2024 Clarivate’s Most Cited

Bill Anderegg, Highly Cited Researcher 2024


December 9, 2024
Above: William Anderegg at the One-U Responsible AI inaugural symposium in September. Courtesy of @The U.

Highly Cited Researchers have demonstrated significant and broad influence in their field(s) of research.

William Anderegg, associate professor in the School of Biological Sciences and director of the Wilkes Center for Climate Science and Policy has again been selected as one of Clarivate's Highly Cited Researchers for 2024. Each researcher selected has authored multiple Highly Cited Papers™ which rank in the top 1% by citations for their field(s) and publication year in the Web of Science™ over the past decade.

Citation activity, however, is not the sole selection indicator. This list, based on citation activity is then refined using qualitative analysis and expert judgment as the global analytics company observes for evidence of community-wide recognition from an international and wide-ranging network of citing authors.

Of the world’s population of scientists and social scientists, Highly Cited Researchers are 1 in 1,000.

“As the need for high-quality data from rigorously selected sources is becoming ever more important,"  says David Pendlebury, Head of Research Analysis at the Institute for Scientific Information at Clarivate, "we have adapted and responded to technological advances and shifts in the publishing landscape. Just as we have applied stringent standards and transparent selection criteria to identify trusted journals in the Web of Science™, we continue to refine our evaluation and selection policies for our annual Highly Cited Researchers™ program to address the challenges of an increasingly complex and polluted scholarly record.”

According to the Clarivate's website, "The Highly Cited Researchers 2024 list identifies and celebrates individuals who have demonstrated significant and broad influence in their fields of research. Through rigorous selection criteria and comprehensive analysis, we recognize researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

"This program also emphasizes our commitment to research integrity. Our evaluation and selection process continues to evolve with filters to address hyper-authorship, excessive self-citation, anomalous citation patterns and more, ensuring that recognized researchers meet the benchmarks we require for this program."

Exploring the "global landscape of top-tier research talent," they continue, "provides us with insights on global research and innovation trends."

This year Clarivate™ awarded 6,886 Highly Cited Researcher designations to 6,636 individuals. Some researchers have been recognized in more than one Essential Science Indicators™ (ESI) field, resulting in more designations than individual awardees. This analysis, which includes the distribution of designations across nations and institutions, reflects the impact of these 6,886 appearances, distributed across fields, in accordance with the size of each.

While the sole researcher from the College of Science this year to be honored with the designation, Anderegg, one of three at the University of Utah, was the only one at the U to appear in two categories, Plant & Animal Science and Environment & Ecology.

This table summarizes the number of researcher designations by field of research and the cross-field category.

One-U Responsible AI

William-Anderegg

Anderegg is also the executive committee member who leads the One-U Responsible AI’s environmental working group. The group’s members bring their diverse expertise to establish ethical policy, explore AI’s impact on society and the environment, and develop responsible methods for using AI to improve climate research.

“Our goal of this working group is to put together a vision and a mission about responsibly developing and using AI to address human environmental challenges across scales to promote resilience and foster sustainable development,” said Anderegg at the group's inaugural symposium this past September. “AI could have an enormous negative impact on the environment itself. There are direct impacts for the cost of running AI—the power and water needed to run the massive data centers, and the greenhouse gas emissions that result. Then there are indirect challenges—misinformation, polarization, and increasing demands on the power grid. At the same time, there are another set of opportunities in using AI to tackle the marginal problems in forecasting and grid rewarding systems.”

The working group’s vision is to utilize AI to bolster our resilience to climate change with collaboration, training, technology, and ethical governance.

“The University of Utah is set to engage in these two focal areas of developing sustainable AI—how we use AI in a manner that minimizes environmental impact and maximizes long-term sustainability? Then, how do we harness AI for environmental resilience challenges?” Anderegg noted.

This is the second year in a row that Anderegg has made the Highly Cited Researcher list. With his mentor, biology professor emeritus John Sperry, the two were honored in the 2023 cohort. The two of them worked closely together, publishing multiple papers over the course of about six years in the areas of plant hydrology and forest stress. Their research is an auspicious example of how, in the tradition of peer-reviewed research, scientists routinely stand on the shoulders of others to move forward human understanding.

You can link to selected publications by Bill Anderegg here


>> HOME <<

Celebrating Veterans Day

CElebrating our Veterans


November 11, 2024

Above: Chad Ostrander (left) and Brandon Mowes

In their own words: a geology and geophysics professor and a chemistry alumnus are recognized on 2024 Veterans Day

Chad Ostrander

Chad Ostrander, left top row, a U assistant professor of geology, deployed with the Marines in Operation Enduring Freedom. He served with an Air Force unit pictured here at Al Udeid Air Force Base in Doha, Qatar in 2010.

“I was born in southern Oregon, in a high-desert town just north of the California border called Klamath Falls. My maternal grandpa was the father figure in my life growing up, and he was an Air Force veteran. His duty station at the time of his retirement was Kingsley Field, a small base in that town where he would plant his post-military roots. Military service was always ingrained in me as a sort of rite of passage. Generations before me on maternal and paternal sides had served their country.

I was in eighth grade when I watched the towers fall on Sept. 11. My whole high school career in Klamath Falls I saw men leave for service in Iraq and Afghanistan. Some didn’t come back. College was never an option for me at that time; I grew up really, really poor. Even the local community college was a financial impossibility. The day after I graduated, I moved to southern Arizona to work as a pipe-layer for a sewer- and water-line construction company.

After my job as a pipe-layer and a stint as an old-West reenactor in Tombstone, I moved back to Oregon in the summer of 2007 to work as a dock hand at Crater Lake National Park. It was from here that I decided to join the military. I called the local Marine recruiter during “the surge,” when all military branches were ballooning in size to support the two wars.

I liked that the Marines didn’t promise me anything. You could have gotten tens of thousands of dollars in signing bonuses to join the Air Force, Army or Navy. When I joined the Marines they gave me a free one-way ticket to Marine Corps Recruit Depot, San Diego. I was stationed in Barstow, Calif. for my entire 5-year enlistment. In the summer of 2010, I was offered an Individual Augment billet through Marine Forces Central, to deploy to Al Udeid Air Base in Doha, Qatar. That was very important to me. I would have felt my service was missing a critical component if I didn’t deploy overseas at a time of war.

I cherish my time in the Marines. One of my best life decisions was to join the Corps. But one of my best life decisions was also to exit the Corps. I wanted to use the Post-9/11 GI Bill to do something that seemed impossible just a few years before: go to college. During the final year of my enlistment, I started reading books about science. I started with Carl Sagan’s Cosmos, and eventually made my way, painstakingly, through Charles Darwin’s Origin of Species. I was fascinated with the origin and evolution of life on Earth. In 2012, I enrolled at Arizona State University as an astrobiology major.

The Marines taught me to be comfortable with the uncomfortable. Don’t be adverse to adversity. Nothing is handed to you in this life. The only thing you should ever ask for is an opportunity. If you want something, go get it.”

Chad Ostrander, an assistant professor of geology and geophysics, U.S. Marine Corps veteran

Ostrander served in the U.S. Marine Corps from 2007 to 2012. He reached the rank of sergeant and was deployed to Qatar in 2010. He and his wife live in Salt Lake City with their son and daughter, ages 5 and 8. As an assistant professor at the University of Utah in the Department of Geology & Geophysics, his research examines stable isotopes to shed light on how Earth’s atmosphere and oceans were oxygenated 2.2 billion years ago.

 

Brandon Mowes

Mowes, on the field, receiving his award at the U vs BYU game, Nov. 9, 2024

The 2024 Student Veteran of the Year was awarded to Brandon Mowes at the yearly Veterans Day Commemoration event on Nov. 15.

Mowes utilizes his nine years of United States Navy experience as his catalyst to strive for academic excellence and is someone who exudes qualities of servant leadership.

While in the Navy, Mowes was attached to the Nuclear Power Training Command in Charleston, SC where he endured a fast-paced and challenging nuclear training course consisting of calculus and physics. While not an implicit responsibility of being the class leader, he made it his goal to ensure everyone in his section had the best opportunity to succeed in the program. This goal resulted in Mowes spending substantial time helping other students find ways to better understand the material. His selflessness continued throughout each training program, leading to many students reaching their goals. This act of servant leadership did not go unnoticed.

Following his training, Mowes was offered a position to remain at the training site as an instructor. Jumping at the opportunity, he became an instructor for two years. He instructed approximately 320 sailors in general chemistry and radiological controls, with about 60 being further instructed on in-depth theory and practical application in these controls. The in-depth training portion included standing watch on the systems associated with a working nuclear reactor that was built in 1979 by monitoring, sampling, and correcting chemistry and responding to “incidents” that occur throughout the engine room. Through this experience, he absolutely fell in love with the science behind the reactors and knew this was the field he wanted to pursue.

In 2020, as classes and offices reopened after the pandemic, Brandon discovered the Veterans Support Center, VSC, and inquired about an open work-study position.

“Working at the VSC started to make me feel like I was still contributing to something important by helping all of our military-connected students on campus through support in the VSC and at various events. Seeing the effect that we have on these students at some of their most stressful times is beyond words,” he said.

Brandon graduated with his Bachelor of Science in Chemistry in 2023 with plans to continue at the U for his graduate degree. During the fall semester of that year, he was accepted into the Nuclear Engineering Ph.D. Program as a Research Fellow where he is conducting research on the forensic use of isotopes found in nuclear material in antiproliferation efforts to eventually reduce the security threat that nuclear materials pose to the world, minimizing the effort needed from our armed forces.

As Brandon continues his Ph.D. program, he remains a member of the VSC team as their office assistant. Between helping students in the office, advancing academically, or seeing him during Veterans Week activities behind his “combat camera”, his impact to the military-connected student community and the University of Utah is priceless.

 

Remembering Glenda Woods

Remembering Glenda Woods


November 07, 2024

A Legacy of Excellence and Kindness in the College of Science

It is with deep sadness that we share the passing of Glenda Lee Tolman Woods on October 31, 2024, surrounded by her loving family and friends. Services were held Tuesday, November 12, at Broomhead Funeral Home.

For more than three decades, Glenda Woods was a cornerstone of the University of Utah community, dedicating 36 years of service to the institution, with nearly 30 of those years in the College of Science Dean's Office until her retirement in 2015. Her impact on the college was profound and lasting.

As a distinguished administrator, Glenda set the highest standards of professionalism and punctuality, leading always by example. Her attention to detail was legendary—she maintained impeccable records and was known for her unwavering commitment to perfection, never letting even a single spelling error slip by. Perhaps most remarkably, she knew every faculty and staff member in the entire College by name, fostering personal connections with hundreds of colleagues throughout her tenure.

What truly set Glenda apart was not just her professional excellence, but her extraordinary character. She approached every interaction with kindness, grace, and generosity. Never one to raise her voice or criticize harshly, she treated her staff as family members, creating a warm and supportive work environment that inspired loyalty and dedication.

Throughout her career, Glenda earned several prestigious recognitions, including the University of Utah Presidential Staff Award in 1995—one of only four recipients that year. She completed the University's Management Certificate Program in 2000 and received the Certificate of Honor for 30 years of service in 2009.

Her legacy at the University of Utah extends far beyond her numerous accolades. She will be remembered as a mentor, friend, and exemplary leader who touched countless lives through her work and character.

In lieu of flowers, the family suggests considering a donation to the College of Science ACCESS Scholars program. This initiative, which supports first-year students in Science, Technology, Engineering and Mathematics (STEM) disciplines through community building, research opportunities, and scholarships, would honor Glenda's lifelong commitment to supporting excellence in education. To make a contribution, visit the ACCESS giving page.

For further details about Glenda's life and legacy, please see her full obituary.

A Tribute to Frank Stenger

A Tribute to Frank Stenger


November 05, 2024

Frank Stenger, a Kahlert School of Computing emeritus faculty member, passed away on October 23, 2024.

Frank spent 20 years teaching and conducting research in the Kahlert School of Computing, prior to joining the School he spent 20 years as a professor in the Department of Mathematics here at the University of Utah.  He received an undergraduate degree in engineering at the University of Alberta (Engineering–Physics, with emphasis on Electrical Engineering), continuing at the University of Alberta he received Masters degrees in Electrical Engineering (Servomechanisms) and in Mathematics (Numerical Analysis), and a Ph.D. in Mathematics (Computational Asymptotics).

During his lifelong career, he produced a large body of original research in the development of algorithms, in areas “less traveled on” by other researchers, such as computational approximation, solution of nonlinear equations, Sinc methods; these yield novel methods for solving partial differential and integral equations.  He also developed algorithms for non-destructive viewing of a part of a human being, and for determining whether the vote count at a voting center is fraudulent. He was an extremely productive scholar, publishing more than 200 papers and multiple books.  Frank also lectured in over 20 different countries.

Frank was born in Hungary, and after WWII, he lived in East Germany, then in West Germany, then in Canada, finally landing in the United States after completion of his course studies.

There will be a celebration of Frank’s life on November 23, 2024.

https://users.cs.utah.edu/~stenger/

https://users.cs.utah.edu/~stenger/history.pdf

This story originally appeared on the School of Computing website.

Utah’s Fly’s Eye Telescope Array

Closing in on the cosmic origins of the “OMG Particle”

The helicopter was flying high through the night sky with its door slightly ajar. Johannes Eser and Matthew Rodencal were in the back controlling a laser pointing out through the gap. They aimed towards a balloon 35 kilometers above them and fired.

It sounds like a scene from a spy movie, but Eser and Rodencal, then at the Colorado School of Mines, were actually testing a plan to spot ultra-high-energy cosmic rays, the most energetic particles ever discovered. They stream across the universe before slamming into our atmosphere and emitting a tiny flash of light. The laser was supposed to mimic that flash.

This twilight helicopter ride happened nearly a decade ago, but is part of a saga that goes back to at least 1991. In October that year, we detected the single most energetic particle ever seen. It had the kinetic energy of a bowling ball dropped from shoulder height, crammed into a subatomic-sized package. It quickly became known as the “Oh-My-God particle” and, naturally enough, scientists were desperate to know where it came from.

Since then, we have spotted many similar particles. Huge ground-based detectors have provided us with maps of where they might come from, together with a shortlist of the extreme cosmic objects that could produce them. But truth be told, we still don’t have all the answers. That is why scientists now want to take the cosmic ray hunt into the atmosphere – and ultimately into space – in an effort to solve the mystery … once and for all.

This story really began with another balloon in 1911. At that time, physicist Victor Hess climbed into a hot air balloon, taking with him instruments to measure levels of radiation as he ascended. He found the readings increased as he went up – contrary to the prevailing belief that they would decline with altitude – and concluded that this radiation must be caused by something coming from space, not Earth. That something became known as cosmic rays, though we now know them to be particles, often protons or clusters of protons and neutrons.

Cosmic rays

When cosmic rays hit our atmosphere, they usually collide with molecules in the atmosphere, producing a shower of energetic particles that rain down. (These descendants of the original particle still contain a lot of energy and have been suspected of interfering with the electronics of aircraft.) It is this shower of secondary particles that we have learned to detect, allowing us to infer the energy of the cosmic ray that produced it. We now know that cosmic rays come in a range of energies. The least energetic are the most common, with each square centimeter of the outer atmosphere being hit once a minute by one of them. The most energetic are much rarer – they strike only once a century per square kilometer.

David Keida

The rays that Hess detected were relatively modest in energy, it turns out, measuring less than 1 gigaelectronvolt (GeV). It wasn’t until the 1960s that more extreme versions were found, when physicist John Linsley used an array of ground detectors in New Mexico to spot the shower created by a cosmic ray with the vastly greater energy of 100 exaelectronvolts (EeV).

That was a staggering find. But the best was yet to come. In the 1980s, a larger project called the Fly’s Eye telescope array was built in Utah [at Dugway Proving Ground, see photo above]. It had more than 100 detectors, each equipped with a 1.5-meter-wide mirror to look for the flash of particles colliding in the atmosphere. Each of the telescope’s detectors were designed to point at a different part of the field of view, in a similar way to insects’ compound eyes. It was this that earned the telescope its name. “We were hoping we might pick up something really unusual,” says David Kieda at the University of Utah, who worked on the telescope at the time.

 

Read the full article at New Scientist (subscription required).

Darryl Butt: Finding one’s ‘professional self’

Where does a skilled painter, celebrated inter-disciplinary educator and dean of College of Mines & Earth Sciences (CMES) go to advance their career? In the case of Darryl Butt, he becomes the dean of the graduate school. University of Utah Provost Mitzi M. Montoya announced in March that Butt has accepted the offer and will ascend to his new role June 1.

Darryl Butt

Also current Director of the Center for Multi-Scale Fluid-Solid Interactions in Architected and Natural Materials Energy Frontier Research Center, Butt is a celebrated, interdisciplinary educator and oil painter. He promotes a de-silo-ed approach to looking at research problems and projects. Using a “flipped classroom” model and a dynamic (as in changeable, by all involved) syllabus, his vertically integrated approach flattens hierarchies, disassembles firewalls between disciplines, and encourages a sense of belonging among all students.

His monthly painting workshops in the CMES’s advising center are popular and creates a space for the scientifically minded and others to get out of their empirical box and into an integrated one, shot through with creativity, innovation and “flow.” It’s an approach inspired by the 15th century scientist and artist Leonardo da Vinci.

Butt joined the U in 2016 as professor of metallurgical engineering and college dean, establishing strategic plans to address safety and security; student, staff and faculty success; cross-campus collaboration; fiscal stewardship and transparency. Under his leadership, the EpiCenter, a hub of student activity and advising for the college, was created, and the departments of Metallurgical Engineering and Materials Science and Engineering were merged. Butt has also been instrumental in enabling the merger of the CMES and College of Science.

The Graduate School is arguably the perfect fit for Butt. It offers more than 200 graduate degrees and supports more than 8,400 students enrolled in programs that vary from Master of Architecture to a doctorate in Nuclear Engineering.  As dean he will assess ongoing improvements to all academic programs and centers at the U through the Graduate Council Review process and enable the development of interdisciplinary graduate programs for multi-college academic degrees and certificates. Dr. Peter Trapa, Dean of the College of Science, will assume leadership responsibilities of the College of Mines & Earth Sciences which merged last year with the College of Science.

“One of the joys I get from research is watching the development of students and postdocs and helping them find their ‘professional selves,’” says Butt. “I’m looking forward to being their advocate as well as supporting the incredible faculty and staff at the University in support of our ambitious research mission.”

Storm Peak

Storm Peak


Storm Peak is a lab and a classroom.

Over forty years ago what would become the premier, high-elevation atmospheric science laboratory in the Western United States opened at Steamboat Springs Ski Resort in Colorado. Storm Peak, as the facility is called, has been “the perfect place, to have your head in the clouds,” says director Gannet Hallar, professor of atmospheric sciences at the U. The laboratory sits in the clouds about 40 percent of the time in the winter. “That allows us to sample clouds and the particles that make clouds at the same time. And from that, the lab has produced about 150 peer-reviewed publications.”

Named after the peak which stands at 10,500 feet above sea level, the 3,500-square-foot lab is not only the perfect place for established researchers but for budding scientists who are studying what changes a cloud, what makes it snow versus what makes it not snow and what makes more versus less ice in the atmosphere, among other questions.

Storm Peak, Colorado

This year twelve students in the new Science Research Initiative at the College of Science will make the five-hour road trip to Steamboat Springs, then take the chairlift to Storm Peak. Funded by the National Science Foundation and operated under a permit from the U.S. Forest Service, the storied lab has an incredible record of long—term atmospheric measurements, “critical,” according to Hallar, to the success of the site and for the broader understanding we need to improve climate predictions.

Hallar has the advantage of operating out of two locations: Storm Peak where regional air quality through long data records is determined over decades of change, as well as the top floor and roof of the Browning Building at the U’s main Salt Lake campus where she studies urban air quality. One week students and faculty collaborators can be seen using a multifilter showdowband radiometer overlooking the Salt Lake Valley and then the next week literally in the clouds witnessing science in the making. Students “can learn concepts in the classroom and then watch that data appear physically in front of their eyes,” says Hallar. “They can see the concept of photochemistry as it appears, how … the concentration of gases change as the sun comes up.”

As pristine as the air is at Storm Peak, just west of the Continental Divide in the northwest corner of the state, it is also typical of rural areas in the U.S. where coal plant emissions can impact atmospheric composition. Two of those plants are upwind of the facility which makes the measurements Hallar and her team collect even more relevant to other rural locations.

William Anderegg

“What’s amazing about this place is that we have shown over the fifteen plus years that we've run undergraduate programs that it's a place of inspiration.” Students learn how important changes in gases are in terms of public health and climate. “I think it's important for our students to come and see us measuring and calibrating carefully. They can see the care and precision taken to measure greenhouse gases.”

Not all greenhouse gases are human-derived. Wildfires in the West have become a new variable in measuring atmospheric composition, involving forest ecologists like William Anderegg, director of the Wilkes Center for Climate Science and Policy at the U. And there are other measurements being done at Storm Peak that might prove surprising. “We've done studies on how tree emissions change when beetle infestation happens,” says Hallar, which impacts air quality as well.

Storm Peak is just one node in the Global Atmospheric Watch Network, a consortium of labs and observation sites that together address atmospheric composition on all scales, from global and regional to local and urban. Hallar and her team work closely with sites on Mt. Washington and Whiteface, in New Hampshire and New York, respectively, as well Mt. Bachelor in Oregon, among others. Recently, the team submitted a proposal to collaborate with Pico del Este, a field site in Puerto Rico.

It will require collaboration on a global scale to address climate change, and aerosol particle research, says Hallar, “is most definitely the critical measurement that [atmospheric scientists] need to make.” In addition to measuring methane–a critical player because of its warming potential–at Storm Peak, “we can see what we call the Keeling Curve. We can see how carbon dioxide increases every year, but has a seasonal cycle, that is associated with how trees and plants uptake carbon dioxide.

Delivery via snowcat.

Meanwhile, students are preparing for their field trip to Storm Peak in March where the ski resort will not only provide transportation up to the facility via lift but ski passes. A staging facility in west Steamboat Springs houses equipment that includes a snow cat, snowmobiles and other equipment. Up top, bunks are limited to nine, so there is a lot of travel up and down the slopes. But it’s worth it for students to get their collective head in the clouds to work with instrumentation critical to measuring clean air and discovering ramifications more broadly in terms of global warming.

by David Pace, photos by Maria Garcia, Ian McCubbin, and Gannet Hallar.

>> HOME <<

Jessica Haskins

Jessica Haskins


Answering fundamental questions about the chemistry that drives variability in air pollution formation & impacts climate.

There may not be a lot in common with Salt Lake City and Forsyth, GA, population 4,239, but Monroe County’s seat­­–other than being home to the county’s only high school­–does have a small community theater with the same name as one of Salt Lake City’s most notable venues: “The Rose.”

The Rose Theater

In Forsyth, the Rose Theater appears to stage family-friendly shows: “Four Weddings and An Elvis” closes in February. Later, this November 11th, there’s a single-night engagement that looks like an annual outing, “Hometown Gospel Sing.”

The theatre located on Forsyth’s town square is emblematic of the small-town life in which Jessica Haskins grew up before winning a full-ride, need-based scholarship to Massachusetts Institute of Technology (MIT). And her move from rural Georgia to the east coast megalopolis was shocking for reasons other than just the differences in weather and academic rigor. "It was a punch in the face” says Haskins, “coming to MIT, and realizing that the experience of most Black Americans outside the southeast, particularly in STEM fields, is one where they often find themselves the only non-white person in the room.”

In fact, Haskins' time at Mary Persons High School was much more diverse than MIT, ranked at the time by the Princeton Review as the toughest school to get into. “None of the places I have worked at in the last 13 years since I graduated high school have come close to mirroring the racial and socioeconomic diversity I grew up thinking was the norm in all of America,” she says. “As such, it’s never been difficult for me to see the power of privilege and the persistence of systemic racism at every stage of the STEM pipeline as I progressed through it.”

Mary Persons High School

Now an assistant professor in the Department of Atmospheric Sciences at the University of Utah, Haskins is savvier about her own seemingly unlikely journey into higher education. More importantly, perhaps, she’s keenly aware of the challenges “first-gen” college students and other underrepresented populations still face, having to navigate hurdles referred to as the “hidden curriculum” of academia. The term refers to things a neophyte in the academic world should know to maximize their experience and success but doesn’t­. These are things that more privileged students tacitly understand or have been made aware of, like the norm of emailing potential professors to work with in graduate school before they submit their graduate applications or cluing into the notion that graduate students in STEM fields are often actually paid to go to school and do so without accruing debt from tuition.

Paying it Forward
Haskins’ unique perspective of these issues inspired her to use her second government stimulus check during the pandemic to fund a modest scholarship for an underrepresented minority student interested in pursuing an undergraduate STEM degree from her high school. This year, the scholarship went to Maleisha Jackson who is studying computer and robotics engineering at Kennesaw State University, located in north Georgia. “I think people really underestimate the impact that even receiving a 1,000 dollars can do for a student who needs it. I don’t know how I would have afforded a laptop and school supplies for my first year at MIT if I hadn’t received local scholarships like this one, and I want to pay that forward,” Haskins says.

Professor Susan Solomon

Fortunately, MIT treated Haskins well, brokering an “externship” with NASA‘s Goddard Space Flight Center and providing an opportunity to work with Professor Susan Solomon, a 2007 Nobel Peace Prize co-recipient and a National Medal of Science winner awarded by the President. Solomon is best known for being the first to propose the chemical mechanism that is the cause of the Antarctic ozone hole. In the Solomon lab, the budding atmospheric scientist used MLS satellite data & balloon observations to explain fundamental chemical and meteorological differences that prohibit Arctic ozone loss from becoming as severe as Antarctic ozone loss, ultimately resulting in the publication of Haskins’ undergraduate research in the high impact journal, PNAS.

But even with the scholarship to MIT, Haskins required four years of Federal Pell grants and multiple campus jobs to make ends meet and says that even covering graduate application fees was difficult for her. When she was accepted to the University of Washington for graduate school, she was lucky enough to receive an ARCS Foundation fellowship she used to get herself cross-country to Seattle.

Compelling Challenges
Furnished with a PhD, she returned to MIT for a short stint as an NSF Postdoctoral Fellow  before being hired by the U. Needless to say, it wasn’t for the theater that she and her wife moved to Utah’s capital city, but rather the unique (and to her, compelling) challenges facing the state, particularly the winter PM2.5 and summer ozone air quality issues impacting the Wasatch Front, especially during periodic weather “inversions” that trap emissions along the metropolitan valley. An expert in the chemistry of how chloride present in salt impacts air quality, particularly in the winter, Haskins noted, “there is no place in the United States that my research on air quality is more relevant to science and policy than it is in Salt Lake City."

Jessica Haskins

Haskins’ research group at the U is focused on understanding and accurately modeling heterogeneous and multiphase chemistry that transforms natural and anthropogenic (human-derived) gas phase emissions into aerosol particles. These particles make up a key component of smog known as particulate matter (PM2.5). It turns out that, globally, exposure to PM2.5 is the fifth greatest risk factor for death, ranking only behind tobacco use and several other factors related to obesity. But in addition to their impact on human health, these aerosols formed through chemical reactions in the atmosphere also have direct impacts on climate and the Earth’s temperature by reflecting and absorbing light.

Today, more episodes of unhealthy air quality in the U.S., including in Salt Lake City, are experienced in the winter rather than summer, pointing to a shift in the chemistry responsible for formation of secondary pollutants like PM2.5, and ozone. This chemical regime shift has the unintended consequence of rendering past policy solutions to summer air quality issues largely ineffective in the winter. The ineffectiveness left scientists and policy makers with questions about how well they understand the underlying chemistry and what the most effective means are to mitigate such issues now and in a changing world.  Haskins’ past and future research focuses on understanding this type of chemical shift through the lens of atmospheric chemistry with an eye towards understanding how future policy and climate solutions will impact the Earth’s temperature and air pollution formation.

Global Implications
The relevance of such research is not restricted to the intermountain west but has global implications. Large-population countries, like India and China, may have fewer interventions to maintain quality air such as EPA-recommended “scrubbers” on power plants, less stringent policies around automobile emissions and higher rates of open-air waste incineration. “I think what’s most exciting about the prospect of being here at the U,” says Haskins, “is the fact that what we learn about the drivers of variability in air pollution formation and how to control them here in Utah have a global relevance that can help inform policy makers in the East on the fastest and most effective ways to clean up their air quality.”

Haskins' interdisciplinary research sits at the intersection of atmospheric science and chemistry and strives to deepen our understanding of the complex cascade of reactions between our emissions and atmospheric oxidants. Those oxidants control how long gases like methane stay in the atmosphere. It’s a gumbo of considerations that turns, for Haskins, on her understanding of concentrations of common atmospheric oxidants like OH, O3, NO3, and Cl radicals that are dependent on everything from atmospheric water vapor concentrations, exposure to sunlight, temperature, aerosol surface area, emissions of gases like NOx from combustion, etc. She notes that “these processes are challenging to measure and therefore challenging to represent in models, and much remains to be discovered!”

Perhaps unique to her approach is the determination to centralize, assimilate and “exploit” the data already collected from satellites, observation networks, aircraft campaigns, government records and relevant available datasets to improve models. “One of the largest looming challenges our field faces now and, in the future, will be connecting an ever-growing dataset of highly localized measurements to scientifically accurate, but computationally efficient representations in predictive global models,” Haskins has written.

A Lot of Data
All of those data sets along with new ones yet to be collected are key to improving the accuracy and speed of global models of atmospheric composition. “Drawing on my experience in both the measurement and modeling community, my research program will serve to bridge this already significant but growing gap between the data we have and the data we use to inform predictive models and decision makers. Basically, we have a lot of data, and I want to use it,” Haskins says.

The upcoming projects in her group include re-analyzing old measurements to extract new constraints for models, new applications of machine learning and artificial intelligence to atmospheric chemistry problems and integrating data from product databases, patent applications, and other public records. “We’re still catching up with being able to efficiently use data from a variety of sources beyond just measurements made by those of us in academia–especially when you consider how rapidly new computation methods like machine learning have evolved,” she states.  The application of artificial intelligence methods has only just begun to be applied to atmospheric chemistry problems, she explains, “but could greatly improve the speed and accuracy of our models.”

It's an exciting time to be an atmospheric scientist rooted in chemistry, and Jessica Haskins is looking forward to better understanding and communicating the relevant chemical drivers of variability in air pollution formation. But here in the high desert climate that has precious little in common with her Georgian home–except for that community theater thing–she is enthusiastic about building a diverse and collaborative research group in the Department of Atmospheric Sciences at the U and looks forward to preparing others for an auspicious career in science.

by David Pace

A.A.U. Membership

UTAH JOINS THE A.A.U.


 

"It is difficult to overstate the importance of AAU Membership. This elevates the U to an exceptional category of peer institutions."
- Dean Peter Trapa

 

The University of Utah is one of the newest members of the prestigious Association of American Universities, which for more than 100 years has recognized the most outstanding academic institutions in the nation.

Mary Sue Coleman, president of the Association of American Universities (AAU), announced Wednesday that University of Utah President Ruth V. Watkins has accepted an invitation to join the association, along with the University of California, Santa Cruz and Dartmouth College. The three new members bring the number of AAU institutions to 65.

AAU invitations are infrequent; this year’s invitations are the first since 2012.

 

 

“AAU’s membership is limited to institutions at the forefront of scientific inquiry and educational excellence,” said Coleman. “These world-class institutions are a welcome addition, and we look forward to working with them as we continue to shape policy for higher education, science, and innovation.” - Mary Sue Coleman

 

About the AAU
The AAU formed in 1900 to promote and raise standards for university research and education. Today its mission is to “provide a forum for the development and implementation of institutional and national policies promoting strong programs of academic research and scholarship and undergraduate, graduate and professional education.”

A current list of member institutions can be found here. The membership criteria are based on a university’s research funding (the U reached a milestone of $547 million in research funding in FY2019); the proportion of faculty elected to the National Academies of Science, Engineering and Medicine; the impact of research and scholarship; and student outcomes. The U has 21 National Academies members, with some elected to more than one academy.

An AAU committee periodically reviews universities and recommends them to the full association for membership, where a three-fourths vote is required to confirm the invitation.

Leaders of AAU member universities meet to discuss common challenges and future directions in higher education. The U’s leaders will now join those meetings, which include the leaders of all the top 10 and 56 of the top 100 universities in the United States.

 

“We already knew that the U was one of the jewels of Utah and of the Intermountain West. This invitation shows that we are one of the jewels of the entire nation.” - H. David Burton

 

U on the rise
In FY2019 the U celebrated a historic high of $547 million in sponsored project funding, covering a wide range of research activities. These prestigious awards from organizations such as the U.S. Department of Energy, National Institutes of Health and National Science Foundation are supporting work in geothermal energy, cross-cutting, interdisciplinary approaches to research that challenge existing paradigms and effects of cannabinoids on pain management.

They also are funding educational research programs with significant community engagement, such as the U’s STEM Ambassador Program and the Genetic Science Learning Center’s participation in the All of Us Research Program.

“AAU is a confirmation of the quality and caliber of our faculty and the innovative work they are doing to advance knowledge and address grand societal challenges. Our students and our community will be the ultimate beneficiaries of these endeavors. " - President Ruth Watkins

 

On Nov. 4, 2019, the U announced a $150 million gift, the largest single-project donation in its history, to establish the Huntsman Mental Health Institute. These gifts and awards are in addition to the ongoing support of the U from the Utah State Legislature.

This fall the university welcomed its most academically prepared class of first-year students. The freshman cohort includes 4,249 students boasting an impressive 3.66 average high school GPA and an average ACT composite score of 25.8. The incoming class also brings more diversity to campus with both a 54% increase in international students and more bilingual students than the previous year’s freshman class. Among our freshmen who are U.S. citizens, 30% are students of color.

The U’s focus on student success has led to an increased six-year graduation rate, which now sits at 70%—well above the national average for four-year schools. The rate has jumped 19 percentage points over the past decade, making it one of only two public higher education research institutions to achieve this success.

TreeNote

TreeNote

by Dr. Nalini Nadkarni, professor emerita, School of Biological Sciences


Introduction - October 6, 2022
For forty years, I’ve documented the ecological values that trees provide, like stabilizing soils and providing wildlife habitat. Listen

Autumn Colors - October 13, 2022
The process of moving out the chlorophyll reveals the yellow and orange of other leaf pigments. Listen

Why Apples? - October 20, 2022
Flowering plants have evolved so that their seeds will land in the best place to flourish, the very definition of biological fitness. Listen

The Wonders of Cork - October 28, 2022
Humanity has used cork for millennia. It's light, buoyant, and elastic, thanks to the 40 million air cells per cubic inch. Listen

Body Language - November 3, 2022
I noticed an odd branch on a small maple tree that started growing horizontally but then took a sharp vertical turn. Listen

Baseball Bats - November 10, 2022
Baseball bats use wood from ash trees to provide just the right feel for hitting homers. Listen

Symbolic Power - November 17, 2022
Why do trees pop up on our flags, stamps and money? Listen

Sycamore Trees - November 23, 2022
These trees thrive in city settings because of their rapid growth and tolerance of pollution. Listen

Good Old Trees - December 1, 2022
Habitats thrive when they have plenty of veterans trees in the mix. Listen

Music - December 8, 2022
The conductor’s baton is the smallest instrument in the orchestra pit and it makes no sound.   Listen

Holiday Wreaths - December 15, 2022
With the holidays come evergreen wreaths on people’s doors and windows. Where does all of this holiday greenery come from? Listen

Mistletoe - December 20, 2022
Given the biological purpose of mistletoe it is pretty strange that this parasite is also a symbol of love. Listen

Hermann Hesse - December 29, 2022
One of my favorite books is an essay by the German writer Hermann Hesse, who received the Nobel Prize for Literature in 1946. Listen

Petrified Trees - January 5, 2023
On a recent camping trip in Nevada, I visited a display of petrified wood. Listen

Trees and Trains - January 12, 2023
Each mile of train track passes over 3,000 railroad ties – nearly all of them made from trees. Listen

Into the Canopy - January 19, 2023
It wasn’t all that long ago that scientists called the tree canopy "the last biotic frontier." Listen

Trees and Money - January 26, 2023
I recently discovered that not a single tree is cut down to make America's money! Listen

Tu BiShvat - February 2, 2023
One of my favorite ways to honor trees is celebrating Tu BiShvat, the Jewish holiday that commemorates the “New Year for the Trees.” Listen

Tree Architecture - February 9, 2023
The diversity in tropical forests is mind-boggling. Costa Rica alone hosts nearly 2,000 types of trees! Listen

Gambel Oaks - February 16, 2023
We know that when it comes to people, unassuming doesn’t mean uninteresting. The same holds true for trees.Listen

Originally published @ https://www.kuer.org/podcast/treenote