR-Cas9 gene-editing technology, the Gagnon lab is busy marking cells with a genetic barcode that could later be used to trace the lineage of cells that in the zebrafish are similar to other vertebrates, including humans.

The micro “scissors” of CRISPR is no longer just being used to decode the genome, but to make a version, readable to humans, of what cells are doing in real time and how. It’s research that’s contributing to a sea change in genomic studies, and Kanishka is there at the bench experiencing it firsthand. The way Jamie Gagnon, Principal Investigator who holds the Mario Cappechi Endowed Chair at SBS, puts it, the research Kanishka is doing “may lead to a holy grail method for developmental biology—the ability to record developmental history, in living animals, with molecular and spatial resolution.”

Little wonder then that the Undergraduate Research Program at the University of Utah chose Kanishka for this year’s award. In his nomination letter Gagnon, who referred to Kanishka as having “transitioned quickly into an independent scientist," also wrote that he has been “impressed with Sahar’s poise, focus and commitment to research over the last year, which has been particularly challenging for our undergraduate researchers… . Sahar is already the face of STEM research in the College.”

Kanishka’s journey at the U threaded through ACCESS, a signature program of the College of Science. It was a scholarship and mentorship experience that led to re-figuring what research could be. Instead of working primarily on a computer in isolation and doing anatomy lessons from a book, ACCESS and SBS provided her with a hands-on approach in its full cadaver lab. As a pre-med student hoping to earn a joint medical degree and doctorate, Kanishka’s turn as a teaching assistant to professor Mark Nielsen gave her added invaluable experience. ACCESS also gave her a practical skill set, like creating her first research poster and then presenting it publicly.

The ACCESS program

The same has been true in the Gagnon lab where she says you are free to mold your research experience to your own expectations. Research at the U “fosters an environment of curiosity of real research. It’s really beautiful,” she says, “to have someone [like Gagnon] believe in you like that.” This, she concedes, in spite of feeling at times like an imposter as the child of an immigrant family and as a woman. She’s had to “learn through lots of struggles.”

Some lessons from those struggles have been hard won. “You can’t just put science in a box and tell it what to do,” she explains. “I have to allow it the freedom to seek to understand the world rather than to just understand me.” Her joint undergraduate degree in business administration speaks to Kanishka’s sense of the intersectionality of all learning. She was especially impressed with a recent visit by Reshma Shetty, the inaugural SBS Distinguished Lab Alumni who worked with Baldomera “Toto” Olivera in his lab and is a co-founder of Boston-based Gingko Bioworks, a bio-engineering start-up.

But the ballast in Kanishka’s life--both that of her academic career’s and that of her personal story’s--continues to be family. That includes not only her younger sister and parents here in Utah, but also her extended family in Afghanistan and beyond. “I hate that we’re separated by distance,” she says, referring to her overseas cousins, aunts and uncles as “my other parents and siblings. I owe everything to them. They mean everything to me.”

Until she and her extended family are all at least on the same side of the globe, Kanishka has both advice and a caution for her undergraduate colleagues. “Figure out if you want to do something by actually doing it,” she advises, recommending internships for high schoolers not bound for college, including through a program she helps facilitate as a volunteer called Talent Ready Utah. “College can be a business,” she warns, “pumping out students” for a job market they may not resonate with or even prosper in.

But Sahar Kanishka is optimistic about things as well. When asked about the pandemic and the social and economic upheaval, she proffers a winning smile, while adding, “I’m excited to see how college will change and adapt.”

 
by David Pace
 

Beckman Abstract

  • Lineage tracing in zebrafish with CRISPR prime editing (S. Kanishka)
    All embryos develop from a single cell. We use lineage tracing to map the relationships between individual cells and back to the initial founding cell. These lineage trees can help us understand how cells acquire their fates during normal development, and how that can go wrong in human disease. An emerging method for lineage tracing in embryos uses cellular barcodes. Cellular barcodes individually tag cells with a unique set of mutations specific to that cell. As cell divisions occur, the barcode is passed on to the progeny cells and a lineage tree can constructed based on cells that share similar barcodes. The CRISPR-Cas9 system for gene editing is an ideal tool for creating a huge diversity of cellular barcodes in embryos. However there are limitations with CRISPR-Cas9, including unpredictable indel formation and difficulties in recovering barcodes from cells. In this project, a modified CRISPR system known as prime editing will be applied in zebrafish, and utilized for lineage tracing. Prime editing allows for precise genome editing by inserting user-specified genetic sequences at a target site in the genome. I hypothesize that we can use prime editing to insert a huge library of user-specified barcodes into the genome of developing zebrafish. Because these barcodes are defined by the experimenter, they can be recovered at the end of the experiment using RNA in situ hybridization. In principle, lineage tracing with prime editing will allow us to discover the spatial arrangement of related cells in intact embryos and tissues. We hope to use lineage tracing with prime editing to understand the mechanisms of heart regeneration in zebrafish.

NAS Membership

mary beckerle elected to the national academy of science


The National Academy of Sciences has elected Mary Beckerle, PhD, Huntsman Cancer Institute (HCI) CEO and distinguished professor of biology and oncological sciences at the University of Utah (U of U), as a member. Beckerle is among 120 newly elected members announced in a press release during the annual meeting of the National Academy of Sciences.

Election as a member in this organization is widely accepted as a mark of excellence in scientific achievement and is considered one of the highest honors a scientist can receive. Of its more than 2,400 current members, approximately 190 have received a Nobel Prize, according to the National Academy of Sciences.

Beckerle shared she was “very surprised” to learn of her election to the prestigious group. She received a phone call this morning from a member of the National Academy of Sciences informing her of her election. Within minutes, she then received a flood of phone calls, emails, and text messages from colleagues congratulating her. “It was the most connected I have felt to my scientific community since the pandemic began, and it was lovely to be in touch with so many colleagues from around the world,” added Beckerle.

Beckerle’s research discovered a new pathway that is crucial in enabling cells to respond to mechanical signals in their environment. Such signals are now known to regulate cell growth and movement, two behaviors that yield critical insights into cancer biology. The Beckerle Lab is currently focused on understanding the molecular mechanisms underlying this pathway and its impact on tumor progression, particularly in Ewing sarcoma, a rare but deadly bone cancer that typically affects children and young adults.

“Dr. Beckerle’s election to the National Academy of Sciences affirms what her colleagues see every day. She is a driving force as an individual scientist, yet Dr. Beckerle’s hallmark is collaborative leadership that allows teams of scientists to achieve more together than they ever could alone,” said Michael L. Good, MD, University of Utah interim president and CEO of University of Utah Health. In addition to leading HCI, Beckerle holds the Jon M. Huntsman Presidential Endowed Chair and also serves as associate vice president for cancer affairs at the U of U. Beckerle is only the 27th faculty member in the history of the U of U to be elected to the National Academy of Sciences.

Beckerle joined the U of U faculty in 1986, when she set up her first independent laboratory as a young scientist. Prior to coming to Utah, she earned her PhD in molecular, cellular, and developmental biology from the University of Colorado at Boulder, where she received a Danforth Fellowship. She completed postdoctoral research at the University of North Carolina at Chapel Hill and received a Guggenheim Fellowship for her studies at the Curie Institute in Paris.

She has received numerous accolades for her research, including the National Cancer Institute Knudsen Prize in recognition of her contributions to research on the genetic basis of cancer. She is also an elected fellow of other distinguished scientific organizations, including the American Philosophical Society, the American Academy of Arts and Sciences, and the Academy of the American Association for Cancer Research.  She served as President of the American Society for Cell Biology and is a member of the Medical Advisory Board of the Howard Hughes Medical Institute.

As CEO of HCI, she led the organization to achieve its first-ever designation as a National Cancer Institute-Designated Comprehensive Cancer Center, the highest possible status of a cancer research institute. She also has led HCI’s clinical programs to recognition as among the nation’s Best Cancer Hospitals, according to U.S. News and World Report. Beckerle was appointed as a member of then-Vice President Biden’s Cancer Moonshot Blue Ribbon Panel, where she co-chaired the working group on Precision Prevention and Early Detection.

“It is an incredible honor to be named alongside exceptionally talented colleagues who are part of the National Academy of Sciences,” said Beckerle. “Scientific research is fascinating and motivating work, yet as a scientist, I often feel impatient. Each day, I work with the understanding that people are counting on the scientific community to make discoveries that will improve health, develop better treatments for diseases, enhance quality of life, and, wherever possible, prevent development of diseases like cancer. It is deeply humbling to see my contributions, and those of the many people who have worked in my lab over several decades, recognized in this way. My sincere hope is that the work of my research team will contribute to Huntsman Cancer Institute’s vision of delivering a cancer-free frontier.”

Beckerle adds that the National Academy of Sciences has a major impact in shaping science policy. She looks forward to the opportunity to contribute to the national dialogue on how to advance scientific innovation and impact via her role as a member of this organization.

first published by Ashlee Harrison of Huntsman Cancer Institute in @theU

AAAS Membership

Valeria Molinero elected to the american academy of arts and sciences


Valeria Molinero, Distinguished Professor and Jack and Peg Simons Endowed Professor of Theoretical Chemistry, is among the 252 newly elected members of the American Academy of Arts and Sciences. The Academy honors excellence and convenes leaders from every field of human endeavor to examine new ideas, address issues of importance to the nation and the world and work together.

Among those joining Molinero in the Class of 2021 are neuroscientist and CNN medical correspondent Sanjay K. Gupta, Pulitzer Prize-winning investigative journalist Nikole Hannah-Jones of the New York Times and media entrepreneur Oprah Winfrey.

Molinero joins 16 other members affiliated with the U, including Nobel laureate Mario Capecchi, Huntsman Cancer Institute CEO Mary Beckerle and Distinguished Professor of Anthropology Kristen Hawkes. The U’s first member was chemist and National Medal of Science recipient Henry Eyring, elected in 1958. Molinero currently directs a center for theoretical chemistry named for Eyring.

“I am surprised and elated by this recognition,” Molinero said. “My most pervasive feeling is gratitude:  to my trainees and collaborators for sharing with me the joy of science and discovery, to my colleagues and scientific community for their encouragement and recognition, and to the University of Utah for the support that has provided me throughout all my independent career.”

Molinero and her lab use computational simulations to understand the molecule-by-molecule process of how ice forms and how polymers, proteins and other compounds can either aid or inhibit the formation of ice. In 2019, the U awarded her its Distinguished Scholarly and Creative Research Award. In 2020, she and her colleagues received the Cozzarelli Prize from the journal Proceedings of the National Academy of Sciences for finding that the smallest nanodroplet of water that can form ice is around 90 molecules. Their research has application ranging from climate modeling to achieving the perfect texture of ice cream.

“This is not surprising, as Vale is just an outstanding scientist and colleague,” said Matt Sigman, chemistry department chair.

“Vale Molinero is among the most influential theoretical and computational chemists of her generation,” said Peter Trapa, dean of the College of Science. “ Today’s announcement is a fitting recognition of her exceptional career.”

The College of Science now features eight Academy members, including five from the Department of Chemistry.

The Academy was founded in 1780 by John Adams, John Hancock and others who believed the new republic should honor exceptionally accomplished individuals and engage them in advancing the public good. Studies compiled by the Academy have helped set the direction of research and analysis in science and technology policy, global security and international affairs, social policy, education and the humanities.

Current Academy members represent today’s innovative thinkers in every field and profession, including more than 250 Nobel and Pulitzer Prize winners.

first published by Paul Gabrielson in @theU

Amanda Cangelosi

Amanda Cangelosi receives U's Early Career Teaching Award


Amanda Cangelosi, instructor (lecturer) in the Mathematics Department, has received the 2021 Early Career Teaching Award from the University of Utah. The award is given to outstanding young faculty members who have made significant contributions to teaching at the university. Specifically, the University Teaching Committee looks for a faculty member who has distinguished her or himself through the development of new and innovative teaching methods, effectiveness in the curriculum and classroom, as well as commitment to enhancing student learning.

“I’m honored to receive this award and recognition from the university,” said Cangelosi. “Since my work focuses on the preparation of future Utah K-12 teachers, which intersects with social justice goals in a foundational way, this award means that the U cares about dismantling systemic oppression. There is nothing more systemic than K-12 education, and thus no more impactful space to invest one’s energy.”

In her approach to teaching, Cangelosi believes it's important for children to have math teachers who are skillfully trained to break the unhealthy and dangerous cycle of students who make value judgments about their self-worth based upon their achievement (or lack of) in math. “Issues of mathematical status and power between students in a math classroom need to be recognized and attended to by teachers so children don’t label themselves as “stupid” or, equally-dangerously, as “smart” relative to each other,” she said.

To overcome social divisions and stratifications within the classroom, Cangelosi believes teachers need to focus on creating productive, collaborative, and student-centered learning activities, implementing culturally relevant lessons, using multiple approaches to teaching math, and embracing unconventional approaches. Implementing these strategies require teachers to engage in challenging identity work, understanding the history of education in the U.S., embracing heterogeneous classrooms, and engaging in anti-bias and anti-racist training within mathematical contexts.

In her own teaching, Cangelosi draws heavily from the mainstream math education literature. For example, several of her students were personally affected from watching and reflecting upon Danny Martin's Taking a Knee in Mathematics Education talk from the 2018 annual conference of the National Council of Teachers of Mathematics.

Cangelosi’s teaching contributions include the following:

  • She taught a math lab class at Bryant Middle School for the 2019-2020 academic year to deepen productive collaborations between the U and local schools, thereby creating a seamless practicum space for undergraduate Math Teaching majors, while providing long-term outreach to the local community.
  • Inspired by Utah State University’s teaching practicum, in 2011 she established the current innovative structure of the Math 4095 course—including funding (often out of her own pocket) for mentor teachers, which resulted in onsite, fully-contained classrooms at local schools for University of Utah teaching majors.
  • During the pandemic, she created a sustainable and equitable virtual after-school tutoring program that allowed local high school students to meet with math undergraduates for homework support.
  • She created sanitized manipulatives kits to be distributed to her students for use in online synchronous lectures and labs, to help maintain the integrity of her hands-on collaborative Math 2000/4010/4020 classes during the COVID-19 pandemic.
  • She helped develop course curricula for Math 2000, Math 1010, and Math 4090/4095, introducing and modifying resources from her previous work as a secondary math teacher at The Urban School of San Francisco, bringing what are now mainstream practices to the University of Utah.
  • She has made numerous community, school-district-level, and Utah State Board of Education (USBE) contributions, such as diverse teacher recruitment, committees, and professional development.

“I love approaching old concepts in new, nontraditional ways, because we so often confound our understanding of concepts with the arbitrary conventions that we use to communicate them,” she said. “This often challenges student perceptions of classroom status and power in productive ways, often flipping the previously conditioned dynamic on its head and inviting students to rewrite their mathematical identities in a positive light.”

Cangelosi received her Bachelor of Science degree in Mathematics Education, as well as a Master’s of Statistics degree from Utah State University. She also has a post-baccalaureate degree in mathematics from Smith College. She joined the U’s Math Department in 2011.

 

by Michele Swaner - first published @ math.utah.edu