Patterns in Sound

Fernando Guevara Vasquez


U mathematicians create quasiperiodic patterns using sound waves.

Mathematicians and engineers at the University of Utah have teamed up to show how ultrasound waves can organize carbon particles in water into a sort of pattern that never repeats. The results, they say, could result in materials called “quasicrystals” with custom magnetic or electrical properties.

The research is published in Physical Review Letters.

“Quasicrystals are interesting to study because they have properties that crystals do not have,” says Fernando Guevara Vasquez, associate professor of mathematics. “They have been shown to be stiffer than similar periodic or disordered materials. They can also conduct electricity, or scatter waves in ways that are different from crystals.”

Quasiperiodic two-dimensional pattern by Fernando Guevara Vasquez

Non-pattern patterns

Picture a checkerboard. You can take a two-by-two square of two black tiles and two white (or red) tiles and copy and paste to obtain the whole checkerboard. Such “periodic” structures, with patterns that do repeat, naturally occur in crystals. Take, for example, a grain of salt. At the atomic level, it is a grid-like lattice of sodium and chloride atoms. You could copy and paste the lattice from one part of the crystal and find a match in any other part.

But a quasiperiodic structure is deceiving. One example is the pattern called Penrose tiling. At first glance, the geometric diamond-shaped tiles appear to be in a regular pattern. But you can’t copy and paste this pattern. It won’t repeat.

The discovery of quasiperiodic structures in some metal alloys by materials scientist Dan Schechtman earned a 2011 Nobel Prize in Chemistry and opened up the study of quasicrystals.

Since 2012, Guevara and Bart Raeymaekers, associate professor of mechanical engineering, have been collaborating on designing materials with custom-designed structures at the microscale. They weren’t initially looking to create quasiperiodic materials—in fact, their first theoretical experiments, led by mathematics doctoral student China Mauck, were focused on periodic materials and what patterns of particles might be possible to achieve by using ultrasound waves. In each dimensional plane, they found that two pairs of parallel ultrasound transducers suffice to arrange particles in a periodic structure.

But what would happen if they had one more pair of transducers? To find out, Raeymaekers and graduate student Milo Prisbrey (now at Los Alamos National Laboratory) provided the experimental instruments, and mathematics professor Elena Cherkaev provided experience with the mathematical theory of quasicrystals. Guevara and Mauck conducted theoretical calculations to predict the patterns that the ultrasound transducers would create.

Creating the quasiperiodic patterns

Cherkaev says that quasiperiodic patterns can be thought of as using, instead of a cut-and-paste approach, a “cut-and-project” technique.

If you use cut-and-project to design quasiperiodic patterns on a line, you start with a square grid on a plane.  Then you draw or cut a line so that it passes through only one grid node. This can be done by drawing the line at an irrational angle, using an irrational number like pi, an infinite series of numbers that never repeats. Then you can project the nearest grid nodes on the line and can be sure that the patterns of the distances between the points on the line never repeats. They are quasiperiodic.

The approach is similar in a two-dimensional plane. “We start with a grid or a periodic function in higher-dimensional space,” Cherkaev says. “We cut a plane through this space and follow a similar procedure of restricting the periodic function to an irrational 2-D slice.” When using ultrasound transducers, as in this study, the transducers generate periodic signals in that higher-dimensional space.

The researchers set up four pairs of ultrasound transducers in an octagonal stop sign arrangement. “We knew that this would be the simplest setup where we could demonstrate quasiperiodic particle arrangements,” Guevara says. “We also had limited control on what signals to use to drive the ultrasound transducers; we could essentially use only the signal or its negative.”

Into this octagonal setup, the team placed small carbon nanoparticles, suspended in water. Once the transducers turned on, the ultrasound waves guided the carbon particles into place, creating a quasiperiodic pattern similar to a Penrose tiling.

“Once the experiments were performed, we compared the results to the theoretical predictions and we got a very good agreement,” Guevara says.

Custom materials

The next step would be to actually fabricate a material with a quasiperiodic pattern arrangement. This wouldn’t be difficult, Guevara says, if the particles were suspended in a polymer instead of water that could be cured or hardened once the particles were in position.

“Crucially, with this method, we can create quasiperiodic materials that are either 2-D or 3-D and that can have essentially any of the common quasiperiodic symmetries by choosing how we arrange the ultrasound transducers and how we drive them,” Guevara says.

It’s yet to be seen what those materials might be able to do, but one eventual application might be to create materials that can manipulate electromagnetic waves like those that 5G cellular technology uses today. Other already-known applications of quasiperiodic materials include nonstick coatings, due to their low friction coefficient, and coatings insulating against heat transfer, Cherkaev says.

Yet another example is the hardening of stainless steel by embedding small quasicrystalline particles. The press release for the 2011 Nobel Prize in Chemistry mentions that quasicrystals can “reinforce the material like armor.”

So, the researchers say, we can hope for many new exciting applications of these novel quasiperiodic structures created by ultrasound particle assembly.

Find the full study here.

 

by Paul Gabrielsen, first published in @theU

Amanda Cangelosi

Amanda Cangelosi receives U's Early Career Teaching Award


Amanda Cangelosi, instructor (lecturer) in the Mathematics Department, has received the 2021 Early Career Teaching Award from the University of Utah. The award is given to outstanding young faculty members who have made significant contributions to teaching at the university. Specifically, the University Teaching Committee looks for a faculty member who has distinguished her or himself through the development of new and innovative teaching methods, effectiveness in the curriculum and classroom, as well as commitment to enhancing student learning.

“I’m honored to receive this award and recognition from the university,” said Cangelosi. “Since my work focuses on the preparation of future Utah K-12 teachers, which intersects with social justice goals in a foundational way, this award means that the U cares about dismantling systemic oppression. There is nothing more systemic than K-12 education, and thus no more impactful space to invest one’s energy.”

In her approach to teaching, Cangelosi believes it's important for children to have math teachers who are skillfully trained to break the unhealthy and dangerous cycle of students who make value judgments about their self-worth based upon their achievement (or lack of) in math. “Issues of mathematical status and power between students in a math classroom need to be recognized and attended to by teachers so children don’t label themselves as “stupid” or, equally-dangerously, as “smart” relative to each other,” she said.

To overcome social divisions and stratifications within the classroom, Cangelosi believes teachers need to focus on creating productive, collaborative, and student-centered learning activities, implementing culturally relevant lessons, using multiple approaches to teaching math, and embracing unconventional approaches. Implementing these strategies require teachers to engage in challenging identity work, understanding the history of education in the U.S., embracing heterogeneous classrooms, and engaging in anti-bias and anti-racist training within mathematical contexts.

In her own teaching, Cangelosi draws heavily from the mainstream math education literature. For example, several of her students were personally affected from watching and reflecting upon Danny Martin's Taking a Knee in Mathematics Education talk from the 2018 annual conference of the National Council of Teachers of Mathematics.

Cangelosi’s teaching contributions include the following:

  • She taught a math lab class at Bryant Middle School for the 2019-2020 academic year to deepen productive collaborations between the U and local schools, thereby creating a seamless practicum space for undergraduate Math Teaching majors, while providing long-term outreach to the local community.
  • Inspired by Utah State University’s teaching practicum, in 2011 she established the current innovative structure of the Math 4095 course—including funding (often out of her own pocket) for mentor teachers, which resulted in onsite, fully-contained classrooms at local schools for University of Utah teaching majors.
  • During the pandemic, she created a sustainable and equitable virtual after-school tutoring program that allowed local high school students to meet with math undergraduates for homework support.
  • She created sanitized manipulatives kits to be distributed to her students for use in online synchronous lectures and labs, to help maintain the integrity of her hands-on collaborative Math 2000/4010/4020 classes during the COVID-19 pandemic.
  • She helped develop course curricula for Math 2000, Math 1010, and Math 4090/4095, introducing and modifying resources from her previous work as a secondary math teacher at The Urban School of San Francisco, bringing what are now mainstream practices to the University of Utah.
  • She has made numerous community, school-district-level, and Utah State Board of Education (USBE) contributions, such as diverse teacher recruitment, committees, and professional development.

“I love approaching old concepts in new, nontraditional ways, because we so often confound our understanding of concepts with the arbitrary conventions that we use to communicate them,” she said. “This often challenges student perceptions of classroom status and power in productive ways, often flipping the previously conditioned dynamic on its head and inviting students to rewrite their mathematical identities in a positive light.”

Cangelosi received her Bachelor of Science degree in Mathematics Education, as well as a Master’s of Statistics degree from Utah State University. She also has a post-baccalaureate degree in mathematics from Smith College. She joined the U’s Math Department in 2011.

 

by Michele Swaner - first published @ math.utah.edu

Allergy Season

Climate Change & Allergies


William Anderegg

With spring around the corner, here's some bad news for allergy sufferers: Human-caused climate change has both worsened and lengthened pollen seasons across the U.S. and Canada, a study Monday reports.

The new research shows that pollen seasons start 20 days earlier, are 10 days longer and feature 21% more pollen than they did in 1990.

“The strong link between warmer weather and pollen seasons provides a crystal-clear example of how climate change is already affecting people's health across the U.S.,” said study lead author William Anderegg, a biologist at the University of Utah.

"Climate change is making pollen seasons worse across the U.S., and that has major implications for asthma, allergies and other respiratory health problems," he told USA TODAY.

Climate change, aka global warming, is caused by the burning of fossil fuels such as oil, gas and coal, which release greenhouse gases such as carbon dioxide and methane into the atmosphere.

Allergies to airborne pollen can be more than just a seasonal nuisance to many. Allergies are tied to respiratory health and have implications for viral infections, emergency room visits and even children’s school performance, according to a statement from the University of Utah. More pollen, hanging around for a longer season, makes those impacts worse.

Climate change has two broad effects, according to the study. First, it shifts pollen seasons earlier and lengthens their duration. Second, it increases the pollen concentrations in the air so pollen seasons are, on average, worse.

Anderegg's research team looked at measurements from 1990 to 2018 from 60 pollen count stations across the U.S. and Canada, maintained by the National Allergy Bureau.

Although nationwide pollen amounts increased by around 21% over the study period, the greatest increases were recorded in Texas and the Midwest, and more among tree pollen than among other plants.

"Our findings are consistent with a broad body of research on pollen seasons, respiratory health and climate change," Anderegg said. "Other studies have also found increasing pollen loads in many regions and, in controlled greenhouse settings, that warmer temperatures and higher carbon-dioxide concentrations increase plant pollen production."

The researchers also found that the contribution of climate change to increasing pollen amounts is accelerating.

“Climate change isn’t something far away and in the future," Anderegg concluded. "It’s already here in every spring breath we take and increasing human misery. The biggest question is – are we up to the challenge of tackling it?”

The study was published in the Proceedings of the National Academy of Sciences, a peer-reviewed journal.

 

First published @ usatoday

Sloan Research Fellow

LUISA WHITTAKER-BROOKS AWARDED PRESTIGIOUS SLOAN AWARD


Assistant Professor of Chemistry Luisa Whittaker-Brooks is one of the recipients of the prestigious 2021 Sloan Research Fellowship, given to researchers “whose creativity, innovation, and research accomplishments make them stand out as the next generation of scientific leaders.”

The awards are open to scholars in eight scientific and technical fields: chemistry, computational and evolutionary molecular biology, computer science, Earth system science, economics, mathematics, neuroscience and physics. Candidates must be nominated by their fellow scientists, and winners are selected by independent panels of senior scholars on the basis of a candidate’s research accomplishments, creativity and potential to become a leader in his or her field. More than 1000 researchers are nominated each year for 128 fellowship slots. Winners receive a two-year, $75,000 fellowship which can be spent to advance the fellow’s research.

Whittaker-Brooks, a 2007 Fulbright fellow, earned her doctorate from the State University of New York at Buffalo before a L’Oreal USA for Women in Science Postdoctoral fellowship at Princeton University. Among other awards, Whittaker-Brooks has received a Department of Energy Early Career Award, a Cottrell Research Scholarship, a Marion Milligan Mason Award for Women in the Chemical Sciences and was named one of C&EN’s Talented 12 in 2018.

“I was very excited as this award is a testament to all the great work that my students have accomplished throughout these years,” Whittaker-Brooks said. “I am happy to see that their endless creativity and research work ethics are highly recognized in the field.”

Her research studies the properties and fabrication processes of nanomaterials for potential applications in solar energy conversion, thermoelectrics, batteries and electronics. She and her research group are also testing hybrid concepts to simultaneously integrate multiple functions, such as a nanosystem that scavenges its own energy.

The Fellowship is funded by the Alfred P. Sloan Foundation, a not-for-profit dedicated to improving the welfare of all through the advancement of scientific knowledge. Founded in 1934 by industrialist Alfred P. Sloan Jr., the foundation disburses about $80 million in grants each year in four areas: for research in science, technology, engineering, mathematics and economics; initiatives to increase the quality and diversity of scientific institutions and the science workforce; projects to develop or leverage technology to empower research and efforts to enhance and deepen public engagement with science and scientists.

Since the first fellowships were awarded in 1955, 44 faculty from University of Utah have received a Sloan Research Fellowship.

 

first published @ chem.utah.edu

Cottrell Scholar

Gail Zasowski Named a Cottrell Scholar


Dr. Gail Zasowski, assistant professor of the Department of Physics & Astronomy, has been named a 2021 Cottrell Scholar. The Cottrell Scholar program, run by the Research Corporation for Science Advancement, honors early-career faculty members for the quality and innovation of not only their research programs but also their educational activities and their academic leadership. Each year, scholars are selected from a pool of candidates based on their research, education, leadership accomplishments, and proposed future work, as evaluated by panels of external experts.

"I'm honored to be on this list of amazing researchers,” said Zasowski. “This award will allow my group and me to try out a lot of very cool ideas, and I'm excited to be part of the really unique Cottrell Scholar community!"

Jordan Gerton, director of the Center for Science and Mathematics Education at the U and associate professor in the Physics Department, is a 2007 Cottrell Scholar. He was the keynote speaker at last year’s online annual Cottrell Scholar Conference, where he urged the “vibrant collaborative community of Cottrell Scholars to embrace their role as agents of change at their institutions.”

Zasowski, who joined the university in 2017, is an astronomer whose research focuses on understanding how galaxies produce and redistribute the heavy elements that shape the Universe and enable life in it. The 99.5% of Earth’s mass that is not made of hydrogen was actually forged in generations of stars over billions of years. This same “stardust” is responsible for most of what we observe in the Universe: from super-clusters of galaxies to stars and planets in our own galaxy. In order to understand the evolution of the Universe, we have to understand just how it has been enriched in the heavier elements (like carbon, nitrogen, and oxygen) by the stars and gas that reside inside galaxies.

"My research," said Zasowski, "takes advantage of our unique position within our own Milky Way galaxy to use the chemistry and ages of its stars, and of galaxies whose stars and gas share a similar history, to study galaxy evolution on scales that are too small to resolve throughout most of the Universe." Using a wide range of datasets, she and her group explore how and when the Milky Way's own stars enriched its interstellar gas, and how to best use the Milky Way to understand other similar galaxies.

Dr. Zasowski also serves as the spokesperson for the Sloan Digital Sky Survey's (SDSS) current generation, where she works to ensure a smooth, transparent, and inclusive functioning of the massive international collaboration of astronomers and engineers. Within the Physics Department, she is currently Chair of the Ombuds Committee and is looking forward to working with students, staff, and faculty on a student-mentoring initiative.

 

by Michele Swaner - first published @ physics.utah.edu

Sea Ice Science

The Science of Sea Ice


A sheet of floating Arctic or Antarctic ice probably isn’t the setting in which you’d expect to find a mathematician. But that’s exactly where distinguished professor Ken Golden trains students and carries out experiments, as explained in a video introduction to Golden’s Frontiers of Science lecture, hosted by the College of Science and held on Feb. 18.

“It’s one thing to sort of sit in your office and develop theorems and theories and models about as complex a system as sea ice,” Golden says. “It exhibits all kinds of fascinating phenomena and behavior that you wouldn’t necessarily expect or think is important until you actually get down there and see it in action.”

Watch the full video introduction, produced by University Marketing & Communications, below or find the video here. Golden talks about his experiences in the Arctic and Antarctica and about what he and his students have learned from bringing the principles of mathematics into some of Earth’s most remote and most vulnerable environments.

Golden studies how sea ice forms and melts using mathematical models. He’s logged 18 trips to the Arctic and Antarctic, and is a Fellow of the Explorers Club. He is also a Fellow of the Society for Industrial and Applied Mathematics, and an Inaugural Fellow of the American Mathematical Society.

The Frontiers of Science lecture series was established in 1967 by University of Utah alumnus and Physics Professor Peter Gibbs. Today, Frontiers of Science is the longest continuously running lecture series at the University of Utah. The 2020-2021 Frontiers of Science lectures, featuring University of Utah faculty, are online only.

In Golden’s lecture, he discusses his research, his Arctic and Antarctic adventures and how mathematics is currently playing an important role in addressing these fundamental issues and will likely play an even greater role in the future. Watch the full video of the presentation below, or find the video here.

Ken Golden’s Recent Research

 

by Paul Gabrielsen - first published in @THEU

 

Carsten Rott

Carsten Rott


Professor Carsten Rott, who will join the Department of Physics & Astronomy in early 2021, has been appointed to the Jack W. Keuffel Memorial Chair, effective January 1, 2021. Rott will hold the chair through December 2025.

“It’s such a great honor to be appointed, and I’m looking forward to my arrival at the U to begin my work,” he said.

The Jack W. Keuffel Memorial Chair in Physics & Astronomy was established to honor and continue the work the late Jack W. Keuffel, a professor and pioneer in cosmic ray research at the U from 1960-1974.

More About Rott
For as long as he can remember, Rott has been fascinated by the night sky, the stars, and the planets. As a child growing up in Germany, he could see the Orion nebula, the Andromeda galaxy, and star clusters. He wondered what these objects were and what else was in the night sky waiting to be discovered.

He combined his love of astronomy with learning computer programing and was fascinated by the ability to write computer programs to model biological systems, fluid dynamics, and astrophysics. By comparing the outcomes of his simulations, he could check to see if his intuition was correct or if he got the physics right, which was invaluable in training his logical thinking skills. “As a high school student, I spent many months trying to understand why my simulations of rotating galaxies would not maintain spiral arm structures or why my models of stars weren’t stable,” he said. Struggling with such questions made him want to understand the underlying phenomena.

Rott studied physics as an undergraduate at the Universität Hannover and went on to receive a Ph.D. from Purdue University in 2004. “Becoming a physicist has at times been a challenge, but it has broadened my horizons so much, and I’m extremely happy I decided to pursue a career in science,” he said.

High-Energy Neutrinos
His research is on understanding the origins of high energy neutrinos, which are tiny, subatomic particles similar to electrons, but with no electrical charge and a very tiny mass. Neutrinos are abundant in the universe but difficult to detect because they rarely interact with matter. These particles originate from distant regions of the universe and can arrive on the Earth more or less unhindered, providing scientists with information about distant galaxies. High-energy neutrinos are associated with extreme cosmic events, such as exploding stars, gamma ray bursts, outflows from supermassive black holes, and neutron stars, and studying them is regarded as a key to identifying and understanding cosmic phenomena.

“One of my main research focuses is to look for signatures of dark matter with high-energy neutrinos. By studying them, we can explore energy scales far beyond the reach of particle accelerators on Earth,” he said.

While most of his work is considered pure research and doesn’t have immediate applications, Rott did figure out a new way to use neutrino oscillations to study the Earth’s interior composition. He spent several months at the Earthquake Research Institute at the University of Tokyo to collaborate with researchers on the topic, and he hopes this new method can help scientists better understand and predict earthquakes.

IceCube Neutrino Telescope
Rott has been a member of the IceCube Neutrino Telescope since the start of the construction of the detector in 2005. IceCube is the world’s largest neutrino detector designed to observe the cosmos from deep within the South Pole ice. The telescope uses an array of more than 5,000 optical sensor modules to detect Cherenkov light, which occurs when neutrinos interact in the ultra-pure Antarctic ice. When a neutrino interaction occurs, a faint light flash is produced, allowing them to be detected.

The IceCube Neutrino Observatory at NSF's Amundsen-Scott South Pole Station Credit: Mike Lucibella, Antarctic Sun

Approximately 300 physicists from 53 institutions in 12 countries are part of the IceCube Collaboration, which tries to solve some of the most fundamental questions of our time, such as the origin of cosmic rays, nature of dark matter, and the properties of neutrinos. The science spectrum covered by the IceCube Neutrino Observatory is very broad, ranging from cosmic ray physics, particle physics, and geophysics to astroparticle physics.

The team of scientists has already achieved some amazing scientific breakthroughs with this telescope. For example, they discovered a diffuse astrophysical neutrino flux in 2014 and recently achieved the first step in identifying the sources of astrophysical neutrinos associated with a highly luminous blazar, which was discovered in 2018. A blazar is an active galaxy that contains a supermassive black hole at its center, with an outflow jet pointed in the direction of the Earth. Over the next years, the team looks forward to making more discoveries by observing the universe in fundamentally new ways.

Life in Korea
Before joining the U, Rott was invited to Korea to begin a tenure-track faculty position at Sungkyunkwan University (SKKU). He took the opportunity to build an astroparticle physics program at one of the major research hubs in Asia. “I was excited to be part of a university that had the vision and determination to become a world-leading university, and I was able to build one of the largest astroparticle physics efforts in Asia, while accomplishing many of my research objectives,” he said.

He enjoys Korean culture and life in Korea, which is very practical and straightforward. “In Korea, people like to get things done fast,” he said. “It’s great to get rapid feedback, for example, on a proposal. You know quickly if your proposal is funded or not.” Being based in Korea has allowed him to collaborate more closely on other projects, including the COSINE-100 dark matter experiment in Korea and the JSNS2 sterile neutrino search and Hyper-Kamiokande neutrino program in Japan. He plans to spearhead initiatives to establish stronger ties between the University of Utah and leading universities in Asia and Korea.

Future Research
Currently, the IceCube team is in the middle of preparing an upgrade to the IceCube Neutrino Telescope. This new telescope will be installed within two years in Antarctica. For the IceCube upgrade, Professor Rott’s team has designed a more accurate camera-based calibration system for the Antarctic ice. Improved calibration will be applied to data collected over the past decade, improving the angular and spatial resolution of detected astrophysical neutrino events.

“The origin of high-energy neutrinos and any new phenomena associated with their production remains one of the biggest challenges of our time,” Rott said. “I’m extremely excited about correlating observations of high-energy neutrinos with other cosmic messengers. To establish any correlation, it’s essential that we can accurately point back to where neutrinos originated on the sky.”

Rott further explains, “We hope that the IceCube upgrade will be just the first step towards a much larger facility for multi-messenger science at the South Pole that combines optical and radio neutrino detection with a cosmic ray air shower array.”

 

by Michele Swaner - Physics & Astronomy News

 

Mission Unstoppable

 

Mission Unstoppable


Watch chemistry professor and mixed martial artist, Dr. Janis Louie, on CBC television's Mission Unstoppable. Dr. Louie uses exercise to show how science solutions play an important role in our bodies.

Born and raised in San Francisco.– Dr. Louie earned degrees and honed her chemistry skills at University of California, Los Angeles (UCLA), Yale University, and the California Institute of Technology (CalTech) before settling in Salt Lake City and joining the faculty in the University of Utah Department of Chemistry. Her research is centered on the discovery, development, and utilization of transition metal catalyzed reactions to overcome obstacles in traditional synthetic approaches.  Dr Louie's honors include the Cope Scholar Award, the Camille-Dreyfus Teacher Scholar Award, and the inaugural AAAS If/Then Ambassadorship.

Student Spotlights


>> HOME <<


Priyam Patel

Priyam Patel


Visualizing the Topology of Surfaces

Imagine a surface that looks like a hollow doughnut. The “skin” of the doughnut has no thickness and is made of stretchy, flexible material. “Some of my favorite mathematical problems deal with objects like this–surfaces and curves or loops on such surfaces,” said Priyam Patel, assistant professor of mathematics, who joined the Math Department in 2019. “I like how artistic and creative my work feels, and it’s also very tangible since I can draw pictures representing different parts of a problem I’m working on.”

Patel works in geometry and topology. The two areas differ in that geometry focuses on rigid objects where there is a notion of distance, while topological objects are much more fluid. Patel likes studying a geometrical or topological object extensively so that she’s able to get to know the space, how it behaves, and what sort of phenomena it exhibits. In her research, Patel’s goals are to study and understand curves on surfaces, symmetries of surfaces, and objects called hyperbolic manifolds and their finite covering spaces. Topology and geometry are used in a variety of fields, including data analysis, neuroscience, and facial recognition technology. Patel’s research doesn’t focus on these applications directly since she works in pure mathematics.

Challenges as a Minority

Patel became fascinated with mathematics in high school while learning to do proofs. She was fortunate to have excellent high school math teachers, who encouraged her to consider majoring in math in college. “When I was an undergraduate at New York University (NYU), I had a female professor for multivariable calculus who spent a lot of time with me in office hours and gave me challenging problems to work on,” said Patel. “She was very encouraging and had a huge impact on me.”

As a woman of color, Patel often felt out of place in many of her classes at NYU. Later, she was one of a handful of women accepted into a Ph.D. program at Rutgers University. Unfortunately, these experiences led to strong feelings of “impostor syndrome” for her as a graduate student. Eventually, she overcame them and learned to celebrate her successes, focusing on the joy that mathematics brings to her life. She has also worked to find a community of mathematicians to help support her through the tough times. “I’ve received a lot of encouragement from friends and mentors both in and outside of my math community,” she said. “I feel especially fortunate to have connected with strong women mentors in recent years.”

Mentors and Outside Interests

Feng Luo, professor of mathematics at Rutgers, was Patel’s Ph.D. advisor, and he played an active role in the early years of her math career. “Talking about math with Dr. Luo is always a positive experience, and his encouragement has been pivotal to my success as a mathematician,” said Patel. Another mentor is Alan Reid, chair and professor of the Department of Mathematics at Rice University. Patel notes that there are many aspects to being a mathematician outside of math itself, and these mentors have helped her navigate her career and offered support, encouragement, and advice.

Patel loves mathematics but makes time for other things in life. She enjoys rock climbing, yoga, dancing, and painting. Music is also a huge part of her life, and she sings and plays the guitar.

Future Research

Patel is currently working on problems concerning groups of symmetries of certain surfaces. Specifically, she has been studying the mapping class groups of infinite-type surfaces, which is a new and quickly growing field of topology. “It’s quite exciting to be at the forefront of it. I would like to tackle some of the biggest open problems in this area in the next few years, such as producing a Nielsen-Thurston type classification for infinite-type surfaces,” she said. She is also interested in the work of Ian Agol, professor of mathematics at Berkeley, who won a Breakthrough Prize in 2012 for solving an open problem in low-dimensional topology. Patel would like to build on Agol’s work in proving a quantitative version of his results. Other areas she’d like to explore are the combinatorics of 3-manifolds and the theory of translation surfaces.

 

by Michele Swaner

 

COVID Connections

Creating a Virtual Symposium


Tanya Vickers

Rising to the Challenge

Science is about preparing the next generation of innovators, explorers, and connoisseurs of curiosity. For the last 29 years the College of Science ACCESS program has been the “first step” on this journey of discovery. The ACCESS program runs from June to August and is open only to first-year students freshmen and transfers).

A cornerstone of the ACCESS experience is the opportunity for the student cohort to share their work with faculty and peers during a research poster symposium. The symposium is a powerful learning experience that mirrors professional science conferences and a career in the field, and plays a key role in the program.

When COVID-19 hit the U.S., the longstanding tradition of the Spring Research Symposium was in jeopardy. As the director of ACCESS , I was driven to find a way to continue the capstone symposium, and provide talented first-year student scientists the opportunity to showcase their research, in spite of social distancing.

With just six weeks until the event we decided to design, build, and launch a novel virtual research symposium platform. The sudden shift and short time-frame presented a real challenge, but it was also an opportunity to pursue and explore innovative approaches to current standards that, if not for CO VID-19, would have been stagnant.

It’s been six months since the Virtual Symposium, and we are still surprised by its success. The merits and results of the virtual platform challenged the notion that in-person is best. The in-person symposium normally saw about 200 guests. In contrast, the virtual symposium reeled in nearly 6,000-page views in three days and 260 guests attended the live zoom presentations.

Thinking Differently

COVID-19 upended and reshaped our everyday lives and challenged everyone to find new approaches to routine activities and novel fixes for nascent problems, much like scientists do on a regular basis.

When the on-campus student research experience was cut short in March, it didn’t mark the end of learning for the 2019-2020 ACCESS cohort. Research faculty agreed to continue mentoring remotely, which included helping the students report their research in a scientific poster they would present virtually. Unfortunately, the technology for a virtual research poster presentation did not exist.

That’s when I began the process of envisioning and creating the Virtual Symposium platform, as it’s now known. I started with identifying the critical elements of an in-person research symposium and considering how to transpose them to a virtual model. My experience teaching and using Canvas (used to deliver course content) shaped the content, and with the collaboration and support of Micah Murdock, Associate Director of Teaching and Learning Technologists (TLT ), a novel virtual research symposium was fully realized.

Embracing Technology

The platform was a lofty goal that required three defining features: a webpage for students to introduce their project, a message board for peers, guests, and mentors to pose questions, and a live Zoom presentation with question and answer.

Each student had a personal webpage that included their research poster, a 3-minute video summary of their research project, and a short personal bio. These elements provided guests with an introduction and interactions analogous to an in-person symposium.

In-person symposia can feel rushed, but the virtual platform offered the advantage of providing guests more time to preview projects on their own, before using one, or both, forum tools—the student scientist’s discussion board, or the 30-minute Zoom live session scheduled on the last day—to ask questions or comment.

Building For the Future

Throughout this process, we wanted to build a tool with the future, as well as other disciplines and applications, in mind. We are proud to announce that the platform has already seen use for the School of Biological Sciences Virtual Retreat, ACCESS Alumni Career Panel, and a number of campus-wide projects. Most recently, the Virtual Symposium was chosen to serve as the cornerstone of the new College of Science high school outreach platform SCIENCE NO W—engaging students, presenters, and elite scientists from across the U.S. and around the world.

As a species and as scientists, we always look forward to new ideas and what can be done. In our darkest hours, we find a space for new forms of unity and growth, and can challenge ourselves to create and expand. CO VID has been undeniably difficult, but the development of new platforms and technologies, like the Virtual Research Symposium, show that sometimes, when we are forced to make changes to long held traditions, the outcome goes beyond finding an equivalent, making what we thought was “best” even better.

Special thanks to Dean Peter Trapa, ACCESS Program Manager, Samantha Shaw, and to the ACCESS students and mentors for believing in the vision of a Virtual Research Symposium.

For more information on the Virtual Symposium platform contact: tanya.vickers@utah.edu.

 

by Tanya Vickers